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1. RAMP and PM Sensor Picture 8 

 9 

Figure S.1: Several RAMP monitors (red boxes) with connected Met-One NPM (yellow box) 10 

and PurpleAir (purple box) PM2.5 sensors. 11 

2. Correction Methods – Hygroscopic Growth Factor Computation 12 

This hygroscopic growth factor is computed as:  13 

 fRH(𝑇, 𝑅𝐻) = 1 + κbulk
𝑎𝑤(𝑇,𝑅𝐻)

1−𝑎𝑤(𝑇,𝑅𝐻)
  (S.1) 14 

where: 15 

 𝑎𝑤(𝑇, 𝑅𝐻) = 𝑅𝐻 exp (
4𝜎𝑤𝑀𝑤

𝜌𝑤𝑅𝑇𝐷p
)

−1

  (S.2) 16 

κbulk is the hygroscopicity of bulk aerosol; κbulk = ∑ 𝑥𝑖𝜅𝑖𝑖  where. 𝑥𝑖 and 𝜅𝑖 are the volume 17 

fraction hygroscopocity parameters of the 𝑖th component comprising the particle. Organic, 18 

sulfate, nitrate and ammonium are assumed as the main components comprising the particle. The 19 
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fractional contributions of these chemical components to PM2.5 during summer, winter, and as an 20 

annual average (applied to other periods) are obtained from recent AMS measurements in 21 

Pittsburgh (Gu et al. 2018) and their hygroscopocity parameters are adopted from literature 22 

(Cerully et al. 2015; Petters and Kreidenweis 2007). 𝑎𝑤 is the water activity parameter, estimated 23 

using Eq. (S.2), where 𝜎𝑤, 𝑀𝑤, and 𝜌𝑤 represent the surface tension, molecular weight and 24 

density of water, respectively; 𝑇 is the absolute temperature, 𝑅 is the ideal gas constant, 𝑅𝐻 is 25 

ambient relative humidity; 𝐷p is the particle diameter, adopted as volume median diameter from 26 

long-term size distribution measurements using SMPS in Pittsburgh. Table S.1 lists different 27 

parameter values used in hygroscopic growth factor calculation.  28 

Table S.1: Parameters used in hygroscopic growth factor calculation 29 

Parameter Value Unit Source 

 Summer Winter Other   

𝜅OA 0.15 0.15 0.15 - (Cerully et al. 2015) 

𝜅𝑆𝑂4 0.5 0.5 0.5 - (Petters and Kreidenweis 2007) 

𝜅𝑁𝑂3 0.6 0.6 0.6 - (Petters and Kreidenweis 2007) 

𝜅𝑁𝐻4 0.5 0.5 0.5 - (Petters and Kreidenweis 2007) 

𝑥𝑂𝐴 0.64 0.41 0.53 - (Gu et al. 2018) 

𝑥𝑆𝑂4
 0.24 0.16 0.20 - (Gu et al. 2018) 

𝑥𝑁𝑂3
 0.04 0.29 0.165 - (Gu et al. 2018) 

𝑥𝑁𝐻4
 0.08 0.15 0.115 - (Gu et al. 2018) 

κbulk 0.26 0.34 0.30 -  

𝜎𝑤 0.072 0.072 0.072 N/m  

𝑀𝑤 0.018 0.018 0.018 kg/mol  

𝜌𝑤 1000 1000 1000 kg/m3  

𝑅 8.314 8.314 8.314 J/mol K  

𝐷p 200 200 200 nm  

 30 

 31 

Figure S.2: Example of how the hygroscopic growth factor varies with humidity in summer, 32 

winter, and otherwise. 33 
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3. Correction Methods – Empirical Approach 34 

Several explanatory factors were considered for the empirical correction method. Dewpoint 𝐷𝑃 35 

was considered as a factor related to condensation that might serve as a proxy for the 36 

hygroscopic growth factor which is independent of aerosol composition. Furthermore, humidity 37 

is known to affect the performance of optical particle sensors directly (e.g. Jayaratne et al. 2018), 38 

and so relative humidity 𝑅𝐻 was included as a factor. Finally, temperature 𝑇 was included as a 39 

factor since it has been observed to affect the performance of optical sensor components 40 

(Johnson et al. 2016; Jayaratne et al. 2018; Zheng et al. 2018).  41 

Various combinations of the as-reported sensor readings and the above inputs into various 42 

functional forms and with different application thresholds were applied to generate correction 43 

equations. Two functional forms were considered: linear and quadratic regression models. 44 

Thresholds were considered to define different subsets of the domain over which different 45 

functional parameters could be applied, allowing for piecewise-linear or piecewise-quadratic 46 

functions. Models without thresholds were considered, as well as models with single or multiple 47 

threshold values chosen from among 5, 10, 15, 20, 30, 40, and 50 µg/m3 (as determined from the 48 

raw sensor reading). For reference, ambient concentrations in Pittsburgh typically range from 3 49 

to 20 µg/m3. 50 

Models were calibrated using a combination of data collected at both the Lawrenceville and 51 

Lincoln sites from half of the sensors deployed to each site (the “training” set); model 52 

performance was evaluated on the other half of sensors at these sites (the “testing” set). 53 

Performance metrics assessed for the various models are included as supplementary data. The 54 

performance of each correction model on the test sensor set was scored using a heuristic 55 

combining various performance metrics across both collocation sites and penalizing the 56 

complexity of the model (see the supplementary data for the resulting metrics). For selecting a 57 

final correction method for each type of sensor, performance across a range of concentrations 58 

experienced at both collocation sites was traded off against the complexity of the model (and 59 

therefore its propensity to overfit to training data).  60 
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4. Drift-Adjustment Methods 61 

 62 

Figure S.3: Illustration of observed NPM sensor drift at the Lincoln and Lawrenceville sites. 63 

Drift is depicted as the difference in monthly average readings of the NPM sensor, corrected 64 

using Eq. (4), versus the collocated regulatory-grade instrument at each site. 65 

 66 

Figure S.4: Diagrams of the three proposed drift-adjustment methods. 67 
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5. Assessment metrics 68 

For 𝑛 measurements of concentration by the sensor (𝑐) and reference (𝑐̂), bias is computed as:  69 

 bias =
1

𝑛
∑ (𝑐𝑖 − 𝑐̂𝑖)

𝑛
𝑖=1    (S.3) 70 

mean absolute error (MAE) is evaluated as: 71 

 MAE =
1

𝑛
∑ |𝑐𝑖 − 𝑐̂𝑖|

𝑛
𝑖=1    (S.4) 72 

and the Pearson correlation coefficient (𝑟) is evaluated as: 73 

 𝑟 =
∑ (𝑐𝑖−

1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )𝑛

𝑖=1 (𝑐̂𝑖−
1

𝑛
∑ 𝑐̂𝑗

𝑛
𝑗=1 )

√∑ (𝑐𝑖−
1

𝑛
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𝑛
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2
𝑛
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1
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2
𝑛
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,   (S.5) 74 

These statistics assess, respectively, the systematic differences between the sensor and reference 75 

measurements over time, the average absolute difference in measurements taken at the same 76 

time, and the degree of linearity between the measurements. Lower absolute values of bias and 77 

MAE denote better agreement, while a value of 𝑟 close to 1 denotes stronger correlation. 78 

Additionally, the following EPA bias and precision score metrics (Camalier et al., 2007) were 79 

used: 80 

 Precision Score = √
𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ 𝛿𝑖

𝑛
𝑖=1 )

2

𝑛χ0.1,𝑛−1
2  (S.6) 81 

where χ0.1,𝑛−1
2  denotes the 10th percentile of the chi-squared distribution with 𝑛 − 1 degrees of 82 

freedom, and: 83 

 𝛿𝑖 = 100
𝑐𝑖−𝑐̂𝑖

𝑐̂𝑖
  (S.7) 84 

The bias score is: 85 

 Bias Score =
1

𝑛
∑ |𝛿𝑖|

𝑛
𝑖=1 +

𝑡0.95,𝑛−1

𝑛
√𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ |𝛿𝑖|𝑛

𝑖=1 )
2

𝑛−1
  (S.8) 86 

where 𝑡0.95,𝑛−1 is the 95th percentile of the t distribution with 𝑛 − 1 degrees of freedom. These 87 

precision and bias scores can be compared to performance guidelines for various sensing 88 

applications (Williams et al., 2014). For PM2.5, requirements for educational monitoring (Tier I) 89 

are for precision and bias scores below 50%; for hotspot identification and characterization (Tier 90 

II) or personal exposure monitoring (Tier IV), these should be below 30%; for supplemental 91 

monitoring (Tier III), below 20%; and for regulatory monitoring (Tier V), below 10%. 92 
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6. Seasonal Changes in PM2.5 fraction below 300 nm in Pittsburgh 93 

Aerosol size distributions over the 10-300 nm mobility size range were measured with a TSI 94 

scanning mobility particle sizer (SMPS) at the CMU campus. PM0.3 mass concentrations were 95 

estimated assuming a mobility density of 1 gm/cm3 and spherical particles, and then corrected to 96 

the equivalent mass at 35% RH using the previously-discussed hygroscopic corrections. PM2.5 97 

mass concentrations were obtained from an NPM instrument attached to a RAMP co-located 98 

with the SMPS. These values were corrected using Eq. (1). For the winter months, the RAMP 99 

RH was assumed to be the same as the conditions inside the SMPS. For the summer months, we 100 

assumed that the SMPS RH was 15% higher (than the RAMP RH) inside the air-conditioned 101 

trailer where the SMPS operated. The SMPS/NPM comparison is further complicated by the fact 102 

that we are comparing an electrical mobility sizer to an optical sizer, but the overall result of 103 

higher sub-300 nm aerosol mass is consistent with previously reported results. 104 

 105 

Figure S.5: Ratios of PM0.3 to PM2.5 based on summer and winter data collected in Pittsburgh. 106 

Individual data points are jittered; means are shown by the purple stars; whiskers represent one 107 

standard deviation of the data. Values greater than unity likely indicate data where our 108 

assumptions are no longer valid, but these are <25% of the data. The median PM0.3/PM2.5 is 0.43 109 

in the winter and 0.53 in the summer. For an annual average concentration of ~10 µg/m3, this 110 

represents a 1 µg/m3 higher sub-300 nm fraction in the summer. 111 
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7. Results for Correction Methods 112 

 113 

Figure S.6: Comparison of median one-hour-average NPM (a) and PPA (b) sensor readings to 114 

the BAM instrument during collocation at the Lawrenceville site after correction using a 115 

hygroscopic growth factor only (i.e. corrected measurement is raw measurement divide by fRH). 116 

Colors indicate relative humidity at the time of the measurements. Note that the NPM 117 

measurement corrected in this manner severely underestimates PM2.5 concentration. For PPA 118 

sensors, while absolute errors are decreased relative to those of using the as-reported values 119 

directly, bias is also increased and correlation is reduced. 120 
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Table S.2: Coefficients for empirical correction equations 121 

Coefficient Value Estimate Standard Deviation Unit 

𝛼0 0 2.9 μg
m3⁄  

𝛼1 2.93 0.08 N/A 

𝛼2 -0.11 0.08 μg
℃m3⁄  

𝛼3 0 0.08 μg
%m3⁄  

𝛼4 5.3×10-4 1.5×10-4 m3

μg⁄  

𝛼5 -8.9×10-3 1.2×10-3 ℃−1 

𝛼6 -2.7×10-2 0.11×10-2 %−1 

𝛼7 2.9×10-3 0.8×10-3 μg
℃2m3⁄  

𝛼8 5.0×10-3 1.0×10-3 μg
℃%m3⁄  

𝛼9 0 6.0×10-4 μg
%2m3⁄  

𝛽0 75 11 μg
m3⁄  

𝛽1 0.60 0.0090 N/A 

𝛽2 -2.5 0.51 μg
℃m3⁄  

𝛽3 -0.82 0.11 μg
%m3⁄  

𝛽4 2.9 0.53 μg
℃m3⁄  

𝛾0 21          2.1 μg
m3⁄  

𝛾1 0.43 0.013 N/A 

𝛾2 -0.58 0.090 μg
℃m3⁄  

𝛾3 -0.22 0.023 μg
%m3⁄  

𝛾4 0.73 0.098 μg
℃m3⁄  

 122 

The following figure summarizes the medians and ranges in performance of the corrected NPM 123 

and PPA hourly averaged data across both collocation sites, using all sensors deployed to both 124 

sites (as opposed to only the testing set), as well as specifying performance by different 125 

concentration ranges (0 to 10, 10 to 20, and higher than 20 µg/m3). Correlation is typically better 126 

for NPM sensors (using either empirical correction equation), with r between 0.7 and 0.9, while 127 

for PPA sensors it ranges down to 0.5. Correlations also improve at higher concentrations. The 128 

MAE for both sensors are between 3 and 5 µg/m3. MAE also tends to increase as concentrations 129 

increase, but the PPA sensors appear to be less affected than NPM at concentrations above 20 130 

µg/m3; however, considering there were only two PPA sensors at the Lincoln site (where these 131 

higher concentrations were more common) this may be a sample size artefact. Although unbiased 132 

over the full range, the corrected sensor readings tend to be positively biased at low 133 

concentrations and negatively biased at moderate concentrations. This is opposite to the trend 134 

seen before correction and may be due to overcorrections at the extremes. 135 
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 136 

 137 

 Figure S.7: Comparison of one-hour-average corrected sensor performance compared to BAM 138 

instruments during collocation at both the Lawrenceville and Lincoln sites. Performance metrics 139 

are plotted overall (0-max range) and by different PM2.5 ranges (0-10, 10-20, 20-max). Results 140 

shown relate to a total of 32 NPM and 11 PPA sensors, and only consider sensors with at least 141 

five samples in the relevant range. 142 

The following figures illustrate how the performance of the proposed correction approaches is 143 

affected if data from just one of the sites (Lincoln or Lawrenceville) is used to train the model, 144 

and it is then tested on data from the other site. 145 

- Eq. (1) 
- Eq. (4) 
- Eq. (5) 
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 146 

Figure S.8: Comparison of sensor performance compared to the BAM instrument during 147 

collocation at the Lawrenceville site, using correction models calibrated using only data 148 

collected at the Lincoln site. Performance is comparable in terms of correlation and MAE to 149 

models trained using data from both sites, although bias, especially using Eq. (1) for NPM 150 

sensors, is generally worse. 151 

 152 

Figure S.9: Comparison of sensor performance compared to the BAM instrument during 153 

collocation at the Lincoln site, using correction models calibrated using only data collected at the 154 

Lawrenceville site. Performance is comparable except in the 20-max range, where performance 155 

- Eq. (1) 
- Eq. (4) 
- Eq. (5) 

- Eq. (1) 
- Eq. (4) 
- Eq. (5) 
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is significantly worse than for models calibrated using data from both sites. This illustrates the 156 

importance of calibrating correction equations across the entire range of concentrations which 157 

might be expected during field deployments. 158 

  159 

Figure S.10: Evaluation of EPA precision and bias score metrics for hourly-averaged data from 160 

NPM and PurpleAir sensors. Center-points of crosses indicate median performance, with arms 161 

indicating 25%-75% range. Following corrections, both instruments meet Tier I requirements for 162 

educational monitoring. 163 
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 164 

Figure S.11: Results of a performance evaluation of a pair of PurpleAir sensors at the Parkway 165 

East site. Results cover a data collection period of three weeks. Hourly-average bias and MAE 166 

are plotted as a function of time of day in the solid lines for the two sensors; dotted lines indicate 167 

the median performance throughout the day for each sensor. Median bias and MAE for both 168 

sensors are also listed in the figure. Corrections are performed using Eq. (1). 169 
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