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Abstract 9 

Low-cost particulate sensors can allow for establishing a dense monitoring network to increase the 10 

spatial resolution of air quality information, which is particularly of interest in urban areas. 11 

However, these sensors are often affected by environmental factors such as temperature and 12 

humidity, the effects of which must be accounted for so that the accuracy of these sensors in field 13 

conditions can be quantified. In this paper, we conduct long-term tests of two types of low-cost 14 

particulate sensors: Met-One NPM and PurpleAir units. We assess the self-consistency of larger 15 

groups (12 to 25) of sensors, develop empirical equations for correcting the measurements of these 16 

sensors to better match those of regulatory-grade instruments, and assess the long-term 17 

performance of these sensors during deployments lasting over a year. These assessments are used 18 

to assess sensor performance in two different use cases: improving community awareness of air 19 

quality with a focus on short-term qualitative indications and providing accurate long-term 20 

quantitative information for health impact studies. We find that, for the short-term case, using 21 

either quadratic or piecewise-linear correction equations, either sensor can be used to provide 22 

reasonably accurate concentration information for PM2.5 (mean absolute error on the order of 4 23 

µg/m3) in near-real time. For the long-term case, by applying in-field noise-adjustment, bias can 24 

be reduced below 1 µg/m3. These results indicate the suitability of these sensors for supplementing 25 

regulatory-grade instruments in sparsely monitored regions, as well as for conducting hotspot 26 

mapping to better understand the variability of air quality in urban areas. 27 

1. Introduction 28 

The negative health impacts of exposure to particulate matter smaller than 2.5 microns (PM2.5) are 29 

well documented (e.g. Schwartz et al. 1996; Pope et al. 2002; Brook et al. 2010). Even relatively 30 

small changes in particulate concentrations can have significant impacts on human health and 31 

mortality (Lepeule et al. 2012), while reductions in these levels, even in low concentration 32 

environments, can have substantial benefits (Apte et al. 2015). Accurate monitoring of PM2.5 is 33 

thus important for a variety of applications, including long-term health studies, assessing the 34 

impacts of technology and/or regulatory changes on emissions, and supporting decision-making 35 
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for future regulatory efforts. Monitoring is especially of interest in urban areas where the high 36 

density of exposed populations is coupled with higher variability in particulate concentrations due 37 

to the large number and variety of sources (Jerrett et al. 2005; Karner et al. 2010; Eeftens et al. 38 

2012); thus, a sparse monitoring network for PM2.5 can lead to an incomplete understanding of its 39 

spatial variability. 40 

Recent advances in low-cost air quality sensing technologies have made it feasible for dense 41 

networks of monitors to be deployed in urban areas, providing a neighborhood-resolution 42 

understanding of air pollution (Snyder et al. 2013). Several pilot programs for monitoring air 43 

quality at such high spatial resolution using these technologies have already begun (Jiao et al. 44 

2016; English et al. 2017; Williams et al. 2018; Zimmerman et al. 2018). Efforts to characterize 45 

the uncertainties associated with these low-cost instruments, particularly for long-duration field 46 

deployment, are ongoing. Laboratory testing of several low-cost light-scattering particulate 47 

sensors showed a linearity of results into the mg/m3 range, but indicated that the sensors were 48 

relatively less precise at concentrations below about 200 µg/m3 (Wang et al. 2015). Evaluations of 49 

low-cost Plantower PMS 1003 and 3003 units show good correlation (𝑟 above 0.88) with research-50 

grade instruments in laboratory and field conditions, although only a limited range of field 51 

conditions were assessed (Kelly et al. 2017). Additional field testing of these sensors has shown a 52 

significant effect of ambient humidity on their measurements (Jayaratne et al. 2018), better 53 

performance at higher PM2.5 concentrations, and varying correlation with different types of 54 

reference instruments, e.g. 𝑟 of 0.8 with a scattered light spectrometer versus 0.5 with a combined 55 

light scattering nephelometer and beta attenuation monitoring instrument (Zheng et al. 2018). 56 

Evaluation of the low-cost “Speck” monitors, using DSM501A optical dust sensors, indicated a 57 

correlation below 0.7 with reference instruments, corresponding to a root-mean-square error of 10 58 

µg/m3 for outdoor measurements (Zikova et al. 2017a, 2017b). Investigations of other optical 59 

particle counters (Alphasense OPC-N2) reinforce the need to correct their readings for relative 60 

humidity, but indicate that inter-unit consistency is typically suitable to detect spatial trends if the 61 

same type of sensors are used (Crilley et al. 2018). Assessments of these low-cost sensors must 62 

also account for different use-cases; we consider two in this work. First, sensors may be used, e.g. 63 

by community monitoring groups, to provide information on local air quality in real-time to 64 

support individual health decisions. In this case, exact quantitative results are less important than 65 

providing accurate indicators, e.g. that particulate concentrations are currently higher in one part 66 

of a city than in another. Second, sensors may be used to determine long-term trends, e.g. for 67 

quantifying the exposure of a population or the impacts of a new pollution-mitigation policy. In 68 

this case, quantitatively accurate long-term performance is important, while short-term 69 

performance is less so. Knowledge of the capabilities and limitations of these low-cost sensors 70 

with respect to these use-cases is especially relevant considering that products such as the 71 

PurpleAir sensor are already used by citizen scientists worldwide (www.purpleair.com). 72 

In this paper, we provide evaluations of the long-term performance of two types of relatively low-73 

cost ($2000 or less) PM2.5 sensors in field conditions in the city of Pittsburgh, Pennsylvania and 74 
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its surroundings. The ambient hourly PM2.5 concentrations for this study are low (typically below 75 

20 µg/m3) with respect to some previous field evaluations of these sensors (e.g. Kelly et al. 2017; 76 

Jayaratne et al. 2018). We also suggest appropriate formulae for correcting for the influence of 77 

humidity and temperature on instrument readings. We have focused our attention on field studies 78 

due to the importance of assessing sensors in a similar environment to that in which they are to be 79 

used (White et al. 2012; Piedrahita et al. 2014). By collocating several sensors with reference 80 

instruments at two locations for two different time periods, we have developed a robust dataset 81 

with which to calibrate correction models for the low-cost sensors, reflecting a wide range of 82 

temperature (-20 to 43°C) and relative humidity (17 to 97%). Furthermore, by maintaining a small 83 

number of sensors at these locations across multiple seasons (January 2017 to May 2018), we 84 

evaluate their long-term performance and how this might be affected by different ambient 85 

conditions. 86 

2. Methods  87 

2.1. RAMP Sensor Package and Attached Particulate Sensors 88 

The Real-time Affordable Multi-Pollutant (RAMP) monitor (Figure 1) is a low-cost sensing 89 

system collaboratively developed by SenSevere and the Center for Atmospheric Particle Studies 90 

at Carnegie Mellon University. It incorporates five gas sensors, control circuits, batteries, and 91 

wireless communication hardware.  92 

 93 

Figure 1: Several RAMP monitors (red boxes) with connected Met-One NPM (yellow box) and 94 

PurpleAir (purple box) PM2.5 sensors. 95 

In addition to its internal sensors, the RAMP can be connected to additional external instruments 96 

for measuring PM2.5. One such instrument is the Met-One Neighborhood Particulate Monitor 97 

(NPM) sensor, which uses a forward light scattering laser. Previous research has assessed the 98 

performance of two of these instruments over a two-month period in southern California, and 99 

found only moderate correlations (R2 between 0.5 and 0.7) between the instrument readings and 100 
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regulatory-grade instruments (AQ-SPEC 2015). The NPM is available for about $2000 or about 101 

one tenth the price of regulatory-grade instruments measuring PM2.5. 102 

The PurpleAir PM2.5 monitor (PPA) is also employed along with the RAMPs. This sensor 103 

incorporates a pair of Plantower PMS 5003 laser particulate sensors, which provide measures of 104 

PM2.5 as well as of PM1.0 and PM10.0. Previous testing of three of these units over a two-month 105 

period in southern California showed good correlation (R2 above 0.9) with regulatory-grade 106 

instruments (AQ-SPEC 2017). This sensor is available for about $250, or about one hundredth of 107 

the price of a regulatory-grade instrument. 108 

2.2. Correction Methods 109 

Various methods were considered for correcting the raw readings of the low-cost PM2.5 sensors 110 

described above to better match regulatory-grade instruments. These methods applied various 111 

combinations of functional forms, inputs, and thresholds. Two functional forms were considered: 112 

linear and quadratic regression models. Possible inputs to these functions included the raw sensor 113 

reading, hygroscopic growth factor fRH (as described below), the temperature 𝑇 and/or relative 114 

humidity 𝑅𝐻 recorded by the RAMP monitor to which the PM sensor was attached, and the 115 

dewpoint 𝐷𝑃 (computed from 𝑇 and 𝑅𝐻). The hygroscopic growth factor corrects for particle 116 

growth due to humidity, and is a nonlinear function of temperature and humidity. Furthermore, 117 

humidity is known to affect particulate sensor performance (e.g. Jayaratne et al. 2018), and 118 

temperature can affect the volatility of particulate constituents (e.g. Allen et al. 1997). These 119 

factors, as well as the requirement that particulate mass be reported under specific temperature and 120 

humidity conditions (US EPA 2016), prompted the inclusion of these inputs to proposed correction 121 

models. Dewpoint was also considered as a non-linear function of temperature and humidity 122 

related to condensation, and thus might serve as a proxy for the hygroscopic growth factor.  123 

This hygroscopic growth factor is computed as:  124 

 fRH(𝑇, 𝑅𝐻) = 1 + κbulk
𝑎𝑤(𝑇,𝑅𝐻)

1−𝑎𝑤(𝑇,𝑅𝐻)
  (1) 125 

where: 126 

 𝑎𝑤(𝑇, 𝑅𝐻) = 𝑅𝐻 exp (
4𝜎𝑤𝑀𝑤

𝜌𝑤𝑅𝑇𝐷wet
)

−1

  (2) 127 

Parameters for this model are adapted from Petters and Kreidenweis (2007), as listed in Table 1. 128 

Bulk particle composition factor 𝜅bulk was estimated from previous studies on the composition of 129 

particulates in Pittsburgh (Cerully et al. 2015).  130 
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Table 1: Parameters used in hygroscopic growth factor calculation 131 

Parameter Value Unit 

𝜅bulk 0.335 - 

𝜎𝑤 0.072 N/m 

𝑀𝑤 0.018 kg/mol 

𝜌𝑤 1000 kg/m3 

𝑅 8.314 J/mol K 

𝐷wet 200 nm 

 132 

Finally, thresholds were considered to define different subsets of the domain over which different 133 

functional parameters could be applied, allowing for piecewise-linear or piecewise-quadratic 134 

functions. Models without thresholds were considered, as well as models with single or multiple 135 

threshold values chosen from among 5, 10, 15, 20, 30, 40, and 50 µg/m3 (as determined from the 136 

raw sensor reading). For reference, ambient concentrations in Pittsburgh typically range from 3 to 137 

20 µg/m3. 138 

2.3. In-field Noise-adjustment Methods 139 

We propose three methods to adjust for low-frequency noise (10-6 Hz or lower) in low-cost sensors 140 

over the course of their field deployment. The first method, known as the “Deployment Records” 141 

(DR) method, involves using a log of sensor deployment history to account for biases against a 142 

reference instrument. In this case, the relative bias of a deployed sensor versus a “benchmark” 143 

sensor is determined by computing the relative difference in readings from these sensors for the 144 

last period during which they were collocated. The relative bias between this benchmark sensor 145 

and a regulatory-grade instrument is also assessed based on its last collocation. Then, bias of the 146 

deployed sensor to the regulatory-grade instrument is adjusted for, using the benchmark sensor as 147 

an intermediate step. The second method, known as the “Site Percentiles” (SP) method, involves 148 

computing the monthly 5th percentile of readings at a given deployment site, and then comparing 149 

to the 5th percentile recorded at the nearest regulator monitoring station. Readings from the 150 

deployed sensor are then adjusted so that these percentile values match. This is done with the 151 

assumption that the 5th percentile represents a “background” level to which all sites in the region 152 

are subject. A variation on this method, known as the “Average of Low readings” (AL) method, 153 

uses the average of all readings in a month below 5 µg/m3 as the target value to be matched. All 154 

three methods rely on the availability of relatively frequent (e.g. hourly) data from regulatory-155 

grade instruments, and the first method relies on historical collocation data with these instruments. 156 

The latter two methods of rectifying low-frequency noise by matching distribution parameters over 157 

time are similar to those proposed by Moltchanov et al. (2015). 158 

2.4. Data Collection 159 

Sensor performance was assessed using data collected at two field sites, both coincident with 160 

monitoring stations operated by the Allegheny County Health Department (ACHD), at which beta-161 
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attenuation method (BAM) instruments provided hourly concentration measurements for 162 

comparison (Hacker 2017). Although these instruments are not used for regulatory reporting, they 163 

are recognized federal equivalent methods and provide hourly data necessary for short-term 164 

comparisons. 165 

One site, denoted as the “Lincoln” site, is located at 40.308ºN by 79.869ºW, is within 1 km of a 166 

facility producing coke for steel manufacturing, and is nearby the only location in Allegheny 167 

County which exceeded the annual EPA PM2.5 standard in 2015-2017 (ACHD 2017). Average 168 

PM2.5 concentration at this site was 14.5 µg/m3 in 2017, with a 1-hour maximum of 162 µg/m3. 169 

Here, one NPM sensor was operated for a total of 294 days from its deployment on April 24, 2017 170 

until the end of data collection for this study on June 1, 2018. Additionally, for a period between 171 

October 26, 2017 and February 12, 2018, a total of 12 NPM and 2 PPA sensors were collocated at 172 

the site (although not all instruments were active for the entire period); during this time temperature 173 

varied between -20 and 31°C and relative humidity varied from 22 to 97%. The second deployment 174 

site, denoted as the “Lawrenceville” site, is located at 40.465ºN by 79.961ºW and is a community-175 

oriented monitoring site, part of the EPA’s core monitoring network (Hacker 2017). Average PM2.5 176 

concentration at this site was 9.7 µg/m3 in 2017, with a maximum 1-hour concentration of 67 177 

µg/m3. At this site, one NPM sensor was operated for a total of 380 days between January 13, 2017 178 

and May 6, 2018. In addition, a total of 25 NPM and 9 PPA sensors were collocated at the site 179 

between March 30, 2018 and June 4, 2018 (although again, not all instruments were present for 180 

the entire period); temperature varied from -3 to 43°C and humidity varied between 17 and 97%.  181 

Instruments at both sites were connected to RAMP monitors to allow for cellular data transmission. 182 

For NPM sensors, data associated with instrument error codes, as well as likely erroneously high 183 

readings (exceeding 10000 µg/m3) were filtered from the data. For PPA sensors, readings from 184 

both internal Plantower sensors were averaged to determine the PPA reading. Measurements from 185 

these sensors were down-averaged to an hourly rate to allow for comparison with the reference 186 

instruments. 187 

2.5. Assessment metrics 188 

To evaluate the performance of a sensor as compared to a reference (typically a regulatory-grade 189 

instrument), the bias, mean absolute error, and correlation coefficient statistics are used. For 𝑛 190 

measurements of concentration by the sensor (𝑐) and reference (𝑐̂), bias is computed as:  191 

 bias =
1

𝑛
∑ (𝑐𝑖 − 𝑐̂𝑖)

𝑛
𝑖=1    (3) 192 

mean absolute error (MAE) is evaluated as: 193 

 MAE =
1

𝑛
∑ |𝑐𝑖 − 𝑐̂𝑖|

𝑛
𝑖=1    (4) 194 

and the Pearson correlation coefficient (𝑟) is evaluated as: 195 
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 𝑟 =
∑ (𝑐𝑖−

1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )𝑛

𝑖=1 (𝑐̂𝑖−
1

𝑛
∑ 𝑐̂𝑗

𝑛
𝑗=1 )

√∑ (𝑐𝑖−
1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

√∑ (𝑐̂𝑖−
1

𝑛
∑ 𝑐̂𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

,   (5) 196 

These statistics assess, respectively, the systematic differences between the sensor and reference 197 

measurements over time, the average absolute difference in measurements taken at the same time, 198 

and the degree to which the trends in measurements match (e.g. do measures from both sources 199 

tend to be relatively “high” and “low” at the same times). Lower absolute values of bias and MAE 200 

denote better agreement, while a value of 𝑟 close to 1 denotes stronger correlation. 201 

Performance of the instruments was also assessed from a classification perspective, using the 202 

NAAQS 24-hour standard of 35 µg/m3 (www.epa.gov/criteria-air-pollutants/naaqs-table) as a 203 

representative threshold, by assessing how often the sensor agreed with a reference instrument as 204 

to whether this concentration was surpassed (note that this determination is made on an hourly 205 

basis for this assessment, while the regulation cited above applies to daily averages). This is 206 

quantified by the classification precision and recall, where classification precision indicates the 207 

fraction of values of concentration 𝑐 above threshold 𝜏 detected by the sensor which were also 208 

detected by the reference: 209 

 classification precision =  
∑ 𝕀(𝑐𝑖>𝜏)𝕀(𝑐̂𝑖>𝜏)𝑛

𝑖=1

∑ 𝕀(𝑐𝑖>𝜏)𝑛
𝑖=1

  (6) 210 

and recall is the fraction of instances detected by the reference instrument which were also detected 211 

by the sensor: 212 

 classification recall =  
∑ 𝕀(𝑐𝑖>𝜏)𝕀(𝑐̂𝑖>𝜏)𝑛

𝑖=1

∑ 𝕀(𝑐̂𝑖>𝜏)𝑛
𝑖=1

  (7) 213 

where 𝕀 is the indicator function, taking on value 1 when its argument is true and 0 otherwise. 214 

Therefore, classification precision describes how often an event detected by the sensor actually 215 

occurred (assuming the reference instrument reading is the “true” concentration) while recall 216 

describes the fraction of actual events which were detected by the sensor. Values of classification 217 

precision and recall close to 100% indicate better performance. 218 

3. Results 219 

3.1. Consistency between Sensors 220 

To determine the consistency between sensors, pairwise comparisons of 1-hour-averaged data 221 

were made among NPM and PPA sensors (i.e. NPM with NPM and PPA with PPA) collocated at 222 

either site during the same period. Figure 2 presents the results of these inter-comparisons; only 223 

results for sensors collocated for at least 3 days are presented. Overall, mutual correlations are 224 

strong (typically 𝑟 > 0.9) and are likely higher at the Lincoln site due to the wider range of 225 

concentrations. Absolute differences in readings were typically below 2.5 µg/m3, while systematic 226 

biases between sensors were generally on the order of ±1 µg/m3. 227 
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 228 

Figure 2: Inter-comparison between sensors during collocation periods at both sites. Black 229 

boxplots indicate metric ranges for pairs of NPM sensors, and purple boxplots indicate ranges 230 

for pairs of PPA sensors. This represents 114 NPM pairs at Lawrenceville, 66 NPM pairs at 231 

Lincoln, 16 PPA pairs at Lawrenceville and 1 PPA pair at Lincoln. 232 

Figure 3 compares hourly averages from collocated NPM and PPA sensors at Lawrenceville to 233 

each other as a function of humidity (the median readings of all sensors active at the site at the 234 

same time are shown). It is interesting to note that at low humidity, PPA readings are about twice 235 

that of the NPM, while at high humidity the ratio of readings approaches one; comparisons made 236 

between raw readings of both sensor types would therefore be heavily humidity-dependent. 237 
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  238 

 239 

Figure 3: Comparison between medians of NPM and PPA sensors during collocation at the 240 

Lawrenceville site. Colors indicate relative humidity at the time of the measurements. 241 

3.2. Accuracy of Low-Cost Sensors and Correction to BAM-Equivalence 242 

Various functional forms as described in Section 2.2 were used to correct the hourly average 243 

readings of NPM and PPA sensors to match collocated data from the BAM regulatory-grade 244 

instruments. Models were calibrated using a combination of data collected at both the 245 

Lawrenceville and Lincoln sites from half of the sensors deployed to each site (the “training” set); 246 

model performance was evaluated on the other half of sensors at these sites (the “testing” set). 247 

Performance metrics for a subset of correction models on the testing set are presented in Table 2 248 

(NPM) and Table 3 (PPA); the full set of performance metrics are included as supplementary 249 

information. 250 
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Table 2: Subset of performance metrics for NPM sensor correction models using one-hour 251 

averages, as applied to a subset of n sensors set aside for testing. Results for the raw output of the 252 

sensors are presented in the first line. 253 

Met-One NPM Sensors 

   Lawrenceville (n=13) Lincoln (n=7) 

   r MAE bias r MAE bias 

Function Inputs Threshold  [µg/m3] [µg/m3]  [µg/m3] [µg/m3] 

As-reported NPM None 0.60 4.47 -3.42 0.87 5.36 2.22 

Linear NPM None 0.60 3.07 -1.76 0.87 4.62 0.89 

Linear NPM/fRH None 0.73 2.96 -2.32 0.92 3.96 1.21 

Linear NPM/fRH, 

T, RH, DP 

None 0.70 2.97 -0.95 0.92 4.05 1.37 

Linear NPM, T, RH 30 µg/m3 0.62 2.65 -0.82 0.91 3.99 0.91 

Linear NPM, T, RH, 

DP 

15 µg/m3 0.68 2.69 -1.04 0.92 3.79 0.82 

Linear NPM/fRH, 

T, RH, DP 

5, 10, 15, 

20, 30, 40, 

50 µg/m3 

0.70 2.86 -1.01 0.92 4.22 1.54 

Quadratic NPM None 0.60 3.19 -1.99 0.88 4.60 0.97 

Quadratic NPM/fRH None 0.73 2.75 -1.95 0.92 3.99 1.33 

Quadratic NPM/fRH, 

T, RH, DP 

None 0.70 2.86 -1.16 0.92 4.02 1.33 

Quadratic NPM, T, RH None 0.70 2.92 -1.28 0.92 3.88 0.99 

Quadratic NPM, T, RH, 

DP 

10 µg/m3 0.69 2.73 -1.20 0.93 3.80 0.99 

 254 
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Table 3: Subset of performance metrics for PurpleAir sensor correction models using one-hour 255 

averages, as applied to a subset of n sensors set aside for testing. Results for the raw output of the 256 

sensors are presented in the first line. 257 

PurpleAir PPA Sensors 

   Lawrenceville (n=5) Lincoln (n=1) 

   r MAE bias r MAE bias 

Function Inputs Threshold  [µg/m3] [µg/m3]  [µg/m3] [µg/m3] 

As-reported PPA None 0.72 3.42 0.44 0.92 7.45 6.45 

Linear PPA None 0.72 3.00 -2.19 0.92 4.05 -0.32 

Linear PPA/fRH None 0.74 3.12 -1.34 0.91 4.34 -3.15 

Linear PPA/fRH, T, 

RH, DP 

None 0.69 3.44 -1.27 0.91 4.02 -1.29 

Linear PPA, T, RH 20 µg/m3 0.70 2.48 -0.28 0.95 3.62 -0.54 

Linear PPA, T, RH, 

DP 

20 µg/m3 0.72 2.41 -0.38 0.95 3.48 -0.51 

Linear PPA, T, RH, 

DP 

5, 10, 15, 

20, 30, 40, 

50 µg/m3 

0.71 2.48 -0.44 0.94 3.56 -0.70 

Quadratic PPA None 0.72 2.90 -2.03 0.92 4.10 -0.32 

Quadratic PPA/fRH None 0.74 2.45 -0.84 0.89 4.45 -2.56 

Quadratic PPA/fRH, T, 

RH, DP 

None 0.63 2.91 -0.62 0.93 3.83 -0.88 

Quadratic PPA, T, RH 30 µg/m3 0.69 2.58 -0.45 0.95 3.29 -0.33 

Quadratic PPA, T, RH, 

DP 

30 µg/m3 0.69 2.61 -0.47 0.95 3.30 -0.38 

 258 

The performance of each correction model as outlined above was scored using a heuristic 259 

combining various performance metrics across both collocation sites and penalizing the 260 

complexity of the model; see the supplementary materials for the resulting metrics. For selecting 261 

a final correction method for each type of sensor, performance across a range of concentrations 262 

experienced at both collocation sites was traded off against the complexity of the model (and 263 

therefore its propensity to overfit to training data).  264 

Two equations were selected for the NPM sensors; first, a linear function of the raw signal 265 

corrected using a hygroscopic growth factor was identified as the model with the smallest number 266 

of free parameters giving the best overall performance: 267 

 [corrected PM2.5 ] = 𝜃1 (
[NPM PM2.5]

fRH(𝑇,𝑅𝐻)
) + 𝜃0  (8) 268 

The hygroscopic growth factor is based on Pittsburgh-specific aerosol chemical composition, 269 

which may not be available at all locations. However, since factors such as temperature and relative 270 

humidity are readily available, a quadratic function of these which performed similarly well was 271 

considered as a more generalizable alternative: 272 
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[corrected PM2.5 ] = 𝛼0 + 𝛼1[NPM PM2.5] + 𝛼2𝑇 + 𝛼3𝑅𝐻 + 𝛼4[NPM PM2.5]2 +273 

𝛼5[NPM PM2.5]𝑇 + 𝛼6[NPM PM2.5]𝑅𝐻 + 𝛼7𝑇2 + 𝛼8𝑇𝑅𝐻 + 𝛼9𝑅𝐻2  (9) 274 

The final form selected for PPA sensors was a two-piece linear function of the sensor reading, 275 

temperature, humidity, and dewpoint, with a threshold at 20 µg/m3: 276 

 [corrected PM2.5] = {
𝛽0 + 𝛽1[PPA PM2.5] + 𝛽2𝑇 + 𝛽3𝑅𝐻 + 𝛽4DP(𝑇, 𝑅𝐻) if [PPA PM2.5] > 20

μg
m3⁄  

𝛾0 + 𝛾1[PPA PM2.5] + 𝛾2𝑇 + 𝛾3𝑅𝐻 +  𝛾4DP(𝑇, 𝑅𝐻) if [PPA PM2.5] ≤ 20
μg

m3⁄  
  (10) 277 

Coefficients calibrated for these equations are listed in Table 4, along with their uncertainties. 278 

Table 4: Coefficients for correction equations 279 

Coefficient Value Estimate Standard Deviation Unit 

𝜃0 1.52 0.16 μg
m3⁄  

𝜃1 1.94 0.020 N/A 

𝛼0 0 2.9 μg
m3⁄  

𝛼1 2.93 0.08 N/A 

𝛼2 -0.11 0.08 μg
℃m3⁄  

𝛼3 0 0.08 μg
%m3⁄  

𝛼4 5.3×10-4 1.5×10-4 m3

μg⁄  

𝛼5 -8.9×10-3 1.2×10-3 ℃−1 

𝛼6 -2.7×10-2 0.11×10-2 %−1 

𝛼7 2.9×10-3 0.8×10-3 μg
℃2m3⁄  

𝛼8 5.0×10-3 1.0×10-3 μg
℃%m3⁄  

𝛼9 0 6.0×10-4 μg
%2m3⁄  

𝛽0 75 11 μg
m3⁄  

𝛽1 0.60 0.0090 N/A 

𝛽2 -2.5 0.51 μg
℃m3⁄  

𝛽3 -0.82 0.11 μg
%m3⁄  

𝛽4 2.9 0.53 μg
℃m3⁄  

𝛾0 21          2.1 μg
m3⁄  

𝛾1 0.43 0.013 N/A 

𝛾2 -0.58 0.090 μg
℃m3⁄  

𝛾3 -0.22 0.023 μg
%m3⁄  

𝛾4 0.73 0.098 μg
℃m3⁄  

 280 
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Figure 4 plots hourly average readings from NPM and PPA sensors against regulatory-grade 281 

instrument readings at the Lawrenceville site both before (above) and after (below) application of 282 

correction equations. Before correction there is a clear effect of humidity on the readings; for the 283 

NPM sensors particularly, many of the readings over 30 µg/m3 correspond with periods of fog at 284 

the site, indicating it may strongly affect the sensors. The corrections largely nullify this effect, 285 

and reduce MAE by about 30% for both NPM and PPA sensors with respect to the raw signals. 286 

However, there is still noticeable measurement noise about the identity line. 287 

 288 

 289 

Figure 4: Comparison of median NPM (left) and PPA (right) sensor readings to the BAM 290 

instrument during collocation at the Lawrenceville site, both before (above) and after (below) 291 

correction (using Eq. 8 for NPM and Eq. 10 for PPA). Colors indicate relative humidity at the 292 

time of the measurements. 293 

Figure 5 summarizes the medians and ranges in performance of the corrected NPM and PPA hourly 294 

averaged data across both collocation sites, using all sensors deployed to both sites (as opposed to 295 

only the testing set), as well as specifying performance by different concentration ranges (0 to 10, 296 

10 to 20, and higher than 20 µg/m3). Correlation is typically better for NPM sensors (using either 297 
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correction equation), with r between 0.7 and 0.9, while for PPA sensors it ranges down to 0.5. 298 

Correlations also improve at higher concentrations. In terms of MAE, both sensors are between 3 299 

and 5 µg/m3. MAE also tends to increase as concentrations increase, but the PPA sensors appear 300 

to be less affected than NPM at concentrations above 20 µg/m3; however, considering there were 301 

only two PPA sensors at the Lincoln site (where these higher concentrations were more common) 302 

this may be a sample size artefact. Although unbiased over the full range, the corrected sensor 303 

readings tend to be positively biased at low concentrations and negatively biased at high 304 

concentrations. This is opposite to the trend seen before correction and may be due to 305 

overcorrections at the extremes. 306 

 307 

 Figure 5: Comparison of sensor performance compared to BAM instruments during collocation 308 

at both the Lawrenceville and Lincoln sites. Performance metrics are plotted overall (0-max 309 

range) and by different PM2.5 ranges (0-10, 10-20, 20-max). 310 

Figure 6 assesses the ability of the sensors to correctly identify times when a threshold is passed; 311 

the timeline charts the number of hours per week with average concentrations above 35 µg/m3 312 

identified by the NPM sensor (corrected using Eq. 8) and/or the regulatory-grade instrument at the 313 

Lincoln site (results are not reported for the Lawrenceville site since hourly concentrations there 314 

surpassed the threshold less than 1% of the time). True positives occurred when both instruments 315 

detected an event; false positives are when only the NPM measured the event, and false negatives 316 

when the NPM failed to detect an event seen by the regulatory-grade instrument. A one hour “grace 317 

period” was used, i.e., if an event detection by one instrument leads or trails the other by up to an 318 

hour, this was still counted as a true positive. The classification precision of the sensor was 85% 319 

and its recall was 97%; for comparison, these values are 73% and 97% respectively when the un-320 
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corrected signal of the NPM is used. Of the misclassifications, 41% were within 5 µg/m3 of the 321 

threshold; the rest represented larger discrepancies between the instruments. 322 

 323 

Figure 6: Detection of hourly high PM2.5 events by NPM sensor at Lincoln. True positives 324 

(correct detections) are counted for each hour on a weekly basis, along with false positives (false 325 

event indications) and false negatives (missed events). 326 

3.3. Long-Term Performance  327 

Long-term assessment is necessary to categorize bias and assess data quality after extensive field 328 

use of sensors; previous studies of optical particle counters operating for up to four months have 329 

seen no evidence of significant drift (Crilley et al. 2018). The long-term performance of NPM 330 

sensors was assessed using data collected by the two sensors deployed at the Lawrenceville and 331 

Lincoln sites for extended periods (e.g. more than a year of data at the former site collected over a 332 

16-month span). First, these data were used to assess the in-field noise-adjustment methods 333 

proposed in Section 2.3. Figure 7 shows the spread in weekly biases (difference between the 334 

weekly average readings of the corrected sensors and the regulatory-grade instruments) for both 335 

sites, both without noise-adjustment and with the three proposed noise-adjustment methods. Based 336 

on these results, the “average of low readings” method is best, reducing the median bias at the 337 

Lawrenceville site by half. However, there is still a significant spread in the weekly bias, indicating 338 
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that sensors may be experiencing changes in their low-frequency noise on relatively short 339 

timescales. 340 

   341 

Figure 7: Performance of various noise-adjustment methods (NA – no noise-adjustment applied; 342 

DR – noise-adjusted using deployment records; SP – noise-adjusted using percentiles of nearest 343 

reference site; AL – noise-adjusted using averages of low readings at nearest reference site) in 344 

reducing weekly biases. Performance is determined separately for the Lawrenceville (blue) and 345 

Lincoln (red) sites. Corrections are performed using Eq. 8. 346 

Figure 8 plots the distribution of absolute errors between the corrected and noise-adjusted sensor 347 

data and the associated regulatory-grade instrument as a function of the period over which readings 348 

are averaged. Solid lines indicate the mean absolute errors for these averaging periods, while the 349 

shaded area indicates the interquartile range of absolute errors for different periods. While for 350 

hourly averages, errors are on the order of 4 µg/m3, for weekly averages this is reduced to about 2 351 

µg/m3, and for annual averages errors are below 1 µg/m3.  352 
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 353 

Figure 8: Mean absolute error in PM2.5 measurements for two NPM sensors during long-term 354 

deployments as a function of averaging period. Measurements are corrected using Eq. 9 and 355 

noise-adjusted using the “average of low readings” method. Shaded regions indicate 25%-75% 356 

ranges in errors over periods. 357 

4. Discussion 358 

Testing of a relatively large number of NPM (up to 25 sensors at the Lawrenceville site) and PPA 359 

(up to 12 sensors at the Lawrenceville site) low-cost PM2.5 sensors showed high mutual 360 

consistency between the sensors, with MAE typically below 2.5 µg/m3 and correlation typically 361 

higher than 0.9. Systematic biases between instruments appeared to account for the largest fraction 362 

of the absolute differences; such biases may be assessed before and after field deployment using 363 

collocations, but these methods will likely fail because the biases vary over time, as evidenced by 364 

the relatively poor performance of the “deployment records” noise-adjustment method for field-365 

collected data, which used this strategy. Furthermore, use of uncorrected sensor measurements is 366 

not advised, due to the major effect of humidity on the readings of both sensors (see Figure 3, 367 

Figure 4).  368 

Correction equations were selected to balance accuracy and simplicity, with the selected equations 369 

capable of being implemented for real-time monitoring applications. For the NPM sensors, 370 

reasonably good performance was achieved with either a linear function incorporating a 371 
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hygroscopic growth correction term or a quadratic function involving temperature and humidity, 372 

while for PPA sensors a piecewise linear function of temperature, humidity, and dewpoint was 373 

selected. However, for both types of sensors, even following correction, relatively large 374 

differences in hourly averages (MAE of 4 µg/m3, and double that for high concentrations) were 375 

observed with respect to the BAM regulatory-grade instruments. This lack of consistency with 376 

BAM instruments has also been observed in other works (e.g. Zheng et al. 2018) and may not be 377 

reconcilable with low-cost optical sensors. However, as data are averaged over longer periods, 378 

accuracy can be improved, especially if in-field noise-adjustment methods are also applied, such 379 

that long-term (1 year or more) averages are likely to be accurate within 1 µg/m3. Furthermore, 380 

during tests for detecting hourly concentrations higher than 35 µg/m3, the NPM sensor was able to 381 

correctly identify these events to within one hour more than 80% of the time; this indicates the 382 

potential for this sensor to be used to identify pollution hotspots. 383 

In terms of use cases, the high level of mutual consistency and ability (with suitable noise-384 

adjustment) to provide accurate long-term averages makes these low-cost sensors useful for large-385 

scale mapping campaigns to determine long-term spatial patterns and temporal trends in PM2.5. 386 

For real-time monitoring, although these sensors have the ability to detect hourly “spikes” with 387 

reasonable accuracy, concentration values should only be considered to be within about ±5 µg/m3 388 

in typical ambient concentrations (with a wider margin for higher readings). Nevertheless, this is 389 

sufficient to provide qualitative indications of relative short-term air quality. The small size and 390 

ease of deployment of these units make them well suited to urban monitoring. PPA sensors also 391 

incorporate a pair of particulate sensors, allowing for internal self-consistency checks to flag 392 

possible erroneous data, while NPM sensors include PM2.5 cyclones and inlet heaters which can 393 

protect the units from excessive dust and humidity (to which PPA sensors, which lack these 394 

features, may be more susceptible during longer deployments). Finally, we note that while these 395 

results are determined for the specific environment of Pittsburgh, Pennsylvania, we believe they 396 

will generalize to other areas of North America, Europe, and other cities which are characterized 397 

by hourly PM2.5 mass concentrations typically less than 20 µg/m3 over a wide temperature and 398 

humidity range. 399 

Acknowledgements 400 

Funding for this study was provided by the Environmental Protection Agency (Assistance 401 

Agreement Nos. RD83587301 and 83628601), and the Heinz Endowment Fund (Grants E2375 402 

and E3145). The authors would like to thank Eric Lipsky, Naomi Zimmerman, and S. Rose 403 

Eilenberg for assistance with instrument setup and operation. 404 

References 405 

ACHD. 2017. Air Quality Annual Data Summary for 2017: Criteria Pollutants and Selected Other 406 

Pollutants. 407 



19 

 

Allen G, Sioutas C, Koutrakis P, Reiss R, Lurmann FW, Roberts PT. 1997. Evaluation of the 408 

TEOM® Method for Measurement of Ambient Particulate Mass in Urban Areas. Journal 409 

of the Air & Waste Management Association 47:682–689; 410 

doi:10.1080/10473289.1997.10463923. 411 

Apte JS, Marshall JD, Cohen AJ, Brauer M. 2015. Addressing Global Mortality from Ambient 412 

PM2.5. Environmental Science & Technology 49:8057–8066; 413 

doi:10.1021/acs.est.5b01236. 414 

AQ-SPEC. 2015. Met One Neighborhood Monitor Evaluation Report. 415 

AQ-SPEC. 2017. PurpleAir PA-II Sensor Evaluation Report. 416 

Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. 2010. 417 

Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific 418 

Statement From the American Heart Association. Circulation 121:2331–2378; 419 

doi:10.1161/CIR.0b013e3181dbece1. 420 

Cerully KM, Bougiatioti A, Hite JR, Guo H, Xu L, Ng NL, et al. 2015. On the link between 421 

hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the 422 

southeastern United States. Atmospheric Chemistry and Physics 15:8679–8694; 423 

doi:10.5194/acp-15-8679-2015. 424 

Crilley LR, Shaw M, Pound R, Kramer LJ, Price R, Young S, et al. 2018. Evaluation of a low-cost 425 

optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric 426 

Measurement Techniques 11:709–720; doi:10.5194/amt-11-709-2018. 427 

Eeftens M, Tsai M-Y, Ampe C, Anwander B, Beelen R, Bellander T, et al. 2012. Spatial variation 428 

of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 429 

European study areas and the relationship with NO2 – Results of the ESCAPE project. 430 

Atmospheric Environment 62:303–317; doi:10.1016/j.atmosenv.2012.08.038. 431 

English PB, Olmedo L, Bejarano E, Lugo H, Murillo E, Seto E, et al. 2017. The Imperial County 432 

Community Air Monitoring Network: A Model for Community-based Environmental 433 

Monitoring for Public Health Action. Environmental Health Perspectives 125; 434 

doi:10.1289/EHP1772. 435 

Hacker K. 2017. Air Monitoring Network Plan for 2018. 436 

Jayaratne R, Liu X, Thai P, Dunbabin M, Morawska L. 2018. The Influence of Humidity on the 437 

Performance of Low-Cost Air Particle Mass Sensors and the Effect of Atmospheric Fog. 438 

Atmospheric Measurement Techniques Discussions 1–15; doi:10.5194/amt-2018-100. 439 

Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB, et al. 2005. Spatial Analysis of 440 

Air Pollution and Mortality in Los Angeles. Epidemiology 16:727–736; 441 

doi:10.1097/01.ede.0000181630.15826.7d. 442 



20 

 

Jiao W, Hagler G, Williams R, Sharpe R, Brown R, Garver D, et al. 2016. Community Air Sensor 443 

Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban 444 

environment in the southeastern United States. Atmospheric Measurement Techniques 445 

9:5281–5292; doi:10.5194/amt-9-5281-2016. 446 

Karner AA, Eisinger DS, Niemeier DA. 2010. Near-Roadway Air Quality: Synthesizing the 447 

Findings from Real-World Data. Environmental Science & Technology 44:5334–5344; 448 

doi:10.1021/es100008x. 449 

Kelly KE, Whitaker J, Petty A, Widmer C, Dybwad A, Sleeth D, et al. 2017. Ambient and 450 

laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution 451 

221:491–500; doi:10.1016/j.envpol.2016.12.039. 452 

Lepeule J, Laden F, Dockery D, Schwartz J. 2012. Chronic Exposure to Fine Particles and 453 

Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. 454 

Environmental Health Perspectives 120:965–970; doi:10.1289/ehp.1104660. 455 

Moltchanov S, Levy I, Etzion Y, Lerner U, Broday DM, Fishbain B. 2015. On the feasibility of 456 

measuring urban air pollution by wireless distributed sensor networks. Science of The Total 457 

Environment 502:537–547; doi:10.1016/j.scitotenv.2014.09.059. 458 

Petters MD, Kreidenweis SM. 2007. A single parameter representation of hygroscopic growth and 459 

cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7:1961–1971; 460 

doi:10.5194/acp-7-1961-2007. 461 

Piedrahita R, Xiang Y, Masson N, Ortega J, Collier A, Jiang Y, et al. 2014. The next generation 462 

of low-cost personal air quality sensors for quantitative exposure monitoring. Atmospheric 463 

Measurement Techniques 7:3325–3336; doi:10.5194/amt-7-3325-2014. 464 

Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. 2002. Lung cancer, 465 

cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 466 

287: 1132–1141. 467 

Schwartz J, Dockery DW, Neas LM. 1996. Is daily mortality associated specifically with fine 468 

particles? J Air Waste Manag Assoc 46: 927–939. 469 

Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GSW, et al. 2013. The 470 

Changing Paradigm of Air Pollution Monitoring. Environmental Science & Technology 471 

47:11369–11377; doi:10.1021/es4022602. 472 

US EPA. 2016. Quality Assurance Guidance Document 2.12: Monitoring PM2.5 in Ambient Air 473 

Using Designated Reference or Class I Equivalent Methods. 474 

Wang Y, Li J, Jing H, Zhang Q, Jiang J, Biswas P. 2015. Laboratory Evaluation and Calibration 475 

of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Science 476 

and Technology 49:1063–1077; doi:10.1080/02786826.2015.1100710. 477 



21 

 

White RM, Paprotny I, Doering F, Cascio WE, Solomon PA, Gundel LA. 2012. Sensors and 478 

“apps” for community-based: Atmospheric monitoring. EM: Air and Waste Management 479 

Association’s Magazine for Environmental Managers 2012: 36–40. 480 

Williams R, Vallano D, Polidori A, Garvey S. 2018. Spatial and Temporal Trends of Air Pollutants 481 

in the South Coast Basin Using Low Cost Sensors. 482 

Zheng T, Bergin MH, Johnson KK, Tripathi SN, Shirodkar S, Landis MS, et al. 2018. Field 483 

evaluation of low-cost particulate matter sensors in high and low concentration 484 

environments. Atmospheric Measurement Techniques Discussions 1–40; 485 

doi:10.5194/amt-2018-111. 486 

Zikova N, Hopke PK, Ferro AR. 2017a. Evaluation of new low-cost particle monitors for PM2.5 487 

concentrations measurements. Journal of Aerosol Science 105:24–34; 488 

doi:10.1016/j.jaerosci.2016.11.010. 489 

Zikova N, Masiol M, Chalupa D, Rich D, Ferro A, Hopke P. 2017b. Estimating Hourly 490 

Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. 491 

Sensors 17:1922; doi:10.3390/s17081922. 492 

Zimmerman N, Presto AA, Kumar SPN, Gu J, Hauryliuk A, Robinson ES, et al. 2018. A machine 493 

learning calibration model using random forests to improve sensor performance for lower-494 

cost air quality monitoring. Atmospheric Measurement Techniques 11:291–313; 495 

doi:10.5194/amt-11-291-2018. 496 


