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This document contains information meant to supplement and support the information presented 10 

in the paper referenced above. Section S.1 provides pictures of the RAMP sensor and associated 11 

PM sensors. Section S.2 describes the method for computing hygroscopic growth factors and 12 

investigates the sensitivity of these factors to changes in aerosol composition. Section S.3 13 

provides details on how empirical correction methods were selected. Section S.4 outlines the 14 

methods proposed for sensor drift adjustment, and provides results relating to these methods. 15 

Section S.5 provides formulae for the assessment metrics presented in this paper. Section S.6 16 

presents data collected on particle size distributions in Pittsburgh. Section S.7 presents various 17 

results providing further details about the performance of various correction approaches applied 18 

to low-cost PM sensor data. Finally, Section S.8 provides a figure depicting the results related to 19 

the short-term use case assessment of the low-cost sensors.  20 
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S.1. RAMP and PM Sensor Picture 21 

 22 

Figure S.1: Several RAMP monitors (red boxes) with connected Met-One NPM (yellow box) 23 

and PurpleAir (purple box) PM2.5 sensors. 24 

S.2. Correction Methods – Hygroscopic Growth Factor Computation 25 

This hygroscopic growth factor is computed as:  26 

 fRH(𝑇, 𝑅𝐻) = 1 + κbulk
𝑎𝑤(𝑇,𝑅𝐻)

1−𝑎𝑤(𝑇,𝑅𝐻)
  (S.1) 27 

where: 28 

 𝑎𝑤(𝑇, 𝑅𝐻) = 𝑅𝐻 exp (
4𝜎𝑤𝑀𝑤

𝜌𝑤𝑅𝑇𝐷p
)

−1

  (S.2) 29 

κbulk is the hygroscopicity of bulk aerosol; κbulk = ∑ 𝑥𝑖𝜅𝑖𝑖  where. 𝑥𝑖  and 𝜅𝑖 are the volume 30 

fraction hygroscopocity parameters of the 𝑖th component comprising the particle. Organic, 31 

sulfate, nitrate and ammonium are assumed as the main components comprising the particle. The 32 

fractional contributions of these chemical components to PM2.5 during summer, winter, and as an 33 

annual average (applied to other periods) are obtained from recent AMS measurements in 34 

Pittsburgh (Gu et al. 2018) and their hygroscopocity parameters are adopted from literature 35 

(Cerully et al. 2015; Petters and Kreidenweis 2007). 𝑎𝑤 is the water activity parameter, estimated 36 

using Eq. (S.2), where 𝜎𝑤, 𝑀𝑤, and 𝜌𝑤 represent the surface tension, molecular weight and 37 

density of water, respectively; 𝑇 is the absolute temperature, 𝑅 is the ideal gas constant, 𝑅𝐻 is 38 

ambient relative humidity; 𝐷p is the particle diameter, adopted as volume median diameter from 39 

long-term size distribution measurements using SMPS in Pittsburgh. Table S.1 lists different 40 

parameter values used in hygroscopic growth factor calculation.  41 
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Table S.1: Parameters used in hygroscopic growth factor calculation 42 

Parameter Value Unit Source 

 Summer Winter Other   

𝜅OA 0.15 0.15 0.15 - (Cerully et al. 2015) 

𝜅𝑆𝑂4 0.5 0.5 0.5 - (Petters and Kreidenweis 2007) 

𝜅𝑁𝑂3 0.6 0.6 0.6 - (Petters and Kreidenweis 2007) 

𝜅𝑁𝐻4 0.5 0.5 0.5 - (Petters and Kreidenweis 2007) 

𝑥𝑂𝐴 0.64 0.41 0.53 - (Gu et al. 2018) 

𝑥𝑆𝑂4
 0.24 0.16 0.20 - (Gu et al. 2018) 

𝑥𝑁𝑂3
 0.04 0.29 0.165 - (Gu et al. 2018) 

𝑥𝑁𝐻4
 0.08 0.15 0.115 - (Gu et al. 2018) 

κbulk 0.26 0.34 0.30 -  

𝜎𝑤 0.072 0.072 0.072 N/m  

𝑀𝑤 0.018 0.018 0.018 kg/mol  

𝜌𝑤 1000 1000 1000 kg/m3  

𝑅 8.314 8.314 8.314 J/mol K  

𝐷p 200 200 200 nm  

 43 

 44 

Figure S.2: Example of how the hygroscopic growth factor varies with humidity in summer, 45 

winter, and otherwise. 46 

To examine the sensitivity of the hygroscopic growth factor to different aerosol compositions, a 47 

sensitivity analysis was conducted for differing aerosol compositions resulting in different κbulk 48 

values. Using data from the EPA Chemical Speciation Network for 2018 (available online at 49 

https://aqs.epa.gov/aqsweb/airdata/download_files.html), the fractional composition of PM2.5 as 50 

carbonaceous matter, sulfate, nitrate, and ammonium were determined, and annual average bulk 51 

hygroscopicity factors were computed for each of 139 sites where these data are available. 52 

Carbonaceous mass was computed using a sum of elemental carbon and organic mass (OM, 53 

calculated as organic carbon multiplied by 1.8) (Turpin and Lim 2001). The κ value for EC was 54 

assumed the same as for OM; EC was typically from 8% to 18% of OM, so errors due to this 55 
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assumption should be small. Histograms for the fractional composition of these components 56 

across network sites are presented in Figure S.3.  57 

  58 

Figure S.3: Histograms representing the ranges in fractional compositions for carbonaceous, 59 

sulfate, nitrate, and ammonium components of PM2.5 measured at 139 sites in the US EPA 60 

Chemical Speciation Network.  61 

Figure S.4 presents the results as a function of relative humidity (in five percentage point 62 

increments), for a base concentration of 10 µg/m3 at an ambient temperature of 22°C. The 63 

boxplots indicate the spread (across the speciation network sites) of the percent difference 64 

between PM readings corrected using each of the 139 speciation sites and PM readings corrected 65 

using the Pittsburgh values of κbulk, as determined from the AMS data and presented in Table 66 

S.1. The solid black line indicates results when using only the nearest speciation site to 67 

Pittsburgh outside of Allegheny county (in Washington county, about 35 km away). Overall, the 68 

failure to use an appropriate local κbulk factor typically (i.e. for the interquartile range of site 69 

compositions) causes less than 10% errors and may lead to up to 25% errors in extreme cases. 70 

However, using a nearby local factor, errors can be reduced below 1%. Therefore, it is 71 

recommended to use speciation information from the closest available station if specific local 72 

information is not available. It should further be noted that these results all employ the same 73 

linear correction coefficients from Eq. (3) as were determined for Pittsburgh, as presented in 74 

Table 1; if local collocations are performed to determine appropriate coefficients for each area, 75 

the resulting errors are likely to be further reduced or eliminated. Furthermore, while PM 76 

composition and size distribution at a given location may change significantly from day-to-day 77 

(Saha et al. 2019), the settings used in the proposed corrections reflect long-term averages. Thus, 78 

while they cannot capture such short-term fluctuations (as is reflected by the residual uncertainty 79 

in the presented results), they provide more robust performance in the long-term without the 80 
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need for simultaneous composition and size distribution information to be collected alongside 81 

low-cost sensor data. 82 

 83 

Figure S.4: Sensitivity analysis of hygroscopic growth rate corrections. Boxplots indicate the 84 

range of percent differences between corrections performed using each of the chemical 85 

compositions measured at sites in the EPA Chemical Speciation Network and corrections 86 

performed using the Pittsburgh chemical composition (as described above). Results are binned 87 

by relative humidity. The solid red line indicates the percent differences from using chemical 88 

composition data at the nearest non-Pittsburgh site. 89 

 90 

Several explanatory factors were considered for the empirical correction method. Dewpoint 𝐷𝑃 91 

was considered as a factor related to condensation that might serve as a proxy for the 92 

hygroscopic growth factor which is independent of aerosol composition. Furthermore, humidity 93 

is known to affect the performance of optical particle sensors directly (e.g. Jayaratne et al. 2018), 94 

and so relative humidity 𝑅𝐻 was included as a factor. Finally, temperature 𝑇 was included as a 95 
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factor since it has been observed to affect the performance of optical sensor components 96 

(Johnson et al. 2016; Jayaratne et al. 2018; Zheng et al. 2018).  97 

Various combinations of the as-reported sensor readings and the above inputs into various 98 

functional forms and with different application thresholds were applied to generate correction 99 

equations. Two functional forms were considered: linear and quadratic regression models. 100 

Thresholds were considered to define different subsets of the domain over which different 101 

functional parameters could be applied, allowing for piecewise-linear or piecewise-quadratic 102 

functions. Models without thresholds were considered, as well as models with single or multiple 103 

threshold values chosen from among 5, 10, 15, 20, 30, 40, and 50 µg/m3 (as determined from the 104 

raw sensor reading). For reference, ambient concentrations in Pittsburgh typically range from 3 105 

to 20 µg/m3. 106 

Models were calibrated using a combination of data collected at both the Lawrenceville and 107 

Lincoln sites from half of the sensors deployed to each site (the “training” set); model 108 

performance was evaluated on the other half of sensors at these sites (the “testing” set). 109 

Performance metrics assessed for the various models are included as supplementary data. The 110 

performance of each correction model on the test sensor set was scored using a heuristic 111 

combining various performance metrics (bias, mean absolute error, r, and threshold classification 112 

score) across a range of concentrations experienced at both collocation sites and penalizing the 113 

complexity of the model (and therefore its propensity to overfit to training data). The format of 114 

this scoring system was inspired by the “Eureqa” equation discovery system of Schmidt and 115 

Lipson (2009), with modifications for the specific context of this problem (see the supplementary 116 

data for the resulting metrics). The resulting metrics are available in a table attached to the 117 

supplementary materials but separate from this document.For selecting a final correction method 118 

for each type of sensor, performance across a range of concentrations experienced at both 119 

collocation sites was traded off against the complexity of the model (and therefore its propensity 120 

to overfit to training data).  121 
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S.5.S.4. Drift-Adjustment Methods 122 

 123 

Figure S.53: Illustration of observed NPM sensor drift at the Lincoln and Lawrenceville sites. 124 

Drift is depicted as the difference in monthly average readings of the NPM sensor, corrected 125 

using Eq. (4), versus the collocated regulatory-grade instrument at each site. 126 

 127 

Figure S.64: Diagrams of the three proposed drift-adjustment methods. 128 



8 

 

Note that in the Average of Low Readings method, if no readings within a month are below 5 129 

micrograms per cubic meter, the minimum reading for that month is instead used as the basis for 130 

the adjustment. 131 

 132 

Figure S.7: Performance of various drift-adjustment methods in reducing the bias in monthly 133 

averages; NA – no adjustment applied; DR – drift-adjusted using deployment records; 5P – 134 

drift-adjusted using percentiles of nearest reference site; AL – drift-adjusted using averages of 135 

low readings at nearest reference site. Performance is determined separately for the NPM 136 

instruments deployed for extended periods at the Lawrenceville (blue) and Lincoln (red) sites. 137 

Corrections are performed using Eq. (4). 138 

Figure S.7 shows the spread in monthly biases (difference between the monthly average readings 139 

of the corrected sensors and the BAM instruments) for both long-term collocation sites, both 140 

without drift-adjustment and with the three proposed drift-adjustment methods. Note that these 141 

biases are for the single long-term-deployment sensor at each site, whereas Figure 5 in the main 142 

paper presented results for the entire “testing” set of sensors over a shorter period. 143 

S.6.S.5. Assessment metrics 144 

For 𝑛 measurements of concentration by the sensor (𝑐) and reference (𝑐̂), bias is computed as:  145 

 bias =
1

𝑛
∑ (𝑐𝑖 − 𝑐̂𝑖)

𝑛
𝑖=1    (S.3) 146 
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mean absolute error (MAE) is evaluated as: 147 

 MAE =
1

𝑛
∑ |𝑐𝑖 − 𝑐̂𝑖|

𝑛
𝑖=1    (S.4) 148 

and the Pearson correlation coefficient (𝑟) is evaluated as: 149 

 𝑟 =
∑ (𝑐𝑖−

1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )𝑛

𝑖=1 (𝑐̂𝑖−
1

𝑛
∑ 𝑐̂𝑗

𝑛
𝑗=1 )

√∑ (𝑐𝑖−
1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

√∑ (𝑐̂𝑖−
1

𝑛
∑ 𝑐̂𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

,   (S.5) 150 

These statistics assess, respectively, the systematic differences between the sensor and reference 151 

measurements over time, the average absolute difference in measurements taken at the same 152 

time, and the degree of linearity between the measurements. Lower absolute values of bias and 153 

MAE denote better agreement, while a value of 𝑟 close to 1 denotes stronger correlation. 154 

Additionally, the following EPA bias and precision score metrics (Camalier et al. 155 

2007)(Camalier et al., 2007) were used: 156 

 Precision Score = √
𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ 𝛿𝑖

𝑛
𝑖=1 )

2

𝑛χ0.1,𝑛−1
2  (S.6) 157 

where χ0.1,𝑛−1
2  denotes the 10th percentile of the chi-squared distribution with 𝑛 − 1 degrees of 158 

freedom, and: 159 

 𝛿𝑖 = 100
𝑐𝑖−𝑐̂𝑖

𝑐̂𝑖
  (S.7) 160 

The bias score is: 161 

 Bias Score =
1

𝑛
∑ |𝛿𝑖|

𝑛
𝑖=1 +

𝑡0.95,𝑛−1

𝑛
√𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ |𝛿𝑖|𝑛

𝑖=1 )
2

𝑛−1
  (S.8) 162 

where 𝑡0.95,𝑛−1 is the 95th percentile of the t distribution with 𝑛 − 1 degrees of freedom. These 163 

precision and bias scores can be compared to performance guidelines for various sensing 164 

applications (Williams et al. 2014)(Williams et al., 2014). For PM2.5, requirements for 165 

educational monitoring (Tier I) are for precision and bias scores below 50%; for hotspot 166 

identification and characterization (Tier II) or personal exposure monitoring (Tier IV), these 167 

should be below 30%; for supplemental monitoring (Tier III), below 20%; and for regulatory 168 

monitoring (Tier V), below 10%. 169 

S.7.S.6. Seasonal Changes in PM2.5 fraction below 300 nm in Pittsburgh 170 

Aerosol size distributions over the 10-300 nm mobility size range were measured with a TSI 171 

scanning mobility particle sizer (SMPS) at the CMU campus. PM0.3 mass concentrations were 172 

estimated assuming a mobility density of 1 gm/cm3 and spherical particles, and then corrected to 173 
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the equivalent mass at 35% RH using the previously-discussed hygroscopic corrections. PM2.5 174 

mass concentrations were obtained from an NPM instrument attached to a RAMP co-located 175 

with the SMPS. These values were corrected using Eq. (13). For the winter months, the RAMP 176 

RH was assumed to be the same as the conditions inside the SMPS. For the summer months, we 177 

assumed that the SMPS RH was 15% higher (than the RAMP RH) inside the air-conditioned 178 

trailer where the SMPS operated. The SMPS/NPM comparison is further complicated by the fact 179 

that we are comparing an electrical mobility sizer to an optical sizer, but the overall result of 180 

higher sub-300 nm aerosol mass is consistent with previously reported results. Stanier et al. 181 

(2004) observed a larger aerosol volume in the 100-560 nm size range in the summer months 182 

during the 2001-2002 Pittsburgh Air Quality Study. Saha et al. (2018) found that in 2016-2017, 183 

though SO2 concentrations have reduced compared to 2001-2002 resulting in fewer nucleation 184 

events, the warmer months still see higher frequency of nucleation events and with higher 185 

intensity compared to the winter months.  186 

 187 

Figure S.85: Ratios of PM0.3 to PM2.5 based on summer and winter data collected in Pittsburgh. 188 

Individual data points are jittered; means are shown by the purple stars; whiskers represent one 189 

standard deviation of the data. Values greater than unity likely indicate data where our 190 

assumptions are no longer valid, but these are <25% of the data. The median PM0.3/PM2.5 is 0.43 191 

in the winter and 0.53 in the summer. For an annual average concentration of ~10 µg/m3, this 192 

represents a 1 µg/m3 higher sub-300 nm fraction in the summer. 193 
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S.7. Results for Correction Methods 194 

Table S.2: Prior to the application of any corrections, this table presents the MAE, bias, and 195 

correlation coefficients for the as-reported sensor data (the same data as shown in Figure 1) 196 

broken down by relative humidity range. 197 

RH MET PPA 

range MAE bias r MAE bias r 

[%] [µg/m3] [µg/m3]  [µg/m3] [µg/m3]  

30 - 35 6.0 -5.9 0.83 2.8 -0.91 0.70 

35 - 40 7.1 -7.1 0.73 2.8 -0.85 0.78 

40 - 45 6.2 -6.2 0.75 3.0 -0.25 0.71 

45 - 50 5.5 -5.5 0.72 2.6 0.63 0.85 

50 - 55 5.1 -5.1 0.67 3.3 1.2 0.74 

55 - 60 5.2 -5.0 0.71 3.7 1.8 0.74 

60 - 65 4.5 -4.2 0.77 3.4 1.6 0.87 

65 - 70 3.8 -3.1 0.76 3.4 1.0 0.74 

70 - 75 3.1 -2.1 0.80 5.2 3.5 0.75 

75 - 80 3.9 -2.5 0.79 5.4 3.8 0.82 

80 - 85 3.4 -0.6 0.85 6.2 4.7 0.89 

85 - 90 5.4 2.5 0.87 7.9 6.1 0.95 

 198 

Table S.3: This table presents the MAE, bias, and correlation coefficients for the sensor data 199 

after correction with Eq. (3) (the same data as shown in Figure 4) broken down by relative 200 

humidity range. 201 

RH MET PPA 

range MAE bias r MAE bias r 

[%] [µg/m3] [µg/m3]  [µg/m3] [µg/m3]  

30 - 35 2.4 -0.6 0.81 2.2 0.45 0.71 

35 - 40 3.3 -1.9 0.75 2.2 0.09 0.79 

40 - 45 2.7 -1.2 0.77 2.3 0.43 0.72 

45 - 50 2.7 -0.9 0.75 2.2 0.54 0.86 

50 - 55 2.7 -0.4 0.72 2.5 0.53 0.75 

55 - 60 3.0 -0.8 0.75 2.5 0.48 0.73 

60 - 65 3.0 -0.3 0.78 2.1 0.33 0.86 

65 - 70 2.8 0.5 0.76 2.0 0.22 0.75 

70 - 75 2.7 0.9 0.80 2.6 0.49 0.76 

75 - 80 3.0 -0.7 0.81 2.6 -0.36 0.79 

80 - 85 2.8 -0.1 0.86 2.2 -0.34 0.85 

85 - 90 2.9 -0.2 0.90 3.7 -2.7 0.92 

S.8.  202 
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 203 

Figure S.96: Comparison of median one-hour-average NPM (a) and PPA (b) sensor readings to 204 

the BAM instrument during collocation at the Lawrenceville site after correction using a 205 

hygroscopic growth factor only (i.e. corrected measurement is raw measurement divide by fRH). 206 

Colors indicate relative humidity at the time of the measurements. Note that the NPM 207 

measurement corrected in this manner severely underestimates PM2.5 concentration. For PPA 208 

sensors, while absolute errors are decreased relative to those of using the as-reported values 209 

directly, bias is also increased and correlation is reduced. 210 
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Table S.42: Coefficients for empirical correction equations 211 

Coefficient Value Estimate Standard Deviation Unit 

𝛼0 0 2.9 μg
m3⁄  

𝛼1 2.93 0.08 N/A 

𝛼2 -0.11 0.08 μg
℃m3⁄  

𝛼3 0 0.08 μg
%m3⁄  

𝛼4 5.3×10-4 1.5×10-4 m3

μg⁄  

𝛼5 -8.9×10-3 1.2×10-3 ℃−1 

𝛼6 -2.7×10-2 0.11×10-2 %−1 

𝛼7 2.9×10-3 0.8×10-3 μg
℃2m3⁄  

𝛼8 5.0×10-3 1.0×10-3 μg
℃%m3⁄  

𝛼9 0 6.0×10-4 μg
%2m3⁄  

𝛽0 75 11 μg
m3⁄  

𝛽1 0.60 0.0090 N/A 

𝛽2 -2.5 0.51 μg
℃m3⁄  

𝛽3 -0.82 0.11 μg
%m3⁄  

𝛽4 2.9 0.53 μg
℃m3⁄  

𝛾0 21          2.1 μg
m3⁄  

𝛾1 0.43 0.013 N/A 

𝛾2 -0.58 0.090 μg
℃m3⁄  

𝛾3 -0.22 0.023 μg
%m3⁄  

𝛾4 0.73 0.098 μg
℃m3⁄  

 212 

The following figure summarizes the medians and ranges in performance of the corrected NPM 213 

and PPA hourly averaged data across both collocation sites, using all sensors deployed to both 214 

sites (as opposed to only the testing set), as well as specifying performance by different 215 

concentration ranges (0 to 10, 10 to 20, and higher than 20 µg/m3). Correlation is typically better 216 

for NPM sensors (using either empirical correction equation), with r between 0.7 and 0.9, while 217 

for PPA sensors it ranges down to 0.5. Correlations also improve at higher concentrations. The 218 

MAE for both sensors are between 3 and 5 µg/m3. MAE also tends to increase as concentrations 219 

increase, but the PPA sensors appear to be less affected than NPM at concentrations above 20 220 

µg/m3; however, considering there were only two PPA sensors at the Lincoln site (where these 221 

higher concentrations were more common) this may be a sample size artefact. Although unbiased 222 

over the full range, the corrected sensor readings tend to be positively biased at low 223 

concentrations and negatively biased at moderate concentrations. This is opposite to the trend 224 

seen before correction and may be due to overcorrections at the extremes. 225 
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 226 

 227 

 Figure S.107: Comparison of one-hour-average corrected sensor performance compared to BAM 228 

instruments during collocation at both the Lawrenceville and Lincoln sites. Performance metrics 229 

are plotted overall (0-max range) and by different PM2.5 ranges (0-10, 10-20, 20-max). Results 230 

shown relate to a total of 32 NPM and 11 PPA sensors, and only consider sensors with at least 231 

five samples in the relevant range. 232 

The following figures illustrate how the performance of the proposed correction approaches is 233 

affected if data from just one of the sites (Lincoln or Lawrenceville) is used to train the model, 234 

and it is then tested on data from the other site. 235 

- Eq. 
(13) 
- Eq. (4) 
- Eq. (5) 
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 236 

Figure S.118: Comparison of sensor performance compared to the BAM instrument during 237 

collocation at the Lawrenceville site, using correction models calibrated using only data 238 

collected at the Lincoln site. Performance is comparable in terms of correlation and MAE to 239 

models trained using data from both sites, although bias, especially using Eq. (13) for NPM 240 

sensors, is generally worse. 241 

 242 

Figure S.12: Comparison of sensor performance compared to the BAM instrument during 243 

collocation at the Lincoln site, using correction models calibrated using only data collected at the 244 

Lawrenceville site. Performance is comparable except in the 20-max range, where performance 245 

- Eq. 
(13) 
- Eq. (4) 
- Eq. (5) 

- Eq. 
(13) 
- Eq. (4) 
- Eq. (5) 
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is significantly worse than for models calibrated using data from both sites. This illustrates the 246 

importance of calibrating correction equations across the entire range of concentrations which 247 

might be expected during field deployments. 248 

 249 

 250 

Figure S.1310: Evaluation of EPA precision and bias score metrics for hourly-averaged (a) or 251 

daily-averaged (b) data from NPM and PurpleAir sensors. Center-points of crosses indicate 252 

median performance, with arms indicating 25%-75% range. Following corrections, both 253 

instruments meet Tier I requirements for educational and informational monitoring. 254 

a) b) 
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 255 

 256 

Figure S.1411: Results of a performance evaluation of a pair of PurpleAir sensors at the Parkway 257 

East site. Corrections are performed using Eq. (3). Results cover a data collection period of three 258 

weeks. Hourly-average bias and MAE are plotted as a function of time of day in the solid lines 259 

for the two sensors; dotted lines indicate the median performance throughout the day for each 260 

sensor. Median bias and MAE for both sensors are also listed in the figure. Corrections are 261 

performed using Eq. (1). 262 

S.8. Short-Term Performance Assessment 263 

 264 

Figure S.15: Detection of hourly high PM2.5 events by NPM sensor at Lincoln. True positives 265 

(correct detections) are counted for each hour on a monthly basis, along with false positives 266 
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(NPM falsely indicated high PM) and false negatives (NPM missed high PM), with a grace 267 

period of ±1 hour. 268 
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