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Key points 8 

• Arctic mixed layer salinity seasonality is driven by a 1D balance between sea ice 9 

freshwater flux, mixing and entrainment at its base. 10 

• On the shelves, the horizontal advection of freshwater from the river runoff modulates 11 

significantly the 1D balance. 12 

• The largest variations are found within 100km of the sea ice edge, where all the processes 13 

at play are intensified. 14 

 15 

Abstract 16 

The processes driving the seasonal variability of the mixed layer salinity in the Arctic 17 

Ocean are investigated using a simulation performed with regional ocean – sea ice model at high 18 

resolution. While the seasonal variations of the mixed layer depth remain small, in particular 19 

under the perennial sea ice (Ο(30m)), the mean salinity of the mixed layer varies largely, with a 20 

seasonal cycle as high as 3 pss. On the shelves, where the sea ice is seasonal, the mixed layer is 21 

much fresher but exhibits a seasonal cycle with a similar amplitude. Overall, the seasonal 22 

variability of the mixed layer salinity results largely from a 1D vertical balance between the 23 

freshwater flux at the surface arising from the sea ice melt and freezing processes, and vertical 24 

mixing and entrainment occurring at the base of the mixed layer. The largest variations are found 25 

in summer, when the mixed layer is the thinnest. Over the shelves, this simple 1D balance is 26 

complexified due to the role of advection and river runoff that can locally affect the mixed layer 27 

depth and salinity. Interestingly, the largest variations are found less than 100km on each side of 28 

the sea ice edge, where all the processes affecting the mixed layer are amplified. This suggests 29 

the need to better observed and understand the ocean-sea ice-atmosphere exchanges in these 30 

regions. 31 

 32 

  33 

 34 

Plain language summary 35 

In this study, we use results of a numerical model run at high resolution to examine the 36 

seasonal cycle of the ocean surface conditions in the Arctic basin. In the ice-covered Arctic, the 37 

seasonal variations of the salinity of the surface layer are largely driven by the freezing and 38 



manuscript submitted to Journal of Geophysical Research: Oceans 

3 
 

melting cycle of sea ice, and modulated by the changes of mixed layer depth that tend to mix and 39 

entrain saltier waters found below the mixed layer. Additionally, the advection of fresh water, 40 

resulting largely from the local freshwater inputs from the rivers along the coast, can modulate 41 

the salinity of the mixed layer. We find an amplified seasonality of the mixed layer depth and 42 

salinity less than 100km on each side of the sea ice edge, suggesting a need to better monitor 43 

these regions where observations are currently particularly sparse.   44 

 45 

Keywords 46 

Arctic Ocean; Mixed Layer; Salinity; Seasonal Ice Zone; Sea Ice Edge. 47 

 48 

1 Introduction 49 

In the Arctic Ocean, the temporal and spatial variations of salinity determine the upper 50 

the density and stratification (Carmack, 2007; Johnson et al., 2012; Stewart and Haine, 2016). 51 

Such a salinity-driven stratification is characteristic of the polar regions and is required for sea 52 

ice to form (Carmack, 2007). Another well-known characteristic of the Arctic region is indeed 53 

the presence of sea ice, which has drastically declined of the past decades in response to the on-54 

going climate change. Indeed, since 2003, the Arctic Ocean has lost one third of its winter sea ice 55 

volume, due to the decrease in coverage and the thinning of the multiyear ice (Kwok, 2018; 56 

Kacimi and Kwok, 2022), so that the Arctic  is entering a seasonal sea ice regime associated with 57 

an intensified water cycle (Kinnard et al., 2008; Haine and Martin, 2017), also associated with an 58 

intensification of melting and freezing phases. These changes are particularly pronounced on the 59 

Arctic shelves (Stroeve and Notz, 2018; Arthun et al., 2021). We anticipate that the first effects 60 

of the changes in sea ice condition will be seen on the seasonal cycle of the Arctic Ocean mixed 61 

layer salinity (MLS) that is largely driven by the seasonality in sea ice. 62 

Peralta-Ferriz and Woodgate (2015) have performed a comprehensive description of the 63 

Arctic Ocean mixed layer temporal and spatial variability using all available in-situ 64 

measurements. They have reported that the successive phases of sea ice melt and freezing induce 65 

a strong variability in mixed layer salinity and depth. During spring and summer, sea ice melt 66 

freshens and stratifies surface waters, resulting in a shoaling of the mixed layer. The mixed layer 67 
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depth (MLD) remains shallow as long as sea ice persists and limits wind-driven mixing. During 68 

winter, brine rejection salinizes the surface layer, inducing convection that drives a deepening of 69 

the mixed layer (Lemke and Manley, 1984; Toole et al., 2010). Overall, the Arctic Ocean MLD 70 

exhibits a large spatial variability. It can be particularly shallow, with records shallower than 10 71 

meters in the Beaufort Sea and Canadian Basin during summer, while it reaches 170 m on 72 

average in the ice-free parts of the Barents Sea (Peralta-Ferriz and Woodgate, 2015). 73 

In the Arctic Ocean, because of the peculiar stratification, heat can be stored within the 74 

mixed layer (the amount is then depending on the ice-free period duration; Stroeve et al., 2014) 75 

or just below the mixed layer, forming a near-surface temperature maximum whose heat can be 76 

stored for a winter and brought back to the mixed layer (Steele et al., 2011; Jackson et al., 2012; 77 

Timmermans, 2015; Smith et al., 2018), possibly modulating sea ice formation (Kawaguchi et 78 

al., 2014).   79 

In addition to its large seasonality, the Arctic surface salinity also presents large spatial 80 

variations. At the Arctic gateways, warm and salty water from the Atlantic enter the Arctic 81 

through Fram Strait and the Barents Sea, while relatively fresh water from the Pacific enters 82 

through Bering Strait and the Chukchi Sea. Observations have revealed an increase of the 83 

volume of water coming from the Pacific and the Atlantic over the past 30 years, under a process 84 

named borealization (Polyakov et al. 2020). This process is associated with a weakening of the 85 

cold halocline that favors convection of warm Atlantic water during winter sea ice formation 86 

(Polyakov et al., 2020). In addition to the melting/freezing processes, the atmospheric forcing 87 

also strongly affects the Arctic Ocean mixed layer dynamics as it transfers momentum to the 88 

ocean, potentially modulated by the presence of sea ice (Rainville et al. 2011).  89 

Although 1D vertical processes may provide a robust first order dynamical balance of the 90 

mixed layer in most of the Arctic (Peralta-Ferriz and Woodgate, 2015; Dewey et al, 2017), this 91 

balance does not provide a complete understanding of mixed layer variability (Toole et al., 92 

2010). Lateral processes, such as meltwater advection or dense water flowing under lighter 93 

water, may induce restratification from submesoscales to regional scales (Timmermans et al., 94 

2012; Crews et al., 2022) and complexify the interpretation of MLS variability. Moreover, 95 

previous studies have revealed the strong submesoscale dynamics in the vicinity of the sea ice 96 

edge, enhanced by the mixed layer instabilities induced by meltwater fronts (Manucharyan et al., 97 
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2017). The wind may also drive some spatial variations of the mixed layer properties by 98 

advecting of the river plume through Ekman transport (Macdonald et al.; 1999; Mulligan and 99 

Perrie, 2019; Tarasenko et al., 2021). More generally, over the Eurasian shelves, numerous river 100 

plumes provide a large amount of freshwater, enhancing the mixed layer stratification and 101 

leading to the important mixed layer variability (Janout et al., 2016).   102 

The diversity of the processes driving the Arctic Ocean mixed layer variability is 103 

expected to be regionally and seasonally dependent. Nevertheless, the relative contributions of 104 

the different processes influencing the MLS budget and their regional dependency remain poorly 105 

documented at the Arctic basin scale. It is also the case for the specific role of the region close to 106 

the sea ice edge (SIE) on the mixed layer. In this study, we analyze a simulation performed with 107 

a regional Arctic-North Atlantic high-resolution model to quantify the MLS budget and examine 108 

its spatial and seasonal variability. The simulation and methods used to conduct our 109 

investigations are presented in Section 2. The temporal and spatial variability of the Arctic mixed 110 

layer properties are quantified in section 3. A full seasonal MLS budget is estimated in Section 4, 111 

and then we zoom on the different terms of the budget in the region close to the SIE in Section 5. 112 

Conclusions and discussions are given in Section 6. 113 

 114 

2 Data and Methods 115 

2.1 Model Configuration  116 

Our analysis relies on the use of the regional Arctic-North Atlantic high-resolution model 117 

configuration named CREG12 (Canadian REGional, Dupont et al. 2015). It is based on the 118 

NEMO 3.6 (Madec, 2016) and LIM 3.5 (Rousset et al. 2015) numerical models for the ocean and 119 

sea ice components, respectively. The configuration covers the Arctic Basin and part of the 120 

North Atlantic (down to 27°N). It has a high vertical (75 levels, with 10 levels within the top 121 

14m of the water column) and horizontal (3–4km) resolution in the Arctic Ocean, meaning that 122 

baroclinic eddies are resolved everywhere in the Arctic except on the shallow shelves (Regan et 123 

al, 2020; Meneghello et al, 2021). 124 

Initial conditions are taken from the World Ocean Atlas 2009 climatology for 125 

temperature and salinity while the ocean is at rest. The initial sea ice thickness and concentration 126 
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are taken from a long global ORCA12 simulation performed by the Drakkar group (Tréguier et 127 

al. 2014). Along the lateral open boundaries, monthly mean condition (comprising 3D velocities, 128 

temperature and salinity, and sea ice thickness and concentration) taken from the same ORCA12 129 

simulation are applied. Through the Bering Strait, the transports of volume, heat and freshwater 130 

closely resemble the observational estimates from Woodgate (2018). Regarding atmospheric 131 

forcing, we use the latest version of the Drakkar Forcing Set (DFS 5.2, which is an updated 132 

version of the forcing set described in Brodeau et al. 2010). Input from the river and ice sheet 133 

runoff has been recently corrected to include the large and increasing contribution from 134 

Greenland (Hu et al. 2019). 135 

 The run of the simulations used in this study covers the period from 1979 to 2015 and is 136 

described in further details by Talandier and Lique (2021). Extended evaluation of the ocean and 137 

sea ice conditions in the Arctic Basin can be found in Regan et al. (2020) and Barton et al. 138 

(2022). Here we focus on the period after 1994 to allow for an initial spin up of the ocean and 139 

sea ice conditions. Our analysis is done based on the 5 day-average outputs. 140 

2.2 Mixed Layer Budget  141 

In this study, we defined the mixed layer depth (MLD; unit: m) using a 0.1 kg.m-3 density 142 

threshold, following Peralta-Ferriz and Woodgate (2015). The MLS budget is diagnosed as 143 

(following Moisan and Niiler (1998), Kolodziejczyk and Gaillard (2013) and Pellichero et al 144 

(2017)): 145 𝜕௧𝑆 = ௌ ிೞೠೝ೑ఘ ு − 𝑢ሬ⃗ . 𝛻𝑆 + 𝐴௛∆ଶ𝑆 + 𝜅்𝜕௭𝑆 + ∆ௌு (𝜕௧𝐻 + 𝛻𝐻. 𝑢ுሬሬሬሬሬ⃗ + 𝑤ு)  (1) 146 

 With H the MLD, 𝑆 the salinity, 𝜌 the potential density and 𝑢 the velocity, all three 147 

averaged within the mixed layer, 𝑢ுሬሬሬሬሬ⃗  and 𝑤ு the velocity at the base of the mixed layer,   𝐴௛ the 148 

coefficient of horizontal mixing (or diffusivity), ∆𝑆 is the vertical gradient of salinity at the base 149 

of the mixed layer, usually define as the difference between the salinity at the base of the mixed 150 

layer and the salinity 15m below the mixed layer (Ren et al., 2011; Pellichero et al., 2017), 𝑤 is 151 

the vertical velocity at the base of the mixed layer and 𝜅௭ the vertical eddy diffusivity for salinity.   152 

The left-hand term is the MLS tendency. The first right hand term corresponds to the 153 

surface flux: 154 ௌ ிೞೠೝ೑ఘ ு = ௌఘ ு (𝐹௜௖௘. +  𝐸 − 𝑃 + 𝑅) (2) 155 
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where 𝐹௦௨௥௙ are the total surface freshwater surface flux which is the sum of the flux 156 

induced by the melting and freezing of sea ice (𝐹௜௖௘ ), E is evaporation, P is precipitation (both 157 

rain and snow), and R is the river runoff and evaporation minus precipitation. The second and 158 

third right hand term correspond to the vertical processes and is the sum of the horizontal 159 

advection within the mixed layer and the horizontal diffusion. The last two right hand term 160 

correspond to the vertical processes, that are the vertical diffusion and the entrainment. 161 

Entrainment is only considered when the entrainment velocity 𝑤௘ = (𝜕௧𝐻 + 𝛻𝐻. 𝑢ு + 𝑤ு) is 162 

positive as an outgoing flow at the base of the mixed layer with the same salinity than the mixed 163 

layer will not induce any change in MLS. 164 

We estimate the MLS budget for each grid point of the model domain using the 5-days 165 

means, and then consider four regions that represent the diversity of conditions encountered over 166 

the Arctic Ocean (Figure 1a).  167 

 168 

 169 

Figure 1. (a) Definitions of the four regions considered in this study; (b) Map of the annual average of the 170 

ice-free period duration between 1994 and 2014. Thick black line corresponds to isobath 500 m and thin black line 171 

to isobath 50 m. 172 

3 Seasonal Variability of Sea-Ice Conditions, Mixed Layer Depth and Salinity 173 
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The Barents Sea exhibits the deepest MLD (below 150 m on average in Winter and 192 

Spring; Figure 3), with deeper MLD in the ice-free parts of the Barents Sea (Figure 2 e, f, g and 193 

h), which is consistent with the observed spatial pattern of MLD (Peralta-Ferriz and Woodgate, 194 

2015). Over the Eurasian Shelves and the Chukchi and Beaufort Shelves, the MLD seasonal 195 

variability is limited by the shallow bathymetry and thus the MLD does not exceed 40 m (Figure 196 

3b and c). In the Deep Basin, the MLD reaches deeper values on average than over the Eurasian 197 

Shelves and the Chukchi and Beaufort Shelves but remains shallower than in the Barents Sea 198 

(Figure 3d). Here again, the model MLD are in close agreement with the observations reported 199 

by Peralta-Ferriz and Woodgate (2015), with a seasonal variability between 5 m and 50 m. 200 

We then examine the seasonal variations in MLS. Over the Arctic shelves there are large 201 

spatial variations in MLS (Figure 2i, j k and l). In the Barents Sea, the MLS is characterized by 202 

the presence of a polar front between the Atlantic and Arctic water (Lind et al., 2018), and varies 203 

seasonally between 33.5 pss and 34.5 pss. In this region, the MLS spatial pattern exhibits the 204 

signature of the salty Atlantic water inflow close to the SIE (Oziel et al, 2016). The MLS in 205 

Chukchi Shelf is also relatively high (between 28.5 pss and 31.5 pss on average; Figure 3c), 206 

which is due to the advection of Pacific water from the Bering Strait (Woodgate et al., 2012; 207 

Aksenov et al., 2016). In contrast, the MLS in the Beaufort and Eurasian shelves is rather low. 208 

These regions are feed by large river runoff that results in low MLS over large parts of the shelf 209 

(e.g. the Mackenzie in the Beaufort shelf, the Ob and the Yenisey in the Kara Sea and the Lena 210 

in the Laptev Sea). Over the Eurasian Shelves, the average MLS varies between 24.8 pss and 211 

27.2 pss (Figure 3b). The lowest MLS values are visible in the seasonal ice zone, which also 212 

corresponds to areas close from the coast, and thus under the influence of rivers runoff. In 213 

contrast to the shelves, the MLS in the Deep Basin exhibits smaller spatial and seasonal 214 

variability (evolving between 29.5 pss and 31 pss during the year; Figure 3d), with higher MLS 215 

in the Eurasian side than in the Canadian Basin and the Beaufort Gyre.  216 

Despite some regional differences, all region exhibits a similar timing of the seasonal 217 

variations of the different quantities considered here (Figure 3), that align well with the seasonal 218 

cycle obtained from observations by Peralta-Ferriz and Woodgate (2015). During Spring, MLS 219 

and the sea ice thickness increase while the MLD reaches its maximum and starts to decrease at 220 

the end of the period. The summer period corresponds to a quick and strong decrease in MLD, 221 
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spite of a strong and relatively persistent vertical flux that tend to oppose to the freshening. Note 300 

that, at this early time of the melting season, river runoff plays a major role, contributing up to -301 

0.5 pss month-1 . This is because at this time of the year, the SIE is still found close to the coast 302 

in many regions, and especially over the Eurasian Shelves. Under the sea ice, when the distance 303 

from the SIE increases, the sea ice melt contribution gradually reduces while the horizontal 304 

fluxes contribution to the freshening increases. During this period, the mixed layer is relatively 305 

deep (Figure 9e), with deeper mixed layer found in the ice-free area (between 250 m and 400 m 306 

on average) than under sea ice (between 100 m and 200 m). In reality, the ice-free regions during 307 

that period correspond to the regions that are ice-free all year long. 308 

During summer, the mixed layer is the shallowest (less than 30 m), especially at the SIE 309 

where is remains above 5 m (Figure 9b). The shallow mixed layers results from the large ice melt 310 

flux (up to - 4pss month-1 ; Figure 9b) that tend to stratify the upper ocean layer. This makes the 311 

mixed layer particularly sensitive to changes induced by surface and vertical fluxes. 312 

Interestingly,  𝜕௧𝑆 change its sign at the SIE: under sea ice, the mixed layer is getting fresher 313 

while in free ice regions the mixed layer gets saltier. This is explained by the dominance of 314 

melting in the sea ice covered region while vertical mixing (between 1 and 5 pss month-1) is 315 

dominant in the ice free region, where the melt ceases as sea ice retreats. In this region, the 316 

mixed layer deepens, and the MLS increases as the distance from the SIE increases, in response 317 

to the contribution from the vertical flux (Figure 9b). Once again, the strongest flux is shown 318 

within +/-50 km from the moving SIE. During Summer, the contribution from the horizontal flux 319 

is stronger in the ice-free area where the river runoff counterbalances the MLS increase. 320 

During fall, 𝜕௧𝑆 is positive everywhere, due to the end of the melting season and the start of 321 

freezing (Figure 9c). Also, the amplitudes of 𝜕௧𝑆 absolute value are twice smaller than during 322 

summer. While 𝜕௧𝑆 amplitude exceeds 1 pss month-1 on both side of the SIE, the maximum 𝜕௧𝑆 323 

amplitude only reaches 0.5 pss month-1 at the SIE in fall.  Indeed, on both sides of the SIE, the 324 

contribution from the vertical flux is the main driver of the salinity increase and is again 325 

intensified closer to the SIE. In the sea ice free region, the horizontal advection of freshwater 326 

from river runoff induces a negative 𝜕௧𝑆 on both sides of the SIE, albeit with a smaller 327 

amplitude.  328 
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Figure 9. Mean seasonal mixed Layer Salinity budget as a function of distance from the sea ice edge (SIE) 338 

during spring (a), summer (b), fall (c) and winter (d). Mean seasonal spatial variations of the mixed layer depth as a 339 

function of distance from the sea ice edge.  Positive distances from the sea ice edge correspond to ice-free areas and 340 

negative distances corresponds to ice-covered areas. 341 

6 Discussion and Conclusion  342 

The Arctic Ocean is characterized by an expanding seasonal ice zone, where the large 343 

seasonal variations of the sea ice conditions influence the seasonal variability of the mixed layer, 344 

and in particular its salinity. Based on a salinity budget in the mixed layer applied to the outputs 345 

of a high-resolution ocean-sea ice model, we have found that on average, there is a seasonal 346 

balance between the contribution to the change in mixed layer salinity of sea ice freezing/melting 347 

and the vertical flux at the base of the Arctic Ocean mixed layer. It is interesting to note that, 348 

although the amounts of freshwater brought to the ocean surface by sea ice freezing and melting 349 

are roughly of equal amplitudes, their impacts on the mixed layer salinity are fundamentally 350 

asymmetric over a seasonal cycle. Indeed, the melt-induced freshwater flux, which is large 351 

during a short period of time during summer, tends to create a thin stratified upper layer. In 352 

contrast, the negative flux from sea ice brine rejection is smaller but sustained over a longer 353 

period, when the mixed layer is also deeper. The vertical processes (mixing and entrainment) 354 

also play a different role depending on the season and region considered. In regions where sea 355 

ice retreats, the vertical mixing tends to be the dominant forcing to erase the surface freshening. 356 

In contrast, during winter, the vertical processes are playing a large role as they result from brine 357 

rejection under the ice and deep convection in the ice-free region of the Barents Sea. In some 358 

specific regions, mainly over shelves, advection and river runoff also contribute to redistribute 359 

freshwater to the mixed layer.   360 

A striking result of our study is that the mixed layer salinity change and flux are generally 361 

largely intensified within the 50 km of the sea ice edge, making the sea ice edge a hot spot for 362 

the seasonal variability. There, the sea-ice induced surface fluxes are intensified and largely 363 

counterbalanced by strong vertical processes (similar to what was observed by Dewey et al. 364 

(2017) in the Canadian). In addition, we also found that over the shelves and in the vicinity of 365 

river discharge areas, horizontal fluxes and riverine freshwater more strongly impact mixed layer 366 

salinity budget close to the sea ice edge, affecting the whole mixed layer salinity budget at the 367 

scale of the shelves.  368 
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In our investigation we have considers the different regions independently. Yet it is clear 369 

that the connectivity between the regions is also key to better understanding the Arctic Ocean 370 

evolution. While at first order the seasonal processes driving the mixed layer evolution 371 

contributes to the halocline formation, the connections between the shelves and the deep basins 372 

are also a key player of the formation of this barrier layer which limits the upward diffusion of 373 

Atlantic waters heat toward the surface (Rudels et al, 1996). The connections between the 374 

shelves and the deep basins also participate to the halocline formation through an advective 375 

mode: melting of advected sea ice formed at the surface of the shelves and cascading of dense 376 

water formed on the shelves during sea ice formation supply the Arctic halocline. The key aspect 377 

of this connectivity is enhanced by the increase of dense water cascading when the shelves are 378 

seasonally ice-covered (Luneva et al., 2020). Conversely, these shelf/basin exchanges also 379 

influence the trend and interannual mixed layer salinity variability, by conveying the changes of 380 

salinity below the mixed layer to the mixed layer through vertical entrainment. The expansion of 381 

the seasonal ice zone to the deep basins will likely results in large changes the seasonal cycle of 382 

the mixed layer properties. Such changes should be considered and quantified in future studies. 383 
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