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SUMMARY5

We develop solutions for the surface deformation field due to the pressurization of a6

finite (triaxial) ellipsoidal cavity in a half-space. The solution is in the form of a non-7

uniform distribution of triaxial point sources within the cavity. The point sources have8

the same aspect ratio, determined by the cavity shape, while their strengths and spacing9

are determined in an adaptive manner, such that the net point-source potency per unit10

volume is uniform. We validate and compare our solution with available analytical and11

numerical solutions. We provide computationally-efficient MATLAB codes tailored for12

source inversions. This solution opens the possibility of exploring potential deviations of13

magma chambers from axi-symmetric geometries.14

Key words: Geomechanics; Kinematics of crustal and mantle deformation; Physics of15

magma and magma bodies; Volcano monitoring.16

1 INTRODUCTION17

Volcano deformation models are idealized representations of magmatic intrusions or pressurized magma18

chambers. Through fitting these models to geodetic data measured at the Earth’s surface, the shape,19

location, spatial orientation and volume change of pressurized magma chambers can be constrained20
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from (Dvorak & Dzurisin 1997; Dzurisin 2003; Lisowski 2007; Segall 2010). The surface displace-21

ments caused by deep volumetric deformation sources can be adequately modelled through point-22

source models such as the point spherical (Mogi 1958), point spheroidal (Davis et al. 1974) and point23

ellipsoidal (Davis 1986) models. A triaxial point-source model that includes the mentioned solutions24

as special cases is the point Compound Dislocation Model (point CDM Nikkhoo et al. 2017), which25

is composed of three mutually orthogonal point tensile dislocations (see also Lisowski et al. 2008;26

Bonafede & Ferrari 2009).27

McTigue (1987); Yang et al. (1988) showed that point sources fail to properly simulate the near-28

field surface displacements associated with shallow pressurized cavities. This is because the near-field29

displacements are affected by the finite dimension of the source. Finite source models are required30

to constrain all source parameters reliably (Lisowski 2007; Segall 2010). The most common finite31

source models of uniform pressure are the finite spherical (McTigue 1987), finite spheroidal (Yang32

et al. 1988) and penny-shaped crack Sun (1969); Fialko et al. (2001) models. These models are all33

special cases of a pressurized ellipsoid.34

After Eshelby (1957), a solution for a uniformly pressurized finite ellipsoidal cavity in the full35

space can be obtained by appropriate triaxial point sources uniformly distributed throughout the cav-36

ity (Yang et al. 1988; Segall 2010). Davis et al. (1974); Davis (1986) incorporated the Mindlin (1936)37

half-space Green’s functions instead of the full-space Green’s functions into the Eshelby’s solution to38

derive their approximate half-space point-source solution. Similarly, Yang et al. (1988) used the half-39

space Green’s functions to develop a solution for finite spheroids. Yang et al. (1988) also showed that,40

as a rule of thumb, the solution is accurate if the depth to the top of the spheroid is larger than the radius41

of curvature at the spheroid top. Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013)42

used the Eshelby’s solution together with a quadrupole expansion of the half-space Green’s functions43

to obtain generic finite ellipsoidal source models. These models can be applied only to sources at inter-44

mediate depths. Solutions appropriate for shallow ellipsoidal sources along with computer programs45

suitable for inversions are yet to be developed and adopted by the community.46

Following Eshelby (1957) and Davis et al. (1974); Davis (1986), it is straightforward to derive47

a half-space solution for finite ellipsoids as an evenly-spaced distribution of triaxial point sources.48

Such an approach is, however, impractical for inversions, as it would involve a very large number of49

point sources to achieve good accuracy for shallow cavities. Here we develop an equivalent, adaptive50

solution in the form of a non-uniform distribution of triaxial point sources, that is point CDMs, with51

depth-dependent spacing and strengths. We first introduce an adaptive algorithm that involves a set52

of analytical solutions controlling the location, spacing and strengths of the point CDMs. Next, we53

compare our solutions with published analytical and numerical solutions.54
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2 METHODS55

2.1 A new adaptive configuration56

In the following we develop a solution for uniformly pressurized ellipsoidal cavities in a homogeneous,57

linear, elastic half-space with Poisson’s ratio, ν, and bulk modulus, K. We refer to this solution as58

the finite Ellipsoidal Cavity Model (finite ECM). We adopt a Cartesian right-handed xyz coordinate59

system with the origin on the free surface and the z axis pointing upward. The parameters defining60

a finite ECM are: the coordinates of its center (x0, y0,−dC), where dC is the depth to the center of61

the cavity, the semiaxes (ax, ay, az), the rotation angles (ωx, ωy, ωz) and the overpressure δp. If the62

rotation angles are zero, ax, ay and az are aligned with the x, y and z axes, respectively.63

Nikkhoo et al. (2017) showed that the far-field deformations due to any ellipsoidal cavity can be64

represented by a point CDM located at the cavity center and having potencies65 
∆Vx

∆Vy

∆Vz

 =
−V δp

3K
(S− I3)

−1


1

1

1

 , (1)66

where V = 4π
3 axayaz is the volume of the cavity, I3 is the identity matrix and67

S =


S1111 S1122 S1133

S2211 S2222 S2233

S3311 S3322 S3333

 ,68

where Siijj are the Eshelby (1957) tensor components, with the indices 1, 2 and 3 indicating the x, y69

and z directions, respectively. The terms Siijj are nonlinear functions of ax, ay, az and ν (see Eshelby70

1957; Amoruso & Crescentini 2009; Segall 2010). This far-field solution is equivalent to the Davis71

(1986) point ellipsoidal source. The point-source approximation is accurate if the distance between the72

cavity and the observation points—here the depth of the cavity—is much larger than the characteristic73

dimension of the cavity. The approximation error is, thus, a function of the depth to semi-major axis74

ratio (McTigue 1987; Fialko et al. 2001; Segall 2010), which we denote in the following as cr.75

Following Eshelby (1957), the near-field deformations of a finite ellipsoidal cavity can be rep-76

resented by a set of point CDMs—with potencies proportional to those in equation 1—continuously77

distributed throughout the cavity. Each point CDM of the set can be interpreted as an “auxiliary el-78

lipsoid”, that is, an infinitesimal ellipsoidal cavity with the same aspect ratio, pressure and spatial79

orientation as the finite cavity. In practice, a finite number of point CDMs can approximate the near-80

field solution with arbitrary accuracy. By trial and error we found that satisfactory results are achieved81

if: 1) the point CDM spacing is such that the auxiliary ellipsoids are regularly packed (ellipsoids tan-82



4 Mehdi Nikkhoo, Eleonora Rivalta

C

ax

a
z

aH

aV

free surfacex

z

dT

dB

djdC
x0

T

B

sj
pj

dj

dj+1

a

point CDM

∆
Vx∆

Vz

z = 0

N = 28

I

N = 70

II

N = 478

III

ρT

b

2 1.5 1 0.5

2

4

6

8

×103

10

16

22

II III

c

dT/ρT

N

Figure 1. a) The adaptive source model for c∗r = 10. The ellipsoid parameters are: center at (x0, 0,−dC),

ax/az = 0.714, az/dC = 0.826, ωx = ωz = 0◦ and ωy = 30◦. dT and dB are the depths to the ellipsoid top

(T) and bottom (B), respectively. dT/dC = 0.226 and dB/dC = 1.774. Red lines: uppermost and lowermost

partitioning planes. The j-th partition is bounded by the ellipsoid and partitioning planes (dashed lines) at

depths dj and dj+1. Cross symbols are the point CDMs, with a total number N = 879. Inset: point CDM

configuration. For this ellipsoid geometry and for ν = 0.25, ∆Vz/∆Vx = 0.671. b) Adaptive source model

(c∗r = 10) for the same ellipsoid as in a) but with ωx = ωy = ωz = 0◦. az/dC is 0.344, 0.466 and 0.724 for I, II

and III, respectively. dT/ρT is 3.75, 2.25 and 0.85 for I, II and III, respectively. c) For the same source geometry

as in panel b), the solid curves show N , for c∗r varying between 10 and 22, as a function of dT/ρT. Numbers on

the thick curves indicate c∗r . The vertical dashed line is dT = ρT, which represents the Yang et al. (1988) rule of

thumb. Note that for the tilted cavity in a) ρT/az = 0.620, whereas for the cavities in b) we have ρT/az = 0.510

.

gent to each other at the tips of their axes), and 2) the crs associated with the auxiliary ellipsoids are83

larger than a certain threshold, c∗r , which we refer to as the “grid-spacing parameter” (section 2.3).84

Thus, if the semi-axes of the auxiliary ellipsoids are a′x = kax, a′y = kay, a′z = kaz , where k < 185

is a scale factor, the spacing between the point CDMs in the three directions becomes 2kax, 2kay,86

2kaz , respectively. Denoting the depth to the top and bottom of the ellipsoidal cavity with dT and dB,87

respectively, and defining aV = (dB − dT)/2 (Fig. 1a), the cr for the shallowest auxiliary ellipsoid will88
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be89

cr =
d′C
a′C

=
dT + kaV

kaC
, (2)90

where d′C and a′C are the depth to the center and semi-major axis of the shallowest auxiliary ellipsoid,91

respectively. We note that 2aV is the vertical extent of the cavity and 2kaV is the vertical extent of the92

auxiliary ellipsoids. For a given c∗r , equation 2 can be solved for k, which determines the point CDM93

spacing. The potencies of the point CDMs in this configuration are (∆Vx/N,∆Vy/N,∆Vz/N), where94

∆Vx, ∆Vy and ∆Vz are calculated from equation 1 and N is the total number of the point CDMs.95

Numerical convergence tests show that c∗r =∼ 10 provides very good results (see section 2.3), but it96

may lead to a large N and thus, long computation times.97

To address this problem, we have devised a new configuration in which the size of the auxiliary el-98

lipsoids increases with depth such that they all have the same cr. In this new configuration the auxiliary99

ellipsoids are regularly packed in horizontal layers stacked on top of each other. The vertical extent100

of the layers—that is, the vertical extent of the auxiliary ellipsoids—are obtained from top to bottom101

through an iterative procedure. Assuming cr = c∗r , from equation 2 we have k1 = dT/(c
∗
r aC − aV),102

which results in the vertical extent of the first layer being 2k1aV. The depth to the top of the second103

layer is then d2 = dT(1 + 1/np), where np = dT/(2k1aV). Using d2 in place of dT, and the same c∗r ,104

in equation 2, we determine k2 and thus, the vertical extent of the second layer. By repeating this pro-105

cedure, we determine the depths, and thus the vertical extents, of further layers. Now we determine the106

point CDM spacing and potencies in each layer. Let aH and ah denote the semi-major axis and semi-107

minor axis, respectively, of the horizontal ellipse formed by the intersection of the ellipsoidal cavity108

and a horizontal plane passing through its center. The spacing of the point CDMs in the j-th layer will109

be 2kjaH and 2kjah in the directions parallel to aH and ah, respectively. Finally, we adjust the point110

CDM potencies in each layer such that the potency per unit volume remains uniform throughout the111

cavity.112

The new configuration is obtained through the following adaptive algorithm:113

1. We set c∗r depending on the desired accuracy or the maximum total number of allowed point114

CDMs, Nmax.115

2. We determine dT and dB analytically (Appendix A).116

3. We partition the cavity by using the planes z = −dT, z = −dB and z = −dj , where dj = dT
(
1 + 1/np

)j−1,117

j = 2, 3, . . . ,M − 1 (dashed lines in Fig. 1a) in which M is the number of partitioning planes.118

4. We calculate the volumes Vj of the cavity partitions analytically (see Appendix B).119

5. We determine analytically the ellipses formed by the intersections of the cavity and the planes120
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z = −dj = −(dj + dj+1)/2 passing through the middle of the partitions (see Fig. 1a and Ap-121

pendix C).122

6. On every intersection ellipse we create a regular grid of point CDMs such that one point CDM lies123

at the center of the ellipse (Fig. 1a). As the grid spacing parallel to aH and ah we use sH
j = 2kjaH124

and sh
j = 2kjah, respectively, where kj = dj/(c

∗
r aC − aV). Nj and N denote the total number of125

point CDMs within the j-th partition and within the cavity, respectively. Note that every partition126

will contain at least one point CDM at its center.127

7. For the top and bottom partitions, we calculate h′i, for i = 1, . . . , Nj , as the vertical distance128

between each point CDM and the cavity surface.129

8. We set the potencies of the point CDMs as (αij
Vj
V ∆Vx, αij

Vj
V ∆Vy, αij

Vj
V ∆Vz), where for the top130

and bottom partitions (j = 1 and j = M − 1) αij = hi/
∑Nj

k=1 hk in which hi = h′i + kjaV, and131

for all the other partitions αij = 1/Nj .132

9. We calculate γ = dT/ρT, where ρT is the maximum radius of curvature at T (Appendix D) for133

further assessment of the solution quality.134

For a specific c∗r in this adaptive algorithm, N is determined by the shape (aspect ratio and size),135

depth and spatial orientation of the cavity (Fig. 1a-c). The link between the cavity depth and N can be136

better seen in Fig. 1b-c, where a varying depth for cavities of the same shape and orientation leads to137

different Ns.138

N becomes very large when the source gets very shallow, but we have to keep in mind that ρT139

defines, as a rule of thumb, a minimum depth for the finite ECM model (see Yang et al. 1988, and140

Discussion). For cavities with dT ≥ ρT (cavity top below the dashed line in Fig 1b), N does exceed a141

few thousands, even for c∗r = 22 (left-hand side of the red dashed line in Fig 1c), which is much larger142

than what is needed for an excellent solution (Section 2.3).143

2.2 Computational efficiency of the finite ECM144

The adaptive configurations have a substantially smaller N in comparison to evenly-spaced (uniform)145

configurations of equivalent accuracy. For example for the cavity in Fig 1a, theN for the evenly-spaced146

configuration of equivalent accuracy is 21.5 times larger than the N for the adaptive configuration.147

Similar factors calculated for the first (I), second (II) and third (III) cavities in Fig 1b are 1, 2.7, 14.4,148

respectively. Thus, the shallower is the cavity, the higher is the computational efficiency achieved by149

using the adaptive configuration in comparison with the evenly-spaced configuration.150

The finite ECM involves computing the surface displacements for N point CDMs on the same151

grid of observation points. Thus, similar to Beauducel et al. (2020), we achieved further computa-152

tional efficiency through a full vectorization of the original point CDM computer codes. As an exam-153
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ple, the computation of surface displacements at 100 observation points caused by a configuration of154

N = 1000 point CDMs requires 0.12 seconds on a personal computer (with 2.80 GHz processor with155

8 threads). Using the adaptive algorithm along with the vectorization renders the finite ECM suitable156

for source inversions, akin to a conventional analytical solutions.157

2.3 Calibration of the grid-spacing parameter158

As stated earlier, the accuracy of the solution depends on c∗r . In order to calibrate c∗r , we use the only159

exact solution for finite non-spherical sources, namely, the Yang et al. (1988) solution for spheroidal160

cavities. We conduct systematic comparisons between the finite ECM and the Yang et al. (1988) sur-161

face displacements for ∼ 7500 oblate and prolate spheroids with various aspect ratios, depths and162

dip angles (see caption of Table 1). To do so, we calculate the surface displacements associated with163

the Yang et al. (1988) solution on a regular grid of points using the MATLAB codes provided by164

Cervelli (2013) and Battaglia et al. (2013). Next, on the same grid, we calculate the surface displace-165

ments using the finite ECM for various c∗r . As measures of the deviation between the two solutions166

we calculate εx = max{(u(1)x − u(2)x )/u
(2)
z } and εz = max{(u(1)z − u(2)z )/u

(2)
z }, where the “max” is167

calculated over all observation points, superscript “(1)” refers to the finite ECM and superscript “(2)”168

refers to the Yang et al. (1988) solution. We evaluate both the maximum of these deviations among169

all models, and the fraction of models where εx and εz are below 0.01. In order to avoid errors due to170

normalizing by near-zero vertical displacements, we limit the calculation to observation points with171

a vertical displacement larger than 10 per cent of the maximum vertical displacement on the grid.172

Results confirm that already with c∗r = 10 a very good accuracy is obtained. An excellent accuracy,173

sufficient for most practical applications, is reached with c∗r = 12 for prolate sources and c∗r = 14 for174

oblate sources. Convergence tests comparing the finite ECM solutions with an increasing c∗r lead to175

similar results for triaxial cavities (see Table 1).176

2.4 The volume change and the compressibility associated with the finite ECM177

In order to fully characterize a volcano deformation source, it is critical to provide the practical means178

to calculate the volume change upon pressurization. The volume change is a measure of the source179

strength and can be used to estimate other important quantities such as the chamber compressibility,180

defined as the relative volume change for a unit pressurization. The chamber compressibility, together181

with the magma compressibility, is critical to estimate the real intrusion volume.182

The volume change associated with ellipsoidal sources in a full space can be calculated from183

the Eshelby (1957) solution (see Amoruso & Crescentini 2009). This “full-space” volume change is184

also used as an approximation for the half-space models. This is because the exact volume change in185
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Table 1. Systematic comparison of the Yang et al. (1988) solution (prolate and oblate spheroids) with the finite

ECM for varying c∗r , and convergence test of the finite ECM for triaxial ellipsoids. tC is the mean compu-

tation time, max εx and max εz are the maximum relative errors for the ux and uz components of the sur-

face displacements, respectively, and α(εx < 0.01) and α(εz < 0.01) are the percentages of cases with rela-

tive errors below 1 per cent. The comparison involves 3800 prolate spheroids with parameters x0 = y0 = 0 m,

dC ∈ [100, 1000] m, az = 1000 m, ax = ay ∈ [50, 950] m, ωx = ωz = 0◦, ωy ∈ [0◦, 90◦]. For c∗r = 10, we have

Nmin = 20, Nmax = 2884, whereas for c∗r = 20 we have Nmin = 163 and Nmax = 15035. The comparison

also involves 3716 oblate spheroids, with parameters ax = ay = 1000 m and az ∈ [50, 950] m; all the other

parameters are the same as those for the prolate sources. For oblate cavities, c∗r = 10 leads to Nmin = 20

and Nmax = 1413, and c∗r = 20 results in Nmin = 163 and Nmax = 11410. The convergence test involves

5868 triaxial ellipsoids, with parameters x0 = y0 = 0 m, dC ∈ [1000, 2000] m, ax = 1000 m, ay ∈ [50, 950] m,

az ∈ [50, 950] m and ωy ∈ [0◦, 90◦]. For these ellipsoids the finite ECM solution with c∗r = 12 is compared to

the solution with c∗r = 20. In all cases, the surface observation grid consists of 496 points with a spacing of

200 m within x ∈ [−3000, 3000] m and y ∈ [0, 3000] m. For all sources dT ≥ 200 m.

c∗r tC max εx max εz α(εx < 0.01) α(εz < 0.01)

[s] [%] [%] [%] [%]

Prolate spheroids

10 0.097 1.2 2.1 98.9 90.0

12 0.17 0.88 1.4 100 98.5

14 0.27 0.76 1.3 100 99.4

20 0.79 0.45 0.73 100 100

Oblate spheroids

10 0.10 3.4 4.9 85.0 53.0

12 0.17 2.7 3.5 87.7 80.0

14 0.27 2.1 2.8 99.5 91.3

20 0.80 0.9 1.3 100 99.8

Ellipsoids

12 0.40 1.5 2.8 99.7 95.7

half-space source models cannot be calculated analytically. One caveat is that the volume change for186

shallow sources in a half-space may be substantially different from the full-space volume change—187

accurate half-space volume change calculations require numerical methods (see Amoruso & Cres-188

centini 2009; Anderson & Segall 2011). Since volume change and chamber compressibility may be189

important magma chamber properties both for inversions and for forward modeling of eruptive vol-190
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umes (Mastin et al. 2008; Anderson & Segall 2011; Wasser et al. 2021), we include codes based on the191

Eshelby (1957) approach for the accurate calculation of the full-space volume change and chamber192

compressibility (see Segall et al. 2001; Rivalta & Segall 2008; Segall 2010).193

3 COMPARISON TO PUBLISHED ANALYTICAL AND NUMERICAL SOLUTIONS194

We compare the finite ECM with published analytical and numerical solutions. Unless otherwise195

stated, we use c∗r = 10 and Nmax = 4000. Note that when comparing two solutions, displacements196

are commonly normalized in two different ways: I) Both solutions normalized by the maximum ver-197

tical displacement of one of the solutions; II) Each solution normalized by its own maximum vertical198

displacement. First, we compare the finite ECM with analytical solutions and next with numerical199

solutions for triaxial ellipsoids. We use normalization method I in our analytical comparisons (Fig. 2)200

and both normalization methods I and II in the numerical comparisons (Fig. 3). We later expand on201

the implications of the normalization methods.202

As the first analytical source for the comparison we consider the Yang et al. (1988) spheroid203

depicted in Fig. 1a. Despite the rather high semi-major-axis to depth ratio of 0.95 for this case, the204

finite ECM agrees very well with the Yang et al. (1988) solution (Fig. 2a).205

The second comparison (Fig. 2b) involves both the quadrupole solution for a finite ellipsoid by206

Amoruso & Crescentini (2011) and a prolate spheroid after Yang et al. (1988). All the solutions are207

identical in the far field, but in the near field the Amoruso & Crescentini (2011) solution substantially208

underestimates the surface displacements.209

The next comparison involves the McTigue (1987) and Yang et al. (1988) solutions in the case of210

a sphere (Fig. 2c). The mismatch between the McTigue (1987) and the Yang et al. (1988) and finite211

ECM solutions is because the formulation of the latter solutions involves the same approximations212

as in the Davis et al. (1974) solution, while the McTigue (1987) solution contains higher-order terms213

correcting for the resulting misrepresentation of the boundary conditions on the cavity walls.214

As the last analytical comparison, we consider a uniformly pressurized penny-shaped crack (Fi-215

alko et al. 2001), the Yang et al. (1988) solution and a horizontal tensile square dislocation (Davis216

1983; Okada 1985). For this special case, the finite ECM has only one layer of point sources with217

different potencies. Again, there is an excellent agreement between the finite ECM and the Yang et al.218

(1988) solution. The difference with the Fialko et al. (2001) solution is due to the fact that the boundary219

conditions on the source walls are more accurately implemented in the Fialko et al. (2001) solution.220

However, compared to the square dislocation, the finite ECM and the Yang et al. (1988) solutions221

provide a better approximation to the Fialko et al. (2001) solution. This is because the opening of222

the square dislocation is uniform but the opening of the cracks represented by the Yang et al. (1988)223
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Figure 2. Comparison of the finite ECM with selected analytical solutions. In all panels the gray solid lines

are the finite ECM displacements. For all displacements normalization method I has been used. a) Compar-

ison with a spheroid (Yang et al. 1988). Source parameters are ax/az = 0.737, ax = ay , az/dC = 0.950

and ωx = 0◦, ωy = 15◦, ωz = 150◦. The finite ECM is shown for c∗r = 10 which leads to N = 4734. The

maximum relative error is well below 1 per cent. b) Comparison with the quadrupole solution (Amoruso

& Crescentini 2011, red solid line) and a spheroid (Yang et al. 1988, black dashed line). Source parameters

are ax/az = 0.333, ax = ay , az/dC = 0.900 and ωx = ωy = ωz = 0◦. The finite ECM is shown for c∗r = 10

which leads to N = 2571. The maximum relative error is well below 1 per cent. c) Comparison with the finite

spherical source by McTigue (1987, red solid line) and a spheroid (Yang et al. 1988, black dashed line). Source

parameters are ax = ay = az = R and R/dC = 0.556. The finite ECM is shown for c∗r = 14 which leads to

N = 385. The maximum relative error is well below 1 per cent. d) Comparison with the penny-shaped crack

solution by Fialko et al. (2001, red solid line), a spheroid (Yang et al. 1988, black dashed line) and a square

dislocation (Okada 1985, green dashed line). Source parameters are az/ax = 10−6, ax = ay , ax/dC = 0.667

and ωx = ωy = ωz = 0◦. The finite ECM is shown for c∗r = 10 which leads toN = 163. The square dislocation

has the same potency as the finite ECM and its edge length is (πa2x)1/2.
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Figure 3. Comparison with selected numerical solutions for triaxial sources. The black dashed lines are BEM

solutions from (Nikkhoo et al. 2017). The gray and green solid lines are the finite ECM displacements, nor-

malized through methods I and II, respectively (see text). a) Vertically elongated source (Nikkhoo et al. 2017,

Fig. 5) with ax = 0.75 km, ay = 0.5 km, az = 1.5 km and dC = 3 km. Displacements are shown for the xz

plane. b) Same as a), but for the yz plane. c) Lens-shaped source (Nikkhoo et al. 2017, Fig. 7) with ax = 2 km,

ay = 3 km, az = 0.25 km and dC = 3 km. Displacements are shown for the xz plane. d) Same as c), but for the

yz plane. The finite ECM is shown for c∗r = 10 which leads toN = 90 andN = 527 for the vertically elongated

source (a and b) and the horizontal lens-shaped source (c and d), respectively.

solution and finite ECM have an elliptic form. This feature is implemented through step “7” of the224

adaptive algorithm.225

Finally, we compare the surface displacements from the finite ECM and two triaxial ellipsoids226

calculated by Nikkhoo et al. (2017) using the Boundary Element Method (Fig. 3). For the vertically227

elongated cavity, we find that, except for the vertical displacements right above the ellipsoid, the228

solutions are nearly identical (Fig. 3a,b). The agreement is best along the y-axis, which is parallel to the229

semi-minor axis. For the second source, which is horizontal and lens-shaped, the agreement is not as230

good (Fig. 3c,d). However, the functional shape of the solutions is very similar: indeed, a substantially231
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better agreement is achieved if the displacements are normalized by method II (Fig. 3c,d). This implies232

that applying the finite ECM and Yang et al. (1988) solution to source inversions involving sill-like233

sources may lead to fairly good constraints on the source shape, but the volume change and depth of234

the source may be biased considerably.235

4 DISCUSSION236

We developed the finite ECM in the form of distributed point CDMs with the same aspect ratio de-237

termined through the Eshelby (1957) shape functions (eq. 1). Unless the cavity shape is spherical,238

spheroidal or crack-like, these functions involve elliptic integrals, which can be calculated only nu-239

merically. All other components of the finite ECM—all steps of the adaptive algorithm controlling the240

configuration of the solution—are analytical.241

Yang et al. (1988) showed that due to using the Davis et al. (1974) half-space approximations242

in the derivation of their closed-form solution, it can accurately represent the surface displacements243

of a uniformly-pressurized cavity only if dT & ρT. The same empirical criterion applies to the finite244

ECM, because it also relies on the same Davis et al. (1974) half-space approximations. Note that245

the empirical criterion above was devised upon comparisons with finite element models for a few246

vertical spheroids only. A more general criterion for evaluating the accuracy of arbitrarily oriented247

ellipsoidal sources requires further comparisons with numerical solutions. We recommend including248

this criterion (dT & ρT) in inversions using the finite ECM in order to prevent calculations involving249

inaccurate solutions.250

Among analytical volcano deformation sources, the McTigue (1987) and Fialko et al. (2001) so-251

lutions fulfill very accurately (although still not exactly) the uniform-pressure boundary conditions on252

the source walls. All the other available analytical source models, including Sun (1969); Yang et al.253

(1988); Amoruso & Crescentini (2011) and the finite ECM, make use of the Davis et al. (1974) half-254

space approximations. Therefore, inferring the parameters of uniformly pressurized magma bodies by255

using the latter group of source models may come with a substantial bias if the source is very shallow.256

An example of this can be seen in Fig. 3a-d, where a perfect fit is achieved for oblate sources, but257

with a biased volume change. As also shown by Amoruso & Crescentini (2011), such a bias is likely258

to emerge on depth and source aspect ratio, beside volume change. Similarly, biases on the spatial259

orientation of the source could be expected. The extent of these biases as a function of source depth260

and shape has not been thoroughly investigated yet and should be addressed by future studies.261

The deformation signals measured at the Earth’s surface can be used to infer some large-scale262

features of pressurized magma chambers. These large-scale features are in fact the deformation source263

parameters, which can be constrained through deformation modeling. For deep sources, these pa-264
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rameters are limited to the location, spatial orientation and strength; in this case point-source and265

finite-source models yield the same results. For shallow sources, in addition to the location, spatial266

orientation and strength, it is possible to constrain the source dimensions, provided that displacement267

data in the near-field are available. In this case, point-source solutions cannot be used because they can-268

not represent the displacements in the near field. Therefore, to infer the parameters of shallow magma269

chambers correctly, finite-source models need to be used. Among the available analytical finite-source270

solutions, the Yang et al. (1988) spheroid has the highest number of parameters, with full rotational271

degrees of freedom, but can only represent axi-symmetric deformation sources. The finite ECM is a272

triaxial source and therefore allows us to explore more general geometries in the plumbing systems of273

volcanoes.274

5 CONCLUSIONS275

1. We developed a computationally-efficient solution for the surface deformation field caused by a276

finite (triaxial) ellipsoidal source in the form of a non-uniform (depth-dependent) distribution of277

point CDMs. The finite ECM is especially suitable for inversions of surface deformation data.278

2. The finite ECM includes an adaptive algorithm that determines the optimal spacing and location279

of the point CDMs as a function of the depth, shape, and spatial orientation of the cavity, and a280

grid-spacing parameter c∗r .281

3. We showed that the Yang et al. (1988) solution can be used to benchmark the finite ECM and282

calibrate c∗r , or alternatively Nmax, to achieve any desired accuracy while maintaining computation283

time minimal. We further validated the finite ECM through comparisons with other analytical and284

numerical solutions.285

4. Deformation models such as the finite ECM and Yang et al. (1988) represent a uniformly-pressurized286

cavity only if the criterion dT & ρT is fulfilled. Otherwise, biased parameters may be retrieved even287

if the model perfectly fits the surface displacements.288

5. We provide MATLAB codes for the finite ECM and additional codes to calculate the volume289

change and chamber compressibility of ellipsoidal sources. The codes do not contain any MATLAB-290

specific function and it is straightforward to convert them to any other programming language.291

6. In a separate work undertaken in parallel to the present paper, we show that the finite ECM can292

be used to simulate deformation-induced gravity changes associates with pressurized ellipsoidal293

cavities and also provide the respective MATLAB codes (Nikkhoo & Rivalta 2022).294
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APPENDIX A: ANALYTICAL SOLUTIONS FOR THE SHALLOWEST AND DEEPEST295

POINTS ON THE SURFACE OF A GENERIC ELLIPSOID296

The standard ellipsoid ES centered at the origin of a Cartesian xyz coordinate system has the form297

x2

a2x
+
y2

a2y
+
z2

a2z
= 1, (A.1)298

where the semi-axes ax, ay and az are aligned with the x, y and z coordinate axes, respectively. If299

(θ, λ) denote the spherical coordinates, of an arbitrary point P on the surface of ES, we have300

x = ax sin θ cosλ,301

y = ay sin θ sinλ,302

z = az cos θ, (A.2)303
304

where θ ∈ [0, π] and λ ∈ [0, 2π). The matrices305

Rx (ωx) =


1 0 0

0 cosωx sinωx

0 − sinωx cosωx

306

307

Ry (ωy) =


cosωy 0 − sinωy

0 1 0

sinωy 0 cosωy

 ,308

309

Rz (ωz) =


cosωz sinωz 0

− sinωz cosωz 0

0 0 1

 , (A.3)310

represent general rotations about the x, y and z axes, respectively. Any arbitrary rotation in xyz can311

be represented in the form of312

R = Rx (ωx)Ry (ωy)Rz (ωz) =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (A.4)313

with a unique set of angles (ωx, ωy, ωz). After applying such a rotation, the new coordinates of P are314 
x′

y′

z′

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



x

y

z

 . (A.5)315
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Combining equations A.5 and A.2 yields316

z′ = r31ax sin θ cosλ+ r32ay sin θ sinλ+ r33az cos θ. (A.6)317

The spherical coordinates of the two points with the minimum and maximum z values on the ellipsoid318

are the solutions of the equation319

∂z′

∂λ
= 0,

∂z′

∂θ
= 0, (A.7)320

that can be written in explicit form as321

λ = atan

(
r32ay
r31ax

)
, θ = atan

(
r31ax + r32ay tanλ

r33az
√

1 + tan2 λ

)
. (A.8)322

APPENDIX B: AN ANALYTICAL EXPRESSION FOR THE VOLUME OF A PARTITION323

OF AN ELLIPSOID BOUNDED BY TWO HORIZONTAL PLANES324

Let CP denote the ellipsoidal cap formed by the intersection of the standard ellipsoid, ES (equation325

A.1) and an arbitrary plane, S : Ax+By + Cz = D, where the vector (A,B,C) is normal to the326

plane and points towards CP. The volume of CP is327

VP(S) =

∫∫∫
CP

dxdydz. (B.1)328

In a new Cartesian XY Z coordinate system, where x = axX , y = ayY and z = azZ the ellipsoid329

is mapped onto the unit sphere, X2 + Y 2 + Z2 = 1, and the plane is mapped onto the new plane330

S′ : AaxX +BayY + CazZ = D. Also, equation B.1 can be rewritten as331

VP(S) = VP(S′) = axayaz

∫∫∫
C′

P

dXdY dZ, (B.2)332

where333 ∫∫∫
C′

P

dXdY dZ =
1

3
π(1− dn)2(2 + dn), (B.3)334

is the volume of the spherical cap, C ′P, that is bounded by the unit sphere and the new plane (see Kern335

& Bland 1938, p. 37 and Harris & Stöcker 1998, p. 107) and dn = D/(A2a2x +B2a2y + C2a2z)
1/2 is336

the shortest distance from the origin of XY Z to the new plane. Substituting equation B.3 in equation337

B.2 yields:338

VP(S) =
1

3
πaxayaz(1− dn)2(2 + dn). (B.4)339

Thus, the volume of the region insideES and bounded by two parallel planes S1 : Ax+By + Cz = D1340

and S2 : Ax+By + Cz = D2 can be calculated as341

VD1D2 = |VP(S2)− VP(S1)|. (B.5)342



16 Mehdi Nikkhoo, Eleonora Rivalta

For an arbitrary ellipsoid subjected to the rotationsRx(ωx)Ry(ωy)Rz(ωz) and centered at (x0, y0,−d),343

the volume of the region inside the ellipsoid and bounded by two horizontal planes z = z1 and344

z = z2 can be calculated from equation B.5 after applying the translation (−x0,−y0, d) and rotations345

Rz(−ωz)Ry(−ωy)Rx(−ωx) to the ellipsoid and both planes.346

APPENDIX C: INTERSECTION OF A PLANE AND AN ARBITRARY ELLIPSOID347

In order to determine the intersection ellipse associated with a horizontal plane, SH : z = zj , and an348

arbitrary ellipsoid ER subjected to the rotations Rx(ωx)Ry(ωy)Rz(ωz) and centered at (x0, y0,−d),349

we first apply the translation (−x0,−y0, d) and rotations Rz(−ωz)Ry(−ωy)Rx(−ωx) to both ER350

and SH. These transformations lead to a standard ellipsoid ES (equation A.1, and a plane of the form351

S : Ax+By + Cz = D. The intersection ellipse formed by ES and S can be determined through the352

Klein (2012) formulas. Applying the rotations Rx(ωx)Ry(ωy)Rz(ωz) and the translation (x0, y0,−d)353

to the ellipse from the previous step yields the solution.354

APPENDIX D: PRINCIPAL CURVATURES AT ANY POINT ON THE SURFACE OF AN355

ELLIPSOID356

The principal curvatures, κmax and κmin, at any point P (θ, λ) on the surface of the standard ellipsoid357

(equation A.1) are the solutions of the following equation:358

(EG− F 2)κ2 − (EN +GL− 2FM)κ+ (LN −M2) = 0, (D.1)359

where E, F and G are the first fundamental coefficients and L, M and N are the second fundamental360

coefficients of the ellipsoid (see Lipschutz 1969, p. 183). A simplified form of equation D.1 can be361

written as362

Aκ2 +Bκ+ C = 0, (D.2)363
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where364

A = (a2x cos2 θ cos2 λ+ a2y cos2 θ sin2 λ

+ a2z sin2 θ)(a2x sin2 λ+ a2y cos2 λ)

− (a2y − a2x)2 cos2 θ sin2 λ cos2 λ,

365

B =
−axayaz

qn
(a2x cos2 θ cos2 λ+ a2y cos2 θ sin2 λ

+ a2z sin2 θ + a2x sin2 λ+ a2y cos2 λ),

366

C = (axayaz/qn)2, (D.3)367
368

in which369

qn = (a2ya
2
z sin2 θ cos2 λ+ a2xa

2
z sin2 θ sin2 λ+ a2xa

2
y cos2 θ)

1/2.370

A singularity in equation D.1 at θ = 0 has been addressed analytically in equation D.2. The maximum371

and minimum radii of curvature at P are372

ρmax = 1/κmin, ρmin = 1/κmax. (D.4)373
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