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1. Caption for large Tables S1: Thermal properties of the Brandenburg model before

and after the uncertainty quantification. The prior thermal properties are from (Noack,

2012; 2013). We denote all parameters that are not involved in the uncertainty quantifi-

cation, due to too low sensitivities, with n/a. Additionally, the affine decomposition for

the model reduction is provided.
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Introduction

This supporting material provides additional information regarding the methodology of

uncertainty quantification (Text S1). Furthermore, we provide the decomposition of the

weak formulation (Text S2) required for the construction of the reduced order model, as

referenced in the main manuscript. Additionally, we present supporting Figures S1 to S8

as referenced in the main manuscript.

Text S1: Uncertainty Quantification

Bayes Theorem is the basis of the Markov Chain Monte Carlo (MCMC) method (Iglesias

& Stuart, 2014):

P (u|y) ∝ P (y|u) P (u). (1)

The prior P (u) describes our knowledge about the unknown variable without taking the

data into account. The posterior P (u|y), is the knowledge we have about our unknown

variable u given the data y. Furthermore, P (y|u) is the likelihood, which describes the

likelihood of the parameters given the observation data. Often, we do not have a very

accurate or detailed knowledge of our unknowns, which means that determining the priors

is challenging. Without using an uncertainty quantification method such as MCMC, we

would simply sample from our prior and determine the uncertainties from that. This

would result in relatively large uncertainties. On the other hand, MCMC incorporates

the data to reduce the uncertainties through the given data. MCMC is a method to draw

samples from a probability distribution. This is based on the generation of a Markov

Chain. A Markov Chain develops based only on the knowledge of the present and previ-
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ous events (Iglesias & Stuart, 2014).

Text S2: Weak Form and Affine Decomposition

We derive the weak formulation, where u(µ) ∈ X satisfies (Hesthaven et al., 2016;

Prud’homme et al., 2002; Quarteroni et al., 2015):

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X. (2)

In particular, the bilinear form a has the following decomposition:

a(w, v;λ) = −
n∑

q=0

λq

∫
Ω

∇w ∇v dΩ, ∀v, w ∈ X, ∀λ ∈ D, (3)

where w is the trial function, v the test function, the index “q” denotes the number

of the training parameter (for more information see Table S1), X the function space

(H1
0 (Ω) ⊂ X ⊂ H1(Ω)), Ω the spatial domain in R3, and D the parameter domain in Rp

with p being the number of parameters. In our example p is equal to 14. The linear form

f is decomposed in the following way:

f(v;λ, s) =−
n∑

q=0

λq s

∫
Γ

∇v g(x, y, z) dΓ+ s

∫
Γ

∇v S dΓ, ∀v ∈ X, ∀λ ∈ D,

with g(x, y, z) = Ttop
h(x, y, z)− zbottom(x, y)

d(x, y)
.

(4)

Here, Γ is the boundary in R3, s the scaling parameter for the lower boundary condition,

g(x, y, z) the lifting function, Ttop the temperature at the top of the model, h(x, y, z)

the location in the model, zbottom(x, y) the depth of the bottom surface, and d(x, y) the

distance between the bottom and top surface.
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Truncated here, 
due to too low sensitivities

Figure S1. Global Sensitivity analysis for the Brandenburg model. We show the first-

(blue) and total-order contributions (orange).
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Figure S2. Quantile-Quantile plots for all thermal conductivities considered in the

uncertainty quantification of the Brandenburg model.
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Figure S3. Quantile-Quantile plots and histograms of the temperatures for all param-

eters from the MCMC analysis for the Brandenburg model at nine points.
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λTPRC,UC
a) b)

c) d)

Figure S4. Posterior Analysis of the Tertiary-pre-Rupelian-clay (TPRC) and the Upper

Crust (UC). Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter

distributions, and d) the trace.
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λLC,J,BS
a) b)

c) d)

Figure S5. Posterior Analysis of the Lower Crust (LC), the Jurassic (J), and the

Buntsandstein (BS). Shown are the a) Geweke Plot b) autocorrelation, c) posterior pa-

rameter distributions, and d) the trace.
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λK
a)

c) d)

b)

Figure S6. Posterior Analysis of the Keuper (K). Shown are the a) Geweke Plot b)

autocorrelation, c) posterior parameter distributions, and d) the trace.
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λz
a) b)

c) d)

Figure S7. Posterior Analysis of the Zechstein (Z). Shown are the a) Geweke Plot b)

autocorrelation, c) posterior parameter distributions, and d) the trace.
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scale

a) b)

c) d)

Figure S8. Posterior Analysis of the scaling parameter for the lower boundary condition.

Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions,

and d) the trace.

September 9, 2020, 11:04am


