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Abstract16

The factors driving variability in rainfall stable water isotopes (the ratios of H18
2 O17

and 2HHO to H2O, expressed as δ18O, and deuterium excess, d) were studied in a 13-18

year dataset of daily rainfall samples from coastal southwestern Western Australia (SWWA).19

Backwards dispersion modelling, automatic synoptic type classification, and a statisti-20

cal model were used to establish causes of variability on a daily scale; and predictions21

from the model were aggregated to longer temporal scales to discover the cause of vari-22

ability on multiple timescales. Factors differ between δ18O and d and differ according23

to temporal scale. Rainfall intensity, both at the observation site and upwind, was most24

important for determining δ18O and this relationship was robust across all time scales25

(daily, seasonal, and interannual) as well as generalizing to a second observation site. The26

sensitivity of δ18O to rainfall intensity makes annual mean values particularly sensitive27

to the year’s largest events. Projecting the rainfall intensity relationship back through28

∼ 100 years of precipitation observations can explain ∼ 0.2–0.4h shifts in rainfall δ18O.29

Twentieth century speleothem records from the region exhibit signals of a similar mag-30

nitude, indicating that rainfall intensity should be taken into account during the inter-31

pretation of regional climate archives. For d, humidity during evaporation from the ocean32

was the most important driver of variability at the daily scale, as well as explaining the33

seasonal cycle, but source humidity failed to explain the longer-term interannual vari-34

ability making d records from this region a poor candidate for reconstructing source hu-35

midity.36

Plain Language Summary37

In cave deposits, as with several other natural systems, the abundance of heavy iso-38

topes of water, oxygen-18 and deuterium, can be used to determine past changes in cli-39

mate. This is because the isotopic composition of these systems is linked to that of rain-40

fall, while the abundance of heavy isotopes in rainfall is driven by climate parameters41

such as temperature and rainfall characteristics. For this to be effective, the factors which42

drive rainfall isotopic variability need to be well known. This study uses a 13-year data43

set of daily rainfall samples from coastal southwestern Western Australia to better un-44

derstand isotopic variability for this region. Oxygen-18 variations here are driven mainly45

by rainfall intensity (the amount of rain each day) both according to measurements at46

the site and upwind simulations. Deuterium excess, a second order parameter which is47

often linked to conditions in the evaporation source region, was well-predicted by source48

region humidity at the daily scale but not when aggregated to annual totals. The rela-49

tionship between rainfall intensity and oxygen-18 appears to be important over the 20th50

century, based on a comparison between observed rainfall and a cave record.51

1 Introduction52

In systems where material is sequestered from the environment, for instance speleothem53

growth or groundwater infiltration, stable isotope ratios act as one of the markers which54

record information about environmental change. Speleothems, that is cave decorations55

such as stalagmites and flowstones, record changes in the oxygen isotopic composition56

as they grow, and these changes can in turn be linked to changes in rainfall isotopic com-57

position (Lachniet, 2009; Orland et al., 2009; Z. Zhang et al., 2018). Karst regions oc-58

cur throughout the mid-latitudes (Chen et al., 2017) meaning that cave records can be59

used to infer past changes regional rainfall (Treble, Chappell, et al., 2005; H. Zhang et60

al., 2018; Lorrey et al., 2008; Fohlmeister et al., 2012; McCabe-Glynn et al., 2013), in61

areas where this is not achievable using materials such as coral and ice. Speleothem use62

is widespread, with the SISALv2 database alone containing 691 records of δ18O in speleothems63

(Comas-Bru et al., 2020). Meanwhile, speleothem fluid inclusions (Vonhof et al., 2006;64
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van Breukelen et al., 2008) and groundwater (Priestley et al., 2020) sample infiltrating65

rainwater from which hydrogen isotope ratios can be derived.66

Interpreting these records is not straightforward, even though the link between wa-67

ter isotope ratios and their drivers is well understood at the laboratory scale. In a closed68

system, heavier isotopes are concentrated in the more condensed phase according to the69

temperature-dependent equilibrium fraction factor (Horita & Wesolowski, 1994; Majoube,70

1971). When diffusive transport is important, the difference in molecular diffusivity be-71

tween isotopologues (Merlivat, 1978b) leads to kinetic fractionation. In the climate sys-72

tem, however, precisely which climatic and atmospheric processes emerge with the strongest73

link to isotopic variations is less clear.74

The drivers of isotope variability in the climate system are not even consistent be-75

tween regions. Towards the poles, oxygen isotopes in ice have been used as an indica-76

tor of site temperature (Brook & Buizert, 2018); whereas tropical rainfall isotopes have77

classically been thought of as being controlled by precipitation amount (Dansgaard, 1964).78

Other important factors include: moisture source (Krklec & Domı́nguez-Villar, 2014);79

monsoon activity (Okazaki et al., 2015); the type of precipitation (Aggarwal et al., 2012);80

the degree of convective organization (Moerman et al., 2013); and trajectories (Deininger81

et al., 2016). In the mid-latitudes, where rainfall is driven by synoptic-scale weather sys-82

tems, water isotopes have also been linked to the type of system. This link is reported83

both in southern Australia (Barras & Simmonds, 2008, 2009; Treble, Budd, et al., 2005),84

and elsewhere (Lykoudis et al., 2010; Farlin et al., 2013; Tyler et al., 2016; Wang et al.,85

2017; Schlosser et al., 2017) and arises because of several factors which systematically86

differ between systems. These factors include: air mass rainfall history, which drives vari-87

ability because heavy isotopes are preferentially lost from the atmosphere; and the rel-88

ative contribution of convective versus stratiform precipitation, which fractionate wa-89

ter isotopes differently (Aggarwal et al., 2016; Guan et al., 2013; Webster & Heymsfield,90

2003). The location of a synoptic system, relative to the collection site, can also play a91

role because of isotopic differences between pre- and post-frontal rain (Aemisegger et al.,92

2015) and, the sensitivity of isotopes to the time which air parcels spend over land (Good93

et al., 2014).94

This study is concerned with southwestern Western Australia (SWWA) in the South-95

ern Hemisphere midlatitudes, where δ18O values in speleothem records (Treble, Chap-96

pell, et al., 2005) have low frequency variations that are likely to be linked to climate,97

but a robust understanding of the mechanism is incomplete. Treble, Chappell, et al. (2005)98

showed that the stable water isotopes measured in SWWA daily rainfall samples, over99

a one-year study period, are associated with rainfall intensity, but other drivers may also100

play a role. It is also unclear whether the intensity dependence holds over longer time101

periods. An understanding of these drivers is particularly important for this region; win-102

ter rainfall here has dropped significantly since the 1970s (Bates et al., 2008) and plac-103

ing this in the context of the region’s long-term natural variability is important for fully104

understanding the change. This is a challenging task because of the region’s strong in-105

ternal variability, demonstrated in climate models (Cai et al., 2005; England et al., 2006),106

combined with a short (∼100 yr) instrumental record (Haylock & Nicholls, 2000).107

The purpose of this paper, then, is to investigate the factors which influence the108

abundance of stable water isotopes (2HHO, H18
2 O) in a modern 13 yr record of SWWA109

rainfall, taking into account day-to-day variations in synoptic types, upstream conditions,110

and site parameters. In particular, our goal is to identify factors which are important111

both at the daily, seasonal, and annual scales. This is most relevant to understanding112

speleothem records from the region, although we expect the measurements to be more113

widely useful.114

The remainder of this paper is organized as follows: Sect. 2 describes the charac-115

teristics of the study region; Sect. 3 introduces the methods used in this study, includ-116

–3–



manuscript submitted to JGR: Atmospheres

ing a Lagrangian trajectory model and statistical methods; Sect. 4 describes the main117

results and illustrates links between water isotopes and their drivers; and Sect. 5 com-118

pares our results with the literature, tests the ability of our interpretation to general-119

ize to another site, as well as summarizing implications for speleothem record interpre-120

tation.121

2 Regional setting122

Southwestern Western Australia (SWWA, Fig. 1), has an average May–October rain-123

fall of up to 850 mm (Bates et al., 2008, Fig. S1), making it a wet and productive region124

in comparison to the arid inland. Most rain falls during these cooler months, and the125

total seasonal rainfall is closely related to the number of fronts which cross the coast,126

which in turn is coupled to the strength and extent of the Hadley-Walker circulation (Rudeva127

et al., 2019). Along the coastline south of Perth, about 50% of winter rainfall is asso-128

ciated with fronts, which can be accompanied by thunderstorms (Pepler et al., 2020),129

20% with cutoff lows (low pressure systems formed at upper tropospheric levels), and130

the remainder with warm troughs and other synoptic systems (Pook et al., 2012). Fur-131

ther inland, the proportion of frontal rainfall is lower, and the climate is dryer. Other132

studies, although differing in how synoptic systems are defined (Hope et al., 2014), have133

generally classified rainfall-bearing systems into similar synoptic types (Raut et al., 2014;134

Hope et al., 2006) and agree on the importance of frontal rainfall during the rainy win-135

ter season. In summer, when the subtropical ridge lies over the region, monthly rainfall136

of 20 mm or less is typical and frontal rainfall makes up a smaller proportion of the to-137

tal. Instead, rainfall comes from a mixture of thunderstorms, extratropical cyclones, (Pepler138

et al., 2020) and warm troughs (Raut et al., 2014). Also more common during summer139

are the rare, but potentially extreme, events from ex-tropical cyclones (Foley & Hanstrum,140

1994).141

As well as having a dramatic seasonal cycle, the region’s rainfall has changed on142

interannual to decadal timescales. Since 1970, the water inflow to Perth’s dams has de-143

creased by half (Power et al., 2005), due to the combined effect of reduced winter rain-144

fall and increased evaporation, and the rainfall intensity distribution has shifted so that145

light rainfall contributes to a larger fraction of the total (Philip & Yu, 2020). A num-146

ber of studies, reviewed by Dey et al. (2019), show the rainfall decrease, in winter, is as-147

sociated with a change in regional circulation including a poleward shift in westerly winds.148

The resulting decrease in the frequency of strong fronts (Raut et al., 2014) has been re-149

lated to a significant warming of the Southern Hemisphere troposphere south of 30◦S fol-150

lowed by a decrease in the strength of the jetstream, which, in turn, decreases the in-151

stability and makes the formation of synoptic disturbances less likely (Frederiksen & Fred-152

eriksen, 2007). This is in agreement with a recent study by Lucas et al. (2021), who de-153

scribed a reduction in the intensity of the upward midlatitude circulation branch in the154

Southern Hemisphere at 30◦S. Climate model projections indicate that the drying trend155

will continue (Bates et al., 2008; Raut et al., 2016).156

There are several approaches for determining climate variability before the instru-157

mental record. Changes in rainfall have been inferred from distant measurements of snow158

accumulation (Zheng et al., 2020), which is possible because of an anticorrelation between159

SWWA May–October rainfall and snowfall at Law Dome, Antarctica (van Ommen & Mor-160

gan, 2010). Speleothem records, an alternative in situ climate proxy, are found in caves161

which develop in Tamala Limestone (Geoscience Australia & Australian Stratigraphy162

Commission, 2017), an eolian carbonate deposited in the Middle to Late Pleistocene, ∼10–163

250 ka before present (Smith et al., 2012). Tamala Limestone is extensively distributed164

along several hundred kilometers of the Western Australian coastline (Fig. 1). Meanwhile,165

groundwater from the confined aquifers of the Perth Basin (Priestley et al., 2020) has166

been interpreted as a low-resolution record of infiltration. Both speleothem and ground-167
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Figure 1. Southwestern Western Australia (SWWA) and locations referenced in the text

with: the distribution of Tamala Limestone (a karstic eolianite that occurs along the coast; Geo-

science Australia, 2012); land cover (Paget, 2008); and annual mean rainfall (Australian Bureau

of Meteorology product IDCJCM004).

water records would benefit from a better understanding of the climate drivers of sta-168

ble water isotopes.169

3 Methods and data170

3.1 Rainfall sampling171

Rainfall samples were collected from the Calgardup Cave visitors center within a172

forested nature reserve 23 km from the coast (34.0499◦S, 115.0246◦E, 70 m ASL, Fig. 1).173

Samples were collected in a rain gauge consisting of a 203 mm diameter circular funnel174

draining into a graduated cylinder. The top of the rain gauge was approximately 0.3 m175
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above the ground and within a small clearing; nearby vegetation was kept clear of the176

gauge. The gauge was checked daily at 0900 local time (0100 UTC) and on days with177

more than 2 mm of rainfall a sample was collected by filling a 12 ml amber glass bottle178

completely to the rim. The sample bottle was sealed using a polypropylene lid with Teflon179

tape placed around the thread to improve the seal. Samples were kept refrigerated un-180

til analysis. For this study, measurements were included from the years 2006-18 to avoid181

including partial years. Occasionally, observers sampled rainfall on days with < 2 mm182

of rainfall, and these samples were excluded from analysis. In addition, one outlier was183

excluded. This was recorded on 21 April 2010 with an anomalously high δ18O of -1.2h184

with 52 mm of rainfall, compared to an expected value of about -5h for this amount of185

rainfall. Three rain-days later a sample was anomalously low (-5.0h with 4.1 mm of rain-186

fall), so it is possible that samples were mislabeled.187

Isotopes are reported in terms of the isotopologue ratios, R, of oxygen–18 (H18
2 O/H2O)188

and deuterium (2HHO/H2O) relative to Vienna Standard Mean Ocean Water (VSMOW;189

IAEA, 2006) in rainwater. We use delta notation where δ = R/RVSMOW−1, with δ18O190

and δ2H representing the two isotopologues. Data up to March 2012 were previously pub-191

lished (Treble et al., 2013). New data reported here were obtained using a Picarro L2120-192

I cavity ring-down spectroscopy analyzer at ANSTO (reported accuracy of ±1.0 h for193

δ2H and ±0.15 h for δ18O. All data were calibrated against in-house standards calibrated194

against VSMOW/VSMOW2 and SLAP/SLAP2.195

Because δ18O and δ2H are strongly correlated, we present δ18O results along with196

deuterium excess (d), a second-order parameter which characterizes the departure of δ2H197

from a linear relationship with δ18O. We follow the most common definition (Dansgaard,198

1964) where199

d = δ2H− 8 δ18O. (1)

Defined this way, d is approximately conserved during Rayleigh distillation, provided that200

the ambient temperature is close to 31◦C and that Rayleigh distillation does not pro-201

ceed too far. Although this is a conventional approach, making our results simple to com-202

pare with other studies, it is nevertheless possible for equilibrium processes to change203

d and other definitions have been proposed, as discussed by Dütsch et al. (2017). At colder204

temperatures, Rayleigh distillation tends to decrease d, as it proceeds because the equi-205

librium fraction factors depend on temperature (Horita & Wesolowski, 1994). Since the206

heavy isotopes are depleted by Rayleigh distillation, the effect is to produce a positive207

correlation between d and δ18O.208

Rainfall isotope data are also presented from the Perth Airport Global Network209

of Isotopes in Precipitation (GNIP) sampling point, 250 km north of Calgardup Cave,210

where rainfall is accumulated monthly for isotopic analysis (Hollins et al., 2018). Ap-211

proximately 7 km further inland from Calgardup Cave, there are two automatic weather212

stations operated by the Australian Bureau of Meteorology (BoM) at sites 9746 (Witch-213

cliffe) and 9547 (Forest Grove). Rainfall measurements are taken from these sites, as well214

as the more distant sites: 9503 (Boyanup) and 9519 (Cape Naturaliste).215

In this paper, the amount of rainfall collected each day is called the ‘rainfall inten-216

sity’, in contrast to ‘rainfall total’ which is the accumulated rainfall over a longer period.217

Where averages of δ18O and d are computed, these are weighted by rainfall amount un-218

less noted otherwise.219

3.2 Source region diagnostic220

Several upstream parameters, chosen because of their potential to affect δ18O and221

d, were diagnosed using two Lagrangian dispersion models. Models were used to com-222

pute a backwards plume, or retroplume, from Calgardup Cave on each day with > 2 mm223

of rainfall. Backwards plumes are a more realistic generalization of backwards trajec-224
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tories, with advantages discussed by (Stohl et al., 2002). Lagrangian diagnostics have225

been widely and successfully used in studies of water isotopes (Pfahl & Wernli, 2008, 2009;226

Sodemann et al., 2008, e.g.) including the use of backwards dispersion models (Good et227

al., 2014). Quantities related to the evaporation source region were diagnosed from the228

source-receptor matrix (Seibert & Frank, 2004) weighted by the instantaneous evapo-229

ration rate.230

In this study, two sets of backwards plumes were generated. The primary set used231

FLEXPART version 9.0 (Stohl et al., 2002) with subgrid convective mixing (Forster et232

al., 2007) and wind fields from the ERA-Interim reanalysis (Dee et al., 2011). A second233

set of backwards plumes was generated using FLEXPART-WRF version 3.1 (Brioude234

et al., 2013), forced with a regional atmospheric simulation generated by the Weather235

Research and Forecasting model version 3.5.1 (WRF Skamarock & Klemp, 2008). The236

WRF model was forced by the CFSR reanalysis (Saha et al., 2010), and configured with237

an outer domain which was large enough to contain the backwards plume for approx-238

imately 120 h. The second set of plumes was used to verify that the main findings could239

be replicated and are not discussed further.240

Three of the uncertainties in the approach are that: the time of rainfall is only known241

to within a 24 h sampling window; the appropriate height for beginning the backwards242

plume has to be estimated; and the error in the plume grows as the model is integrated243

further back in time. After some experimentation, the beginning time was taken from244

the time in the WRF simulation with the largest rain rate, and the starting height was245

taken to be the cloud base in WRF, estimated at the height when relative humidity reaches246

80%. Then, to verify that the model indeed produces a useful diagnostic, we checked the247

correlation between d and humidity relative to saturation at the sea surface tempera-248

ture, hs, as a function of back trajectory length. This is a useful diagnostic because d,249

in vapor, and hs, at the evaporation site, are strongly correlated (Pfahl & Wernli, 2008)250

and we assume that d will be approximately conserved during the conversion of water251

vapor into clouds and then rainfall.252

The correlation between d and hs grows as the backwards plume increases in du-253

ration up to about 48 h, but with no further improvement beyond this point (Fig. S2).254

This indicates that both dispersion models have some skill at determining the evapora-255

tion conditions at the moisture source, at least up to 48 h before rainfall.256

3.3 Synoptic classifications257

On each day, the synoptic type was classified with a Self Organizing Map (SOM),258

using SOM-PAK (Kohonen et al., 1996), following the approach described by Hope et259

al. (2006). Synoptic types were derived from the 1200 UTC mean sea level pressure (MSLP)260

anomaly fields of the ERA-Interim reanalysis on a 0.75◦ latitude/longitude grid in the261

region 90–130◦E, 50–15◦S. The SOM is an unsupervised classification method, produc-262

ing synoptic types that are arranged in a two-dimensional grid. The arrangement of types263

into a grid, where similar synoptic types are arranged close to each other, is the main264

way in which the SOM differs from other statistical classification techniques (Philipp et265

al., 2016). Synoptic classification was only applied to the rainy months (April–October),266

due to the presence of seasonally persistent features in the surface pressure field asso-267

ciated with the meridional movement of the subtropical high pressure ridge. Training268

was performed using data from the years 1979–2018 and grid cells were weighted by area.269

In addition to the SOM classifications, fronts were detected in the reanalysis fields270

and used as an aid to interpret the SOM classifications. The position of fronts was found271

using the wind shift method (Simmonds et al., 2011) based on ERA-Interim 3-hourly 10 m272

wind fields. This is a straightforward method which is applicable to SWWA (Hope et273

al., 2014). It does not produce spurious fronts along the coastline, that are often found274

by a more commonly used methods based on the temperature gradients (Pepler et al.,275
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2020). The wind-based method works well to define meridionally elongated fronts, that276

are mainly cold fronts, and is particularly well suited for the Southern Hemisphere (Schemm277

et al., 2015).278

3.4 Generalized additive models279

To combine information from site measurements, backwards plume, and synoptic280

type we used Generalized Additive Models (GAMs; Wood, 2017). Separate models were281

constructed to predict δ18O and d in daily rainfall samples. GAMs, a generalization of282

linear regression models, allow the relationships between predictor variables and the re-283

sponse variable to be modelled as smooth curves rather than straight lines. In contrast284

to many nonlinear machine learning techniques, a benefit of using GAMs is that the re-285

lationship between predictor and response variables is simple to visualize, making the286

models readily interpretable.287

The GAM implementation was provided by mgcv, a package for R (R Core Team,288

2014). Relationships between predictor and response variables are modelled with penal-289

ized regression splines in which the smoothness is estimated during the fitting process290

using restricted maximum likelihood (REML; Wood, 2011), and models used the iden-291

tity link function. In this implementation, predictors which can be modelled with a lin-292

ear response are modelled that way, and predictors with insufficient explanatory power293

are dropped from the model. The mgcv models can also incorporate categorical variables,294

allowing the synoptic classification to be included within the same framework.295

In this study, we also assessed the importance of terms for explaining the obser-296

vations on different timescales. As well as allowing the models to drop unimportant terms297

(using REML) we followed a procedure where models were constructed term-by-term.298

Beginning with an empty model, each candidate term was tested, and the term result-299

ing in the best performing model retained. The search for the best term was then repeated300

by adding a second term to the model, and so on.301

The metric for assessing model performance was the 13-fold cross-validated mean-302

square error (MSE) applied to daily predictions of δ18O or d. To score a model, one year303

is held out, and the other years are used to train the model, then the MSE computed304

on the held-out year, defined as305

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (2)

where N is the number of observations, yi is the ith day’s observation and ŷi is the ith306

day’s model prediction. This is repeated for all years in the data set, and the MSE is taken307

as the average from all the hold-out sets. During model building, terms are added in the308

order of the greatest reduction in daily cross-validated MSE.309

Once the set of models has been obtained, the cross-validated MSE is then recorded310

for three groupings: 1. the original, daily, data 2. the mean seasonal cycle during the311

rainy months (April–October); and 3. the annual precipitation-weighted means.312

3.5 Modelled precipitation isotopes313

In addition to the diagnostic and statistical models described above, we also use314

output from a prognostic model: a 40 year simulation of IsoGSM (Yoshimura et al., 2008).315

This is one of several atmosphere general circulation models with water isotope tracers316

(Risi et al., 2010; Sturm et al., 2005; Schmidt et al., 2007; Lee et al., 2007, e.g.). IsoGSM317

is forced with the NCEP/DOE Reanalysis and output from the model is available with318

a horizontal resolution of 2.5◦.319
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Figure 2. Rainfall δ18O and δ2H measured in daily samples from Calgardup Cave visitors

centre coloured by the daily rainfall intensity. For comparison, the global average d in precipita-

tion is about 10h.

At other sites, IsoGSM reproduces daily, monthly, and seasonal variability in wa-320

ter isotope ratios, with more skill at simulating δ18O than d (Yoshimura et al., 2008).321

At the daily scale, the low accuracy of the model-produced precipitation (that is, the model322

may not necessarily produce rain on a rainy day) limits the accuracy of predicted wa-323

ter isotopes.324

4 Results325

Our results include a description of the stable water isotopes in Sect. 4.1–4.3 be-326

fore moving onto the more interpretive results from statistical and dispersion models in327

the later sections.328

4.1 Daily δ18O, δ2H, and precipitation329

Over the 13 year monitoring period (2006-18 inclusive, days with ≥2 mm day−1 of330

rainfall) the precipitation weighted mean δ18O was −4.45h, d was 15.4h, and δ2H was331

−20.2h. More than 2 mm of rain fell on an average of 90 days each year, and the mean332

annual precipitation from these events was 839 mm. The daily isotope samples, when plot-333

ted in δ18O ∼ δ2H space, are strongly correlated and lie about the so-called local me-334

teoric water line (LMWL; Fig. 2), with fit parameters given in Tab. S1.335

There is a tendency for intense rainfall to have lower δ2H and δ18O and for low in-336

tensity rainfall to both have high δ18O and, above −2h, depart from the straight line337

trend. Deuterium excess for these high δ18O samples tends towards the d = 0 h line,338

contrasting to the overall mean d. For comparison, the global meteoric water line (GMWL)339

of Craig (1961) lies on the d = 10h line.340

As a result of this tendency for low δ18O samples to have lower d, the slope of the341

LMWL is lower than the GMWL. The parameters for straight-line fits to the daily rain-342

fall samples are shown in Tab. S1, with both ordinary least-squares (OLS) and precip-343

itation weighted least squares (WLS, Hughes & Crawford, 2012). Taking uncertainty into344

account, the slope of the LMWL at Calgardup Cave is indistinguishable from the Perth345
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Airport LMWL, but the there is an offset between the two sites since the intercept dif-346

fers by about two standard deviations.347

As noted in Sect. 3.1, the temperature-dependence of equilibrium fractionation would348

lead to an increase in d with δ18O. Here we see the opposite trend, which is indicative349

of non-equilibrium processes becoming relatively more important during light rainfall.350

4.2 Seasonal cycle351

The composite seasonal cycle of δ18O, d, and P has been published previously for352

Perth (Hollins et al., 2018; Liu et al., 2010) and the seasonal cycle at Calgardup is broadly353

similar (shown later in Fig. 8, but also Fig. S1). The similarity is consistent with iso-354

topes at the two sites being driven by similar factors.355

The δ18O minimum occurs in May or June, earlier than the July peak in rainfall.356

January stands out as an exception with anomalously low–and variable–rainfall δ18O when357

compared with the surrounding months, likely because of the occurrence of rare, but in-358

tense, rainfall events. Deuterium excess, d, also has a strong seasonal cycle which mir-359

rors δ18O, peaking in the rainy months. Unlike δ18O, summer variability is not especially360

pronounced.361

4.3 Annual mean time series362

Rainfall δ18O, aggregated to annual precipitation-weighted averages, follows an over-363

all decreasing trend, which is present at both Calgardup Cave and Perth as well as in364

IsoGSM model output (Fig. 3). From 2009 onwards, however, there is no statistically365

significant trend. Comparison with longer term model output, and earlier data from Perth,366

(Hollins et al., 2018) indicates that 2006-08 were anomalously high, compared to the long-367

term average. The annual-mean d (Fig. 3b) shows similar trends at Perth and Calgardup368

Cave, but the IsoGSM simulations are unable to reproduce the observed trends. There369

is no consistent trend in d if the first three years are excluded.370

On average, annual δ18O values are 0.61h higher at Perth implying a meridional371

gradient in δ18O of 0.29 h per degree of latitude. This agrees with a persistent feature372

of isotope enabled GCMs which simulate a δ18O maximum over the Indian Ocean north373

of Perth, near 30◦S and under the descending branch of the Hadley Cell, with decreas-374

ing values towards the pole (Werner et al., 2011; Lee et al., 2007; Noone & Simmonds,375

2002; Risi et al., 2012). The offset between mean values for Perth and Calgardup Cave376

shows no trend through time, implying that the meridional gradient has remained con-377

sistent over the monitoring period.378

Annual mean departures from the trend are not consistent between sites (Fig. 3a),379

suggesting that δ18O anomalies are related to local processes. At least in part, the low380

correlation between sites is because annual mean δ18O is particularly sensitive to the heav-381

iest events of the year, shown by plotting four similar time series in which the heaviest382

1–4 rainfall events from each year are excluded. Excluding the heavy events shifts the383

mean δ18O higher and, in years like 2015 and 2018, can change annual means from anoma-384

lously low to high. As with any rainfall event, these events will be sampled differently385

by the two monitoring sites (Good et al., 2014), so stochastic variability is a major con-386

tributor to the annual precipitation-weighted mean δ18O. In contrast to δ18O, the in-387

terannual variability in d is not as strongly affected by these intense rainfall events (Fig. 3b),388

so the annual-mean difference between Perth and Calgardup Cave time-series are not389

as sensitive to stochastic variability.390

To examine the factors which drive these long-term changes, and the seasonal cy-391

cle, we analyze the conditions on each rainy day in the following sections.392
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Figure 3. Annual precipitation-weighted mean δ18O and d from Calgardup Cave and Perth.

As well as showing the entire dataset, the annual mean values for Calgardup are also computed

after incrementally leaving out the four largest daily rainfall accumulations, illustrating the sen-

sitivity of interannual δ18O variations to a few events. Results from the IsoGSM isotope-enabled

general circulation model are also shown.

4.4 Synoptic systems393

Self organizing maps (SOMs) were used to classify synoptic regimes. We identified394

35 synoptic types using MSLP fields from ERA-Interim, and each day was associated395

with one of types shown in Fig. 4. Supplementary interpretation is provided by the frontal396

density and 500 hPa height fields in Fig. S3, and Fig 5 summarizes several observations397

according to synoptic type.398

Although the SOM is not derived directly from frontal information, the location399

of fronts is related to the surface pressure field and the synoptic types are therefore as-400

sociated with front positions. The top two rows in the SOM are most strongly associ-401

ated with the presence of rain-bearing cold fronts directly over SWWA, while the sequence402

around the outside edge of the SOM, A4· · ·A1· · ·E1, tracks the progress of cold fronts403

beginning offshore to the west and moving east across the region. This is a common oc-404

currence, and appears as a path with high transition probabilities in Fig. 5A. Types in405

the top left are more pre-frontal rainfall, while types in the top right are post-frontal.406

Synoptic types away from the top rows are not as strongly associated with frontal407

rainfall (Fig. S3); although fronts are detected they are generally away from SWWA. No-408

tably, the pressure pattern for classes A5, A6 resembles a trough, associated with mois-409

ture transport from the northwest, and A7 is a blend between a trough and cutoff low.410

These three classes, in general, are related to upper-tropospheric processes with fronts411

being detected too far to the west to be responsible for rainfall.412

As shown in Fig. 5 synoptic types are a reasonable predictor of rainfall properties,413

several of which show a strong dependence on SOM classification. In particular, the wettest414

class (A1) has a rainfall probability of 66%, much higher than the driest class with 5%415

probability of rain (Fig. 5d). Rainfall intensity (Fig. 5c) is also sensitive to synoptic type,416

with column A showing the most intense rainfall, especially for classes A5 and A6. Al-417

though these non-frontal classes are associated with heavy rain, and A6 accounts for the418

highest total precipitation, frontal events are responsible for more rainfall overall as they419
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Figure 4. SOM–derived synoptic types, with mean-sea-level pressure and vertically-integrated

water vapor transport.
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Figure 5. Rainfall, isotope, and SOM properties, 2006-18, by synoptic type. Panels show:

A relative transition probability (longer arrows show more likely transitions); B accumulated

precipitation; C rainfall intensity (mean rainfall per day); D probability of rainfall; E arithmetic

mean δ18O; F arithmetic mean deuterium excess, d. Colors are used to highlight patterns in

the data, the number of days in each class ranges from 51 to 101, and cells with less than 10

observations are left blank in panels C, G, and H.
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occupy a larger number of classes. Based on manual classifications, Pook et al. (2012)420

also found that fronts were responsible for most winter rainfall.421

Water isotopes show a weaker dependence on synoptic type than precipitation it-422

self, but a relationship nevertheless exists (Fig. 5e and 5f). For δ18O, frontal rainfall shows423

a trend towards lower δ18O and higher d after the passage of the front, seen in the top424

row of these figures. Another pattern revealed by the SOM is that non-frontal rainfall425

is lower in δ18O. Trends in d (Fig. 5f) are in the opposite direction, with the non-frontal426

class A5 having higher d than the frontal rainfall classes A1-A3.427

These observations are consistent with other studies (Treble, Budd, et al., 2005;428

Barras & Simmonds, 2008) which have demonstrated, in the Australian region, that dif-429

ferent types of synoptic systems can have distinct isotopic signatures, an effect which is430

replicated at sites elsewhere in the world (Baldini et al., 2010; Scholl et al., 2009). In par-431

ticular, the anomalously low rainfall δ18O observed from intense low pressure systems432

lying off the eastern coast of Australia (Crawford et al., 2017) is a similar finding to the433

low δ18O and intense rainfall seen in classes A6 and A7.434

The SOM analysis, while showing an association between synoptic types and iso-435

topes, does not by itself identify the reasons behind the association. Furthermore, although436

there is a relatively large difference between frontal and non-frontal rainfall, δ18O dif-437

fering by 1–1.7h, this difference is not large enough to explain the year-by-year variabil-438

ity (Fig. 3). Year-by-year changes can reach 1h, meaning that rainfall would need to439

switch from almost exclusively frontal rainfall to non-frontal to explain the changes in440

annual mean δ18O, and this is not something which is observed. In the next section, up-441

stream conditions, diagnosed from dispersion modelling, are combined with site-based442

observations and synoptic types to gain more insight into the underlying processes.443

4.5 Generalized additive model for δ18O444

Generalized additive models (GAMs) trained to predict daily rainfall δ18O are shown445

in Fig. 6. These curves are the model’s ‘smooth terms’, that is the smooth functions ex-446

pressing the relationship between predictor variables and the response variable. Two mod-447

els are shown, one with synoptic types (trained on data from the wet months, Apr–Oct)448

and another without synoptic types (trained on data from the entire year). In this fig-449

ure, smooth terms are ordered by their explained deviance (Wood, 2006); a measure of450

importance for predicting daily δ18O. Metrics for judging the importance of terms are451

shown in Fig. 7.452

For predictions of daily δ18O, the most important smooth terms in this model are:453

the locally-recorded rainfall intensity, P ; the mean rainfall intensity along the retroplume,454

P ; and then source humidity, hs relative to the sea surface temperature. Local rainfall455

intensity is the best predictor of daily δ18O, the seasonal cycle, and year-to-year vari-456

ability (Fig. 7), it follows a relationship which is close to δ18O ∝ log (P ). Adding the457

retroplume rainfall intensity improves the model’s fit to interannual variability, by al-458

most as much as P , but does not affect its fit to the seasonal cycle. The third term, hs459

is defined as the humidity in the evaporation region, within the lowest model level, rel-460

ative to the sea surface temperature, and weighted by evaporation rate. Source humid-461

ity is important for the δ18O seasonal cycle, but not interannual variability. Indeed, the462

inclusion of hs increases the model error for the prediction of interannual variability.463

Remaining terms do not make a major difference to the model’s predictive abil-464

ity at interannual scales (Fig. 7). Nevertheless, the starting latitude and longitude of the465

plume, along with the source temperature and retroplume overland fraction, are detected466

in the model as having an influence on δ18O, and are discussed further in Sect. 5.467
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Figure 6. Categorical and smooth terms for a GAM predicting daily δ18O. The categorical

term is shown first, then smooth terms are ordered from the highest to lowest explained deviance.

Error bars or shading indicates the 95% confidence interval. Upward ticks on the x-axis of each

plot indicate measurements and black dashed lines show other relationships: B logP ; D kinetic

fractionation (Merlivat & Jouzel, 1979; Benetti et al., 2014); E δ18O latitudinal variation in

Indian Ocean surface waters (LeGrande & Schmidt, 2006); G equilibrium fractionation factor

dependence on temperature (Horita & Wesolowski, 1994).
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Figure 7. Prediction accuracy of GAM: A δ18O predictions; B like A, but the additional

‘synoptic type’ predictor; C d predictions; D like C, but with synoptic types. Plots show the

improvement in the cross-validated mean squared error (MSE) compared with a simpler model

without that term, starting from a model which predicts the mean. MSE is normalized the by

MSE of the ‘constant value’ model. In each category, three precipitation-weighted groupings are

considered: 1. the ungrouped daily data; 2. monthly groups for a composite year; and 3. annual

totals.
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bootstrapping daily values.

Despite being statistically-significant, including synoptic types as a predictor vari-468

able does not appreciably improve the overall model performance (Fig. 7), suggesting469

that synoptic types contain redundant information already contained in the smooth terms.470

The shape of the smooth terms is also insensitive to the presence of synoptic types, as471

seen in Fig. 6 where the GAM with synoptic types has similar smooth terms to the GAM472

without. There are also similarities in the patterns of Fig. 6a, which show the effect of473

synoptic type marginalized for the effect of other variables, to the patterns in Fig. 5e which474

showed the mean δ18O in each synoptic type.475

A comparison of GAM predicted oxygen isotopes with observed timeseries is shown476

in Fig. 8a and 8b showing that the GAM successfully tracks δ18O interannual variabil-477

ity and the seasonal cycle.478

In summary, the combination of the GAM analysis with synoptic types supports479

the conclusions of earlier studies which have found that isotopic composition is related480

to synoptic types, but it also shows that there are underlying continuous variables which481

explain the isotopic composition, for this region, without needing to incorporate synop-482

tic types. The continuous predictor variables have the advantages that they can be used483

in all months of the year and are less likely to cause over-fitting.484

4.6 Generalized additive model for deuterium excess485

Deuterium excess, d, differs from δ18O both in terms of which predictors are im-486

portant, and how well a GAM trained on daily data is able to predict interannual vari-487

ability. As with δ18O, our approach was to train a GAM using daily data and then use488

this model to make predictions aggregated over longer periods. Next, another GAM was489

trained with the additional predictor of synoptic types.490

The leading predictor of daily d is source humidity, hs relative to saturation at the491

sea surface. It is followed by rainfall intensity, P . Compared with hs, P only weakly im-492

proves the MSE at the daily scale (Fig. 7c) but it is the term which improves the annual-493
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mean predictions the most as well as contributing to a better prediction of the seasonal494

cycle.495

The effect of adding synoptic types to the d model, which also means restricting496

the model to rainy months, is shown in Fig. 7d. Synoptic type, although statistically im-497

portant according to the REML test, fails to improve the cross-validated MSE at the daily498

or interannual time scales. As with δ18O, the information introduced to the model by499

the synoptic types is redundant, and harms the cross-validated performance of the model,500

possibly because the large number of categories promotes over-fitting.501

Of all the factors in this analysis, however, it is the source humidity which stands502

out. It is strongly linked to d at the daily scale, it is apparently the main driver of the503

observed seasonal cycle, but it produces a very poor model of interannual variability—504

one which has a larger error than a model without hs. When plotted alongside obser-505

vations, the annual mean predictions of d (Fig. 8c) show that, in contrast to the case of506

δ18O, the GAM is unable to follow the overall increasing trend in observed rainfall d, even507

though it is largely successful at reproducing the seasonal cycle. The GAM predictions508

start above the observations and then are biased low by the end of the observation pe-509

riod (model residuals are shown more clearly in Fig. S4). An explanation for this appar-510

ent contradiction is that there is a missing term which is correlated with both hs and511

δ18O at the annual-mean timescale.512

5 Discussion513

5.1 Physical processes driving δ18O514

The process with the strongest link to rainfall δ18O was the rainfall intensity, both515

that measured at the site (P ) and along the retroplume (P ). Although P and P are closely516

related conceptually, they are only moderately correlated (R = 0.33) and it is possi-517

ble that both are imperfect proxies of the same underlying factor driving isotopic frac-518

tionation, such as the proportion of water remaining in the system (Lee & Fung, 2008)519

in analogy with Rayleigh distillation, or the relative importance of moisture convergence520

versus local evaporation, which has been described in steady-state over an idealized trop-521

ical ocean (Moore et al., 2014).522

Rainfall intensity, that is rainfall measured each day, has a stronger association with523

δ18O than does total monthly precipitation, in agreement with Fischer and Treble (2008)524

who studied monthly δ18O data from Perth and a short record of daily measurements525

from Cape Leeuwin. Also similar is that Fischer and Treble (2008) found a nonlinear re-526

lationship between precipitation and δ18O, using δ18O ∝ P
1
2 . In our data set, due to527

scatter, δ18O ∝ P 1
2 fits the data almost as well as δ18O ∝ log(P ), and we plot the log528

form mainly out of preference because of its appearance in Rayleigh distillation (Eriksson,529

1965) and also the use of a log transformation when δ18O is regressed against moisture530

residence time, τ . Aggarwal et al. (2012) found that δ18O ∝ τ = log(Q/P ) where Q531

is the total column water vapor and P is the long-term mean precipitation rate. In our532

data, variability in Q is small enough that log(P/P0) is strongly correlated with τ (R =533

−0.94, Q from ERA-Interim) and there is no advantage in using τ .534

Source humidity, hs affects δ18O through kinetic fractionation. The relationship535

determined by the GAM is similar to the expression for kinetic fraction used by Benetti536

et al. (2014), as shown by the dashed line in Fig. 6d. In contrast, the relationship be-537

tween latitude and δ18O (Fig. 6e) does not follow the meridional variation in Indian Ocean538

surface water δ18O (LeGrande & Schmidt, 2006). Fischer and Treble (2008) also reported539

a difference in δ18O between airmasses travelling equatorward or poleward, but our re-540

sults suggest that isotopic differences in the source waters are not responsible. Instead,541

there are multiple co-varying parameters which may obfuscate the direct effect of source542

water δ18O; latitude is strongly correlated with the oceanic source temperature (R =543
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0.91), wind speed (R = −0.61), and humidity (R = 0.48). In addition, there is a strong544

and persistent meridional gradient in mean atmospheric δ18O, with higher values towards545

the pole, and this is a large driver of isotopic variability in idealized simulations (Dütsch546

et al., 2016).547

The so-called continental effect (Winnick et al., 2014), often appears as an impor-548

tant term driving δ18O (Good et al., 2014, e.g.). Here, the fraction of the retroplume over549

land, fl (calculated after 3 h of travel), has the expected sign making our results consis-550

tent with isotopic depletion driven by rainout. But, on the whole, fl is of only minor im-551

portance because the vast majority of trajectories do not pass over land before arriving552

at the rainfall site. Because of the lack of overland trajectories in the data, it is unlikely553

that the GAM has been able to learn an accurate relationship.554

Also present in the GAM is the evaporation-weighted sea surface temperature, Ts.555

As indicated by the dashed line in Fig. 6G, this term is consistent with the temperature556

dependence of equilibrium fractionation of water vapor from the ocean surface (Majoube,557

1971; Horita & Wesolowski, 1994), though the presence of latitude in the model (strongly558

correlated with Ts) means that this relationship may be distorted.559

Notably absent from the GAM is the planetary boundary layer (PBL) humidity560

on the day of rainfall collection (Fig. 6H). This parameter has the potential to affect the561

degree of rain droplet re-evaporation, and therefore rainfall isotopes, and was the lead-562

ing parameter affecting δ18O at an arid inland site in Eastern Australia (Crawford et al.,563

2017). Both sites are at a similar latitude, so Calgardup Cave’s location on the coast is564

likely to be the reason for the absence of a link between PBL humidity and δ18O.565

5.2 Physical processes driving deuterium excess566

The strongest predictor of daily d is the source humidity, hs, although the relation-567

ship between d and hs shows a lower slope (−30 h) than seen in studies of water vapor;568

the dashed line in Fig. 9b shows a typical slope of −54 h (Pfahl & Sodemann, 2014).569

There are three potential explanations for this. First, this difference may be due to un-570

certainty in the hs estimate. The standard deviation of the difference between FLEX-571

PART and FLEXPART-WRF derived values, accounting for part of the uncertainty, is572

0.04 which is large enough, based on tests with synthetic data, to reduce the slope of the573

line of best fit. Second, low humidity air during rainfall (small h) causes strong re-evaporation574

of rainfall (Risi et al., 2008). At this coastal site, h is correlated with hs (R = 0.33),575

so the two effects together act to reduce the observed slope between hs and d. Third,576

the slope between d and hs may be a genuine trait of the source region. Steen-Larsen577

et al. (2014) report a flatter slope for the d ∼ hs relationship, with a slope of −42.6 h,578

and Aemisegger and Sjolte (2018) demonstrate the d ∼ hs slope varies by region. Even579

accounting for regional variation however, −30 h is sufficiently outside the range of other580

observations that a combination of the other factors too, hs uncertainty or h ∼ hs cor-581

relation, is likely to be important.582

The effect of sea surface temperature, Ts, and wind speed, u10, have been inves-583

tigated in the past and their importance is still debated. Uemura et al. (2008) reported584

a positive correlation between d and Ts in field measurements, in agreement with Bonne585

et al. (2019), whereas Pfahl and Sodemann (2014) argue that the Ts is of minor impor-586

tance compared with hs. Figure 9d shows that our data do indicate a positive correla-587

tion between d and Ts for Ts < 20◦C. The reversal at higher temperatures is physically588

implausible and likely to be an artifact caused by the sparse data at higher temperatures589

and correlation between Ts and latitude.590

The relationship between u10 and d is weak in the GAM, and arguably inconsis-591

tent with the widely-applied results of Merlivat (1978a), in which kinetic fractionation,592

and hence d in evaporation, is lower at high wind speeds. In their parametrization, low593
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wind speeds below about 7 ms−1 correspond to a smooth regime (and higher d) whereas594

high wind speeds are modelled by a rough regime (with lower d) (Merlivat & Jouzel, 1979).595

The u10 relationship here is too weak to match the parametrization, it disappears from596

the model when synoptic types are included, and there is little evidence from other stud-597

ies of the Merlivat (1978a) parametrization being directly applicable in the field. Benetti598

et al. (2014) present data which lies between the rough and smooth, Steen-Larsen et al.599

(2014) find no statistical difference in d in low versus high winds, and Bonne et al. (2019)600

also find there to be no effect on d from wind speed, with their data being best explained601

by the rough regime of the Merlivat and Jouzel (1979) model. Considered in the con-602

text of these other studies, then, the existence of a strong relationship between d and603

u10 seems unlikely.604

5.3 Generalizability of the model605

As a test of the model’s performance away from the observation site, predictions606

of δ18O for Perth Airport were computed based on observed daily rainfall and FLEX-607

PART backwards plumes terminating at Perth Airport on each rain day. GAM predic-608

tions were clipped to the range of observations to prevent extrapolation errors. In par-609

ticular, on days with less than 2 mm of rainfall δ18O was set to the same value as if 2 mm610

of rainfall was observed. This was necessary because many of the monthly accumulations611

included a nontrivial contribution from days with light rainfall.612

When compared with monthly δ18O observations, the GAM performed well dur-613

ing the wet months but had large errors during the dry months (Fig. S5). On some oc-614

casions, this was because of highly depleted rainfall sourced from the ocean off the north-615

west coast of Western Australia which had made a long transit over land. In general, the616

failure of the model to perform well during the summer months can be attributed to lack617

of summer rainfall in the training data. The stronger influence of tropical processes in618

summer, on Perth rainfall, may also play a role.619

When aggregated to annual data, the poor performance during the dry months be-620

comes inconsequential and the model generalizes well; performance in Perth shows a sim-621

ilar predictive skill to Calgardup Cave (Fig. S6). Furthermore, the GAM is able to re-622

produce the offset in mean δ18O observed between Perth and Calgardup Cave. To re-623

produce the offset, the model needs to include rainfall intensity, rainfall along the retro-624

plume, source humidity, and source latitude. This suggests that a combination of these625

variables is responsible for the observed offset, but it also turned out that rainfall inten-626

sity, being responsible for about 10% of the offset, is not the main driver of the offset.627

The good performance of the model for the Perth observations makes it more promis-628

ing for the interpretation of longer-term data from the coastal zone between Calgardup629

and Perth.630

For deuterium excess, GAM predictions at Perth Airport show a similar error to631

the Calgardup Cave timeseries tending to have a low bias at the start of the observation632

period and a high bias towards the end.633

5.4 Interpretation of water isotopes in paleoclimate studies634

Based on data from the 13 year observing period, this study confirms that rain-635

fall intensity is a primary driver of δ18O in precipitation. The nonlinear relationship can636

be approximated as637

δ18O =

{
α log (P/P0) + β, P ≥ 2 mm day−1

−2.05h, P < 2 mm day−1,
(3)

where P0 = 1 mm day−1, α = −2.85h, and β = −1.19h. Importantly, years with638

more intense rainfall are not necessarily wetter overall. In our data, rainfall intensity (pre-639

cipitation weighted) has a weak correlation with annual rainfall (R = 0.23).640
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Figure 10. Speleothem MND-S1 from Moondyne Cave δ18O (Treble, Chappell, et al., 2005)

compared with A rainfall δ18O inferred from Boyanup rainfall intensity, B Boyanup annual rain-

fall, C rainfall δ18O inferred from Cape Naturaliste rainfall intensity, D Cape Naturaliste annual

rainfall. A lag of 12 yr and smoothing with a 5 yr rolling mean has been applied to the inferred

δ18O timeseries for comparison with the lower resolution speleothem record which contains both

analytical smoothing and attenuation due to karst flow paths. The y-axis for annual total rainfall

is inverted to facilitate comparison with the speleothem d18O values.

In Fig. 10 we use 100 yr records of daily rainfall, along with Eq. 3, to hindcast the641

δ18O timeseries at Boyanup and Cape Naturaliste and compare the δ18O hindcast to a642

speleothem record from Moondyne Cave to the south (Treble, Chappell, et al., 2005).643

Although not the closest observations stations to the cave where the speleothem was col-644

lected, these are high quality stations (Lavery et al., 1997) in the Australian network (lo-645

cations shown in Fig. 1) meaning they are sites with long observation records and have646

been screened for spurious trends. To generate the hindcast, we used only days marked647

in the record as single-day accumulations, and checked for a weekday dependence to avoid648

some known quality problems in the Australian record (Viney & Bates, 2004).649

Although taking only the leading predictor into account, rainfall δ18O inferred from650

the Boyanup record displays an intriguing similarity to the Moondyne Cave record, par-651

ticularly the period of relatively higher speleothem δ18O from 1930–55 and the upwards652

shift from the mid 1970s. There is also a marked similarity when rainfall intensity is taken653

from the Cape Naturaliste record, although with a divergence during the 1930–55 pe-654

riod. The disagreement which remains may be the result of nonlinear filtering caused by655

karst hydrological processes, which has only been accounted for crudely here by a com-656

bination of temporal averaging and introducing a time lag. Indeed the time lag, of 12657

or 7 years, is longer than suggested by the field evidence which perhaps indicates that658

uncertainties in the chronology play a role (Nagra et al., 2016, report a 5 year mismatch659

between the counting method and the documented history of the speleothem). Another660

complication is that changes in rainfall intensity, inferred from the instrumental record661
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(Philip & Yu, 2020), are not spatially smooth and, as demonstrated in Fig. 3, even at662

the annual scale the δ18O timeseries is sensitive to the heaviest events which would im-663

pact sites differently, even over short spatial scales.664

Supporting the interpretation that rainfall intensity is key to determining δ18O, on665

daily through to decadal timescales, the trends in annual rainfall accumulations show666

a weaker relationship with δ18O (Fig. 10c and 10d). Post 1970, for the Boyanup hind-667

cast, a drying trend coincides with a upwards shift in speleothem δ18O. This may be a668

sign that the interaction between karst hydrology and δ18O changes as the system dries669

out, but needs detailed investigation before making firm conclusions.670

The link between δ18O and rainfall intensity makes δ18O more sensitive to extreme671

events than would otherwise be the case. In particular, δ18O is more sensitive to extreme672

events than rainfall accumulations, and therefore is not as smooth spatially. This has673

implications for the degree of agreement that can be expected between nearby sites, es-674

pecially over periods of a few decades, because the heaviest few events each year will be675

sampled differently at different sites. A sustained change in intense rainfall events could676

be further amplified by karst flowpaths as intense rainfall events are likely to be more677

effective at initiating recharge of karst stores (Treble et al., 2013).678

In the case of deuterium excess, the interpretation of multidecadal records in this679

region continues to be hampered by an incomplete understanding of governing processes.680

The strongest predictor on a daily scale, source humidity, makes model predictions worse681

on an interannual scale. Out of the predictors that we considered, rainfall intensity, mea-682

sured at the collection site but not along the retroplume, has the strongest effect on d.683

If this relationship holds over longer timeseries, it would drive an anticorrelation between684

d and δ18O. Such an anticorrelation was indeed reported by Priestley et al. (2020), in685

a 35 ka groundwater record, and supports the interpretation by Priestley et al that vari-686

ations in groundwater isotopes through time, for the Perth Basin, are driven by precip-687

itation intensity.688

6 Conclusions689

Water isotopes in precipitation were measured daily over thirteen years (2006–18).690

Daily variability was found to be superimposed on weaker low-frequency trends driven691

by anomalous conditions in the first three years of monitoring: δ18O decreases by 0.06±692

0.03 hyr−1 and d increases by 0.24±0.07 hyr−1, and trends tend to weaken or reverse693

in the second half of the monitoring period. The factors which drive δ18O and d vari-694

ability, on a range of timescales, were investigated using generalized additive models (GAMs),695

with upstream conditions diagnosed with backwards dispersion modelling and synoptic696

types determined using a statistical method. Although water isotopes demonstrated an697

association with synoptic types, these were ultimately not a strong driver of variability698

because, we infer, the synoptic types contained redundant information which was bet-699

ter expressed by continuous values derived from retroplume diagnostics.700

Daily variability in δ18O was driven primarily by rainfall intensity, both at the mea-701

surement site and upstream, in agreement with the main finding of Fischer and Treble702

(2008), which was based on a smaller data set. The δ18O seasonal cycle was driven by703

seasonal changes in both rainfall intensity and source humidity. The relationship between704

rainfall intensity, at a daily scale, and δ18O was robust. It applied at both the primary705

measurement station, Calgardup Cave, and to monthly accumulations from Perth Air-706

port. The relationship also appears to be robust over longer time periods, as shown by707

projecting the δ18O ∝ log(P/P0) relationship back through the ∼ 100 yr period with708

rainfall observations and comparing to a speleothem record. Because of the relationship709

between rainfall intensity and δ18O, annual accumulations of δ18O are more sensitive to710

the heaviest rainfall events each year than annual accumulated rainfall is, which has im-711
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plications both for the interpretation of δ18O records and for how much nearby sites can712

be expected to agree with each other.713

Deuterium excess, d, differed from δ18O in several respects. On a daily scale, vari-714

ability was driven primarily by hs, although with a flatter slope than reported in stud-715

ies of water vapor. The d seasonal cycle was also well explained mainly by hs, with a weaker716

contribution from rainfall intensity. In contrast, year-to-year changes in hs failed to ex-717

plain the interannual signal in annual mean d, with the implication that multi-decadal,718

or longer, records of d should not be interpreted as a proxy record of hs in this region.719

Furthermore, the link between rainfall intensity and d was too weak to drive the observed720

changes in d, meaning that the driver for low-frequency changes in d was not fully ex-721

plained. Further investigation of d is warranted; d is not as sensitive as δ18O to extreme722

events, there is a low-frequency signal in the observations at both Calgardup Caves and723

Perth which may be climate-related; meaning that the d signal carries information which724

supplements δ18O.725
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