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Abstract16

Geophysical simulations are commonly used in many scientific studies. Especially in com-17

plex simulations, it is still common practice to provide a single deterministic outcome.18

Often, a probabilistic approach would be preferable, as a way to quantify and commu-19

nicate uncertainties, but is infeasible due to long simulation times. We present here a20

method to generate full state predictions based on a reduced basis method that signif-21

icantly reduces simulation time, thus enabling studies which require a large number of22

simulations, such as probabilistic simulations and inverse approaches. We implemented23

this approach in an existing simulation framework and showcase the application in a geother-24

mal study, where we generate 2D and 3D predictive uncertainty maps. These maps al-25

low a detailed model insight, identifying regions with both high temperatures and low26

uncertainties. Due to the flexible implementation, the methods are transferable to other27

geophysical simulations, where both the state and the uncertainty are important.28

1 Introduction29

Geophysical and geoscientific applications have many sources of uncertainties, aris-30

ing from, for instance, unresolved and unaccounted physical processes, inaccurate geo-31

metrical information, and variations in the parameter distributions. Identifying and quan-32

tifying these uncertainties is a non-trivial process. Methods that easily require a million33

forward simulations, as Markov Chain Monte Carlo (MCMC), make this task not only34

non-trivial but computationally prohibitive for basin-scale geological heat flow models35

using state-of-the-art finite element solvers.36

To address this, the finite element model is replaced by a surrogate model such as37

Kriging (Miao et al., 2019; Mo et al., 2019), or polynomial chaos expansions (Navarro38

et al., 2018). The issue with these surrogate models is that they are defined in the ob-39

servation space only. Values outside this space need to be determined via inter- and ex-40

trapolation. For geothermal studies, however, we are interested in the entire tempera-41

ture distribution at a particular target depth. Therefore, we use a physics-based learn-42

ing approach, the reduced basis method (RB) (Prud’homme et al., 2002; Veroy et al.,43

2003; Hesthaven et al., 2016), as the surrogate model. In contrast to other surrogate mod-44

els, the RB method has the advantage that it retrieves the temperature distribution in45

the entire model and is not restricted to the observation space.46
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The utility of model order reduction for Bayesian inversion has been investigated47

in previous studies (Chen & Schwab, 2015, 2016; Cui et al., 2015; Himpe & Ohlberger,48

2015; Galbally et al., 2010; Lieberman et al., 2010; Manzoni et al., 2016). However, these49

papers focus on the methodology, and the presented case studies do not capture the typ-50

ical complexity of geothermal basin-scale applications. The work (Elison et al., 2019) in-51

vestigates the uncertainty of the thermal conductivity via Markov Chain Monte Carlo.52

The uncertainty for the temperatures are only considered for five realizations and only53

interpreted on a 2D-Slice. In contrast, we present a global-sensitivity-driven stochastic54

model calibration for complex basin-scale applications to generate predictive 3D uncer-55

tainty maps enhancing the efficiency of geothermal exploration. Furthermore, we con-56

sider all realizations obtained by the Markov Chain Monte Carlo analysis for the uncer-57

tainty quantification of the temperatures. The workflow is illustrated in Fig. 1. In pre-58

vious studies, we investigated the construction of surrogate models for a geoscientific con-59

text using the RB method (Degen, Veroy, & Wellmann, 2020). Furthermore, we demon-60

strated in (Degen, Veroy, Freymark, et al., 2020) the benefits of the RB method for basin-61

scale global sensitivity analysis and deterministic model calibrations.62
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Figure 1. Schematic representation of the workflow.

2 Materials and Methods63

In the following section, we briefly introduce the geological model, the governing64

equations, and the numerical methods used throughout this paper.65
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2.1 The Brandenburg Model66

In this paper, we are using a combination of the Brandenburg models presented67

in (Noack et al., 2012, 2013). The model (see Fig. 2) has a spatial extent of 250 km in68

the x-direction, 210 km in the y-direction and extends down to the lithosphere-asthenosphere69

boundary (LAB). It consists of 17 geological layers and is discretized using tetrahedrons.70

The upper 11 layers have a horizontal resolution of 0.22 km2 and a vertical resolution71

that is interpolated from the z-evaluations of the geological layers. The lower six layers72

have the same horizontal resolution as the upper 11 layers but the vertical element length73

corresponds to the layer thickness. This results in a tetrahedron mesh with 2,141,550 de-74

grees of freedom.75

a)

b) c)

[˚C]

[˚C]

Figure 2. a) Image of the Brandenburg model and the prior temperature distribution. For

the layer IDs refer to Table S1. b) The error between the full and reduced model for the prior

parameters. c) Convergence of the maximum relative error bound for the entire parameter range.

For the forward simulations, we take a geothermal conduction problem with the

radiogenic heat production S as the source term (Bayer et al., 1997):

−λ∇2T + S = 0, (1)
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where λ is the thermal conductivity, and T the temperature. In order to investigate the76

relative importance of the parameters, and for efficiency reasons, we nondimensionalize77

the equation, which leads to Eq. 2:78

− λ

λref Sref

∇2

l2ref

(T − Tref
Tref

)
+

S l2ref
Sref Tref λref

= 0 (2)

Here, we chose the maximum thermal conductivity of the Brandenburg model of 3.95 W m-1 K-1
79

as reference thermal conductivity λref. The maximum temperature of 1300 °C is the ref-80

erence temperature Tref, the maximum radiogenic heat production (2.5 µW m3) is the81

reference radiogenic heat production Sref. The reference length lref corresponds to the82

maximum x-extent of all models (250,000 m). At the top of the model, we apply a Dirich-83

let boundary condition of 8 °C, corresponding to the average annual temperature, and84

at the base of the LAB a Dirichlet boundary condition of 1300 °C (Turcotte & Schubert,85

2002). Additionally, we allow a scaling of the lower boundary condition of ± 10 % to ac-86

count for errors in the geometric description of the LAB. All thermal properties are sum-87

marized in Table S1 and the weak form of Eq. 2 is presented in Text S2.88

For the validation of the models, we are using the bottom-hole temperature mea-89

surements presented in (Noack et al., 2012, 2013) and corrected after (Förster, 2001).90

The values for the thermal conductivity and the radiogenic heat production are taken91

from (Noack et al., 2012, 2013) and are originating from previous model studies after (Bayer92

et al., 1997). Throughout this paper, we vary only the thermal conductivities, whereas93

the radiogenic heat production values are kept constant since the radiogenic heat pro-94

ductions have a minor effect on the temperature distribution at the target depth in com-95

parison to the thermal conductivities. We further reduce the number of involved param-96

eters in the reduction and inverse processes by combining layers with equal thermal con-97

ductivities into one, as presented in Table S1.98

2.2 Brandenburg – Reduced Model99

We construct a surrogate model using the RB method based on the full FE model.100

The RB method is a model order reduction technique that aims at significantly reduc-101

ing the spatial and temporal degrees of freedom of, for instance, finite element problems.102

For further information regarding the method please refer to (Prud’homme et al., 2002;103

Veroy et al., 2003; Quarteroni et al., 2015; Hesthaven et al., 2016), and for more infor-104
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mation on the RB method in the context of Geosciences refer to (Degen, Veroy, & Well-105

mann, 2020). The geothermal problem, described in Eq. 1, is affine decomposable, mean-106

ing separable into a parameter-independent and -dependent part.107

The RB method takes advantage of this affine decomposition in an offline-online108

procedure. During the offline stage, performed only once, all expensive pre-computations109

for the basis construction are performed. The construction of the basis is achieved via110

a greedy algorithm (Veroy et al., 2003), which involves training or “learning” of the low-111

dimensional model. In contrast to machine learning approaches, we are not training based112

only on data but instead on the physical model.113

On the other hand, the online stage uses only the reduced model. Hence, it for the114

given example several orders of magnitude faster than the original FE model making it115

advantageous for “outer loop” processes, such as calibrations and uncertainty quantifi-116

cation.117

3 Results118

For the uncertainty quantification of the Brandenburg model, we perform a Markov119

Chain Monte Carlo analysis (Iglesias & Stuart, 2014) with a Metropolis sampling using120

the Python library PyMC (Patil et al., 2010). A previously performed Sobol sensitiv-121

ity analysis with the Saltelli sampler and 300,000 forward solves showed that the model122

is insensitive to eight of the 14 parameters (Fig. S1). We thus reduce the parameter di-123

mension from 14 parameters to six. For more information regarding global sensitivity124

analyses, refer to (Sobol, 2001; Degen, Veroy, Freymark, et al., 2020).125

For all thermal conductivities in the sensitivity analysis and the MCMC algorithm,126

we allow a variation of ± 50 %. The number of function evaluations for the MCMC run127

is set to 1,000,000 with a thinning of 1,000 and 10,000 burn-in-simulations. For the pri-128

ors, we use normally distributed parameters. The mean of each parameter corresponds129

to the fitted thermal conductivity values of (Noack et al., 2012, 2013). Both the stan-130

dard deviation and proposal standard deviation are set to:131

• one for the Tertiary-pre-Rupelian-clay/Upper Cretaceous and Lower Cretaceous/Jurassic132

layer133

• two for the Keuper layer134
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• four for the Zechstein layer and the Lithospheric Mantle135

• 0.002 for the scaling parameter of the lower boundary condition136

and are afterwards divided by their respective mean values. The standard deviations have137

been determined such that the values do not exceed a range of ± 50 % of their mean val-138

ues to ensure physical plausibility. Analog to the deterministic model calibration, we use139

the temperature data presented in (Noack et al., 2012, 2013). The bottom-hole temper-140

atures of this database have been measured during the drilling process and were later141

on corrected after (Förster, 2001). This correction might not fully capture the pertur-142

bation of the temperature field. Therefore, we apply a standard deviation of 2 % for the143

observation data.144

3.1 Thermal Conductivities145

Now, we discuss the posterior distribution of the thermal conductivities obtained146

by the MCMC analysis (Tab. S1). Through a Quantile-Quantile analysis (Fig. S2), we147

determined that the normal distributions describe our parameter quite well. Hence, we148

discuss in the following only the posterior mean and standard deviations of the thermal149

conductivities.150

We obtain for the Tertiary Rupelian-clay/Upper Cretaceous layer (Fig. S4), a slight151

increase in the posterior mean thermal conductivity of 0.05 W m-1 K-1 in contrast to the152

prior thermal conductivity. The parameter follows a normal distribution with a standard153

deviation of 0.47 W m-1 K-1. We observe a posterior thermal conductivity of:154

• 2.11 W m-1 K-1 ± 0.45 W m-1 K-1 for the Lower Cretaceous/Jurassic/Buntsandstein155

layer (Fig. S5),156

• 2.35 W m-1 K-1 ± 0.58 W m-1 K-1 for the Keuper layer (Fig. S6),157

• and 3.56 W m-1 K-1 ± 0.81 W m-1 K-1 for the Zechstein layer (Fig. S7).158

Hence, all three cases show an increase in the posterior thermal conductivity in compar-159

ison to the prior thermal conductivity, and they are also normally distributed. The Litho-160

spheric Mantle shows a decrease in the posterior mean thermal conductivity of 0.11 W m-1 K-1
161

in comparison to the prior thermal conductivity and has a posterior standard deviation162

of 0.86 W m-1 K-1 (Fig. 3). The scaling parameter (Fig. S8) has a posterior mean value163

of 1.00, which is identical to the prior value, and a posterior standard deviation of 0.04.164
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All parameters follow a normal distribution and a autocorrelation around zero. The z-165

scores (Figure 3a, S4a - S8a) indicated converges for all chains. The z-scores measure166

the mean and the variance of the entire chain. The execution of the MCMC algorithm167

took in total about 4.5 hours, for the one Million forward solves.168

λLM
a) b)

c) d)

Figure 3. Posterior Analysis of the Lithospheric Mantle (LM). Shown are the a) Geweke Plot

b) autocorrelation, c) posterior parameter distributions, and d) the trace.

3.2 Uncertainty Quantification Maps169

First, we use the parameter distributions of the MCMC analysis to generate 2D170

and 3D uncertainty quantification maps. We make here also use of the RB method, which171

allows us to compute model realizations for samples from the posterior distribution to172

obtain temperature state values everywhere in space.173
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For the generation of uncertainty quantification maps, we first have to choose a suit-174

able representation. A Quantile-Quantile analysis (Fig. S3) for nine points at a depth175

of 5 km shows that the temperature is normally distributed. Hence, we plot in the fol-176

lowing the posterior mean temperatures and their standard deviations to achieve a suit-177

able representation of the temperature uncertainties.178

First, we present the posterior distributions in the entire Brandenburg model. The179

posterior standard deviations have their highest value within the sedimentary basin at180

a depth of about 30 to 35 km (see Fig. 4a). Consequently, the highest uncertainties also181

occur there. Overall, we observe uncertainties ranging from 0 °C to 53 °C. We observe182

that the uncertainty decreases towards the boundaries and increases towards the cen-183

ter part of the model. The gradient of the posterior mean temperature distribution is184

steep in the upper part of the model and a significantly less steep gradient in the lower185

part of the model. The temperatures range from 8 °C to 1300 °C (see Fig. 2).186

Now, we focus on the posterior distributions at a typical target depth for geother-187

mal systems of 5 km. The posterior mean temperature ranges from 141 °C to 197 °C,188

and the posterior standard deviation from 8 °C to 18 °C. The highest uncertainty, in a189

depth of 5 km, is north of the interface of the Tertiary-post-Rupelian and the Rupelian190

clay and south to the Zechstein - Sedimentary Rotliegend interface. The area is marked191

with an A in Fig. 4c. It has its highest peak southeast to the region, where salt struc-192

tures majorly influence the posterior mean temperatures. Generally, from the interface193

(marked with a B), the uncertainties increase towards the north and decrease towards194

the south of the model.195

The highest posterior mean temperatures of over 190 °C are north of the interface196

of the Tertiary-post-Rupelian and the Rupelian clay (marked with a C). In contrast, the197

lowest posterior mean temperature values around 140 °C are south of this interface (see198

B in Fig. 4b). In general, the posterior mean temperature north of the interface decrease199

to the northern border of the model. Furthermore, in the north-west part of Branden-200

burg, a region of lower posterior mean temperatures is located (area A in Fig. 4b). The201

reasons for this decreased posterior mean temperature will be discussed in Section 4.2.202
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3.3 Computational Cost203

The reduction requires 273 basis functions for reaching the pre-defined relative er-204

ror tolerance of 5·10-4 for the nondimensional model (see Fig. 2c). Note that the most205

accurate measurements have an accuracy of 10-1. Consequently, the chosen error toler-206

ance ensures that we do not introduce approximation errors above the measurement er-207

ror. The reduced basis method leads to a speed-up of 1.0·105.208

4 Discussion209

A benefit of the methodology presented here is the generation of predictive uncer-210

tainty quantification maps, enabled by using the RB method as a surrogate model. There-211

fore, we are able to reveal important insights into the spatial distribution of the uncer-212

tainties. Other surrogate models would not allow the generation of predictive uncertainty213

maps since they are limited to the observation space.214

4.1 Thermal Conductivities215

To discuss the uncertainties related to the thermal conductivities, we first focus on216

the posterior mean thermal conductivities. The posterior mean thermal conductivities217

of all layers show only a slight deviation from the prior thermal conductivities. This is218

not surprising since they are coming from previous model studies and are therefore al-219

ready quite well adapted to the model. If we compare them to the measured thermal con-220

ductivities presented in (Noack et al., 2012), we observe an apparent deviation.221

Even though the posterior mean thermal conductivities are in a good agreement222

with the prior thermal conductivities, the need for uncertainty quantification becomes223

apparent through the posterior standard deviation. For all layers, we observe large pos-224

terior standard deviations for the thermal conductivity, meaning that we have high un-225

certainties for all layers. The uncertainty in the parameters is mainly influenced by the226

uncertainty of the observation data and by the upper boundary condition. In our study,227

we place a lot of trust in the data. Still, we allow variations from that data set since we228

are operating with partially corrected bottom-hole temperatures. We assume that the229

correction factor is not able to fully compensate for the perturbation of the temperature230

field during the drilling process, resulting in slightly uncertain observation data. The pos-231

terior standard deviation decreases by putting more trust in the observation data. There-232
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fore, temperature observations that are performed when the temperature field is in equi-233

librium would significantly improve the certainty of the different thermal conductivities.234

Except for the Lithospheric Mantle, all posterior mean thermal conductivities show235

an increase in comparison to the prior thermal conductivity. Since the layers above the236

salt show an increase in the posterior thermal conductivity and the layer below shows237

a decrease, that might be an indication that some salt structures were not resolved. The238

stochastic calibration demonstrates that a geothermal conduction problem adequately239

describes the sedimentary basin of Brandenburg. Furthermore, the small posterior stan-240

dard deviation of the scaling parameter for the lower boundary condition shows that the241

boundary is placed far enough from the area of interest to avoid any interference.242

4.2 Uncertainty Quantification Maps243

We first focus on the uncertainties associated with the temperatures in the entire244

Brandenburg model. The distribution of these uncertainties seems to be contradictory245

to our expectations. Usually, one expects an increasing uncertainty with depth. We ob-246

serve a decreasing uncertainty towards the boundaries and an increasing uncertainty to-247

wards the center part of the model instead. Both for the top and the bottom boundary248

condition, we apply Dirichlet boundary conditions, where the upper boundary condition249

has a value of 8 °C throughout all simulations. The lower boundary condition varies by250

a factor of ± 10 %. We allow this variation to account for geometrical parameterization251

errors of the LAB. This is the reason why we observe decreasing uncertainties towards252

these boundary conditions because the values of the boundaries are relatively fixed within253

all simulations. The highest uncertainties are between 30 km and 35 km depth, where254

no interactions of the boundary conditions are observable.255

We can also use the distribution of the uncertainties to investigate the influence256

of the respective boundary conditions. Although the LAB is at a depth varying from ap-257

proximately 100 km to 140 km, the boundary significantly influences the model up to258

a depth of 80 km to 100 km. For our investigations, this is uncritical since our target depth259

is at 5 km depth. Nonetheless, this demonstrates that it is essential to have a vertical260

extent that is significantly larger than the target depth. The upper boundary condition261

is influencing the model to a depth of 10 km, meaning that the upper boundary condi-262

tion significantly affects our target depth.263
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Figure 4. a) Distribution of the posterior mean temperature and the posterior standard

deviation of the entire Brandenburg model. b) Map of the posterior mean temperature and c)

posterior standard deviation at the target depth of 5 km. The light green lines in b) and c)

indicate the boundaries of the geological layers
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This is not avoidable since the surface naturally defines the upper boundary. However,264

this is less critical than the influence of the lower boundary condition because we can265

determine the upper boundary with a much higher certainty than the lower. Nonethe-266

less, it shows that it is crucial to characterize the upper boundary condition with great267

detail.268

At the target depth, the highest uncertainties are in area A. Hence, they are north269

of the Tertiary-post-Rupelian and the Rupelian clay (interface B), and south of the Sed-270

imentary Rotliegend and Zechstein interface. The reason is that the variations of the con-271

trast in thermal conductivity are high at these interfaces. Note that the Rupelian clay272

has a posterior mean thermal conductivity of 1.93 W m-1 K-1 with a posterior standard273

deviation of 0.53 W m-1 K-1 and the Zechstein layer a posterior thermal conductivity274

of 3.60 ± 0.96 W m-1 K-1. Furthermore, the highest uncertainties are adjacent to the275

region of the salt structures, further emphasizing the influence of the Zechstein layer on276

the uncertainties. At the target depth, we consider only the Rupelian clay and the Zech-277

stein layer as uncertain and do not include other layers in the uncertainty quantification.278

The sensitivity analysis shows that the model is insensitive to these parameters. Con-279

sequently, the observed uncertainty is arising from the contrast in thermal conductiv-280

ity between the Rupelian clay- Zechstein layer and the remaining layers.281

The posterior mean temperatures at a depth of 5 km are higher north from the Tertiary-282

post-Rupelian and the Rupelian clay interface (marked with the letter B in Fig. 3b) be-283

cause the Tertiary-post-Rupelian has a lower thermal conductivity than the Rupelian284

clay. The colder posterior mean temperature values in the north-western part of the model285

(area A in Fig. 3b) are coming from the high thermal conductivity of the Zechstein layer.286

It is further emphasized by the round dome structures in the temperature distribution287

that are typical for salt. The posterior mean temperature after the stochastic model cal-288

ibration only slightly deviates from the prior temperature distribution since the changes289

in the posterior mean thermal conductivity are also minor.290

4.3 Reduced Order Model291

Note that the usage of a physics-based learning approach has considerable advan-292

tages for geothermal and many other geophysical applications. This is caused by the spar-293

sity of the observation data. The data sparsity makes data-driven approaches in many294
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geophysical applications prohibitive. Instead of training using data, we use the physi-295

cal model and are therefore able to overcome the problem with the data sparsity.296

The RB method requires 5.4 h for the offline stage, using two Intel Xeon Platinum297

8160 CPUs (24 cores, 2.1 GHz, 192 GB of RAM) and 4.5 h for the MCMC method. Note298

that with the finite element method, we would need over 16 core-a.299

5 Conclusion and Outlook300

We presented an uncertainty quantification at the basin-scale with the generation301

of uncertainty quantification maps. This is computationally possible since we replace the302

finite element forward simulation by the reduced basis forward simulation. This results303

in a reduction of computation time from a couple of hundred seconds to a few millisec-304

onds, and hence in a speed-up of five orders of magnitude. Therefore, we are able to ef-305

ficiently perform both global sensitivity and MCMC analyses. Because we consider not306

only the deterministic but the stochastic temperature distribution, we are able to pre-307

dict the temperatures more reliably. For future work, it would be interesting to incor-308

porate these temperature uncertainties into the economic evaluation of potential geother-309

mal wells. It would be also interesting to investigate the effects of different observation310

data qualities on the uncertainty of the model temperature distributions.311
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