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Abstract13

To better understand the regional changes in summertime temperatures across the con-14

terminous United States (CONUS), we adopt a recently developed machine learning frame-15

work that can be used to reveal the timing of emergence of forced climate signals from16

the noise of internal climate variability. Specifically, we train an artificial neural network17

(ANN) on seasonally-averaged temperatures across the CONUS and then task the ANN18

to output the year associated with an individual map. In order to correctly identify the19

year, the ANN must therefore learn time-evolving patterns of climate change amidst the20

noise of internal climate variability. The ANNs are first trained and tested on data from21

large ensembles and then evaluated using observations from a station-based dataset. To22

understand how the ANN is making its predictions, we leverage a collection of ad hoc23

feature attribution methods from explainable artificial intelligence (XAI). We find that24

anthropogenic signals in seasonal mean minimum temperature have emerged by the early25

2000s for the CONUS, which occurred earliest in the Eastern United States. While our26

observational timing of emergence estimates are not as sensitive to the spatial resolu-27

tion of the training data, we find a notable improvement in ANN skill using a higher res-28

olution climate model, especially for its early 20th century predictions. Composites of29

XAI maps reveal that this improvement is linked to temperatures around higher topog-30

raphy. We find that increases in spatial resolution of the ANN training data may yield31

benefits for machine learning applications in climate science.32

Plain Language Summary33

While temperatures around the world continue to warm due to human-caused cli-34

mate change, some areas have observed smaller temperature trends than others. Under-35

standing this regional variability in the rate of warming is important when assessing fu-36

ture projections. One location that has observed less warming is across the United States37

during their summer season. To evaluate temperature variability in this region using real-38

world observations and climate model simulations, we use a statistical method from ar-39

tificial intelligence called neural networks. The goal of the neural network setup is to learn40

temperature patterns across the United States and then identify whether climate change41

effects have exceeded the range of natural variability that has occurred in the past. This42

is called the timing of emergence, which is the first year that the effect has clearly ap-43

peared. We find that the average United States minimum temperature increase has al-44
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ready emerged in historical records. However, we find no timing of emergence for the av-45

erage maximum temperature, other than in the Western United States. Another impor-46

tant finding of this study is that by using higher resolution climate model data (i.e., more47

latitude and longitude points), we find better accuracy in the neural network predictions.48

1 Introduction49

The detection of a forced signal rising above the background of internal climate vari-50

ability - often referred to as the ‘timing of emergence’ (ToE) - can be a potentially use-51

ful metric for societal and ecological planning to account for changes in weather and cli-52

mate that exceed the known variability over a particular region (IPCC et al., 2021). Quan-53

tifying the ToE for a number of variables has been widely addressed within climate sci-54

ence research over the last few decades (e.g., Giorgi & Bi, 2009; Hawkins & Sutton, 2012;55

Mahlstein et al., 2012; Hawkins et al., 2014; Fischer & Knutti, 2014; King et al., 2015;56

Mora et al., 2013; Schlunegger et al., 2020; Hawkins et al., 2020; Satoh et al., 2022), but57

its precise definition is still quite sensitive to the choice of dataset, future greenhouse emis-58

sion scenario, baseline reference period, spatial scale, temporal filtering, consideration59

of internal climate variability, and statistical testing for ToE consistency. The ToE can60

even be examined through a lens of compound events and combined variables (Mahony61

& Cannon, 2018; Rader et al., 2022; François & Vrac, 2023). While it is often implied62

to be associated with anthropogenic climate change, the ToE definition can also be in-63

fluenced by multidecadal variability in the climate system (Lehner et al., 2017). To par-64

tially alleviate this issue, recent ToE work (e.g., Rodgers et al., 2015; Lehner et al., 2017;65

Schlunegger et al., 2020; Wyser et al., 2021) has examined the use of initial condition66

large ensembles which better isolate the role of uncertainty due to internal variability67

within a single global climate model (GCM) system. This is done to avoid conflating dif-68

ferent uncertainties, such as when calculating a multi-model mean (Hawkins et al., 2014;69

Lehner et al., 2020). In this context, the spread of ToE estimates can be compared across70

individual ensemble members (i.e., range of internal variability) relative to the overall71

ensemble mean (i.e., radiatively forced signal).72

One example of an extratropical region that experiences large variances in simu-73

lated decadal temperature trends by these climate model large ensembles is across the74

contiguous United States (Deser et al., 2012; Milinski et al., 2020; Lehner & Deser, 2023).75

While this variability is often analyzed for boreal winter months (McKinnon & Deser,76
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2018; Deser et al., 2016; B. Yu et al., 2020), substantial regional variability in CONUS77

summertime temperature trends has also been observed (Program, 2018). Of particu-78

lar interest is a portion of the Southeast to Central CONUS in which little to no warm-79

ing has been observed (Kunkel et al., 2006), or even has slightly cooled depending on the80

choice of trend period, duration, or observational dataset (Grotjahn & Huynh, 2018; Par-81

tridge et al., 2018). This ‘warming hole’ has been most prominently found in trends of82

daytime maximum temperatures (Pan et al., 2004; Mueller et al., 2016). It remains un-83

clear to what extent this persistent CONUS warming hole is driven by an unusual re-84

alization of internal climate variability (a. Meehl et al., 2012; Meehl et al., 2015), land-85

use surface feedbacks (Mueller et al., 2016; Alter et al., 2018), changes in anthropogenic86

aerosols (Leibensperger et al., 2012; S. Yu et al., 2014; Banerjee et al., 2017), an indi-87

rect response to external greenhouse gas forcing (Eischeid et al., submitted), or a com-88

bination of several of these factors (Pan et al., 2004; Mascioli et al., 2017). In contrast,89

the Western United States has observed larger warming trends during the last few decades,90

which has contributed to the formation of prolonged drought risk and favorable environ-91

ments for wildfire ignition (Diffenbaugh et al., 2015; Abatzoglou & Williams, 2016; Parks92

& Abatzoglou, 2020; Williams et al., 2020). Though the ratio of new record high tem-93

peratures compared to record lows continues to widen (Meehl et al., 2022), the overall94

detectability of CONUS temperature signals continues to remain challenging, partially95

due to the anomalous warmth observed in the Dust Bowl era (Hansen et al., 2001; Pe-96

terson et al., 2013; Donat et al., 2016). Given the broad range of consequences associ-97

ated with future projected warming over the CONUS (Wuebbles et al., 2014; Program,98

2018), it remains urgent to better characterize the ToE of summertime mean extreme99

temperatures in order to better aid in future decision-making on regional health hazards100

and other impacts that could fall outside of historical climate variability (Mankin et al.,101

2020; Deser, 2020; Schwarzwald & Lenssen, 2022; Bevacqua et al., 2023).102

The aim of this study is to evaluate whether patterns of radiatively-forced temper-103

ature change have emerged across the CONUS in summer, despite substantial internal104

variability and only a marginally positive overall mean temperature trend in the recent105

observational record. To confront these challenges, we turn to a novel explainable arti-106

ficial neural network (ANN) approach (Barnes et al., 2018, 2019) that can spatially lever-107

age temperature signals across given geographic maps for identifying the ToE of indi-108

vidual climate variables. The advantage is that we are not limited to traditional signal-109
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to-noise metrics that only consider point-by-point statistics for disentangling the role of110

internal variability from anthropogenic climate change, because here the ANNs can in-111

stead potentially learn nonlinear relationships in the data. We also apply this framework112

to different regions of the CONUS, which supports that the Central United States warm-113

ing hole has contributed to a lack of visible anthropogenic signal in mean observed sum-114

mertime temperatures. Although this machine learning ToE indicator may not neces-115

sarily reflect local conditions, such as those considered for adaptation planning for ecosys-116

tem services (Weiskopf et al., 2020) or for rapid changes to biodiversity (Henson et al.,117

2017; Trisos et al., 2020), the spatial aggregate metric as designed here remains relevant118

for industries that assess climate risk over larger geographic domains (e.g., Lempert et119

al., 2004; Mills, 2005; Fischer et al., 2013; Lawrence et al., 2020; Ignjacevic et al., 2021).120

Notably, we also reveal that the ANN can distinguish the year of temperature maps121

during a climate model’s historical simulation of the 20th century. This is surprising given122

the greater influence of internal variability during this period that continues until around123

1980 when the forced greenhouse gas signal begins to more clearly emerge. These skill-124

ful predictions by the ANN indicate that changing temperature patterns within a cli-125

mate model may be distinguished from the noise of internal variability well before a sta-126

tistically significant mean temperature trend is detected. This early 20th century detec-127

tion skill improves even more when training on maps of higher spatial resolution com-128

pared to a lower resolution configuration of the same large ensemble climate model. Us-129

ing methods from explainable artificial intelligence (XAI), we conclude this study by ex-130

amining the regional patterns of temperature change linked to this ANN performance131

and its possible dependence on the size of the training data climate maps.132

2 Data133

2.1 Climate Model Large Ensembles134

For the main results of this study, we use a collection of 30-member initial condi-135

tion large ensemble simulations from a fully-coupled global climate model (GCM) called136

the Seamless System for Prediction and EArth System Research (SPEAR; Delworth et137

al., 2020). SPEAR is the newest seasonal to multidecadal prediction and projection sys-138

tem from the National Oceanic and Atmospheric Administration (NOAA) Geophysical139

Fluid Dynamics Laboratory (GFDL). SPEAR uses the same atmospheric model code140
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(AM4) and land model code (LM4) as in the GFDL CM4 model (Zhao et al., 2018a, 2018b;141

Held et al., 2019), but employs a different configuration of the MOM6 ocean code (Adcroft142

et al., 2019) so as to optimize the model for seasonal to decadal predictions and projec-143

tions. SPEAR incorporates 33 vertical atmospheric levels and can be designed for dif-144

ferent atmosphere/land resolution configurations ranging from 0.25◦ to 1.0◦. All model145

versions include a common ocean grid of approximately 1.0◦ spacing (though refined to146

0.33◦ around the equator). The SPEAR system has already been successfully used for147

several studies in evaluating the predictability of temperature variability and heat ex-148

tremes across North America (e.g., Jia et al., 2022; Yang et al., 2022).149

Table 1. Summary of the GFDL SPEAR MED large ensemble simulations used in this

study (Delworth et al., 2020). Additional details on SPEAR can be found at https://

www.gfdl.noaa.gov/spear large ensembles/.

Name Scenario Forcing Years # Members Horizontal Resolution

(Atmosphere / Ocean)

SPEAR MED SSP119 Historical to 2014, SSP1-1.9 1921-2100 30 nominal 0.5◦/nominal 1.0◦

SPEAR MED SSP245 Historical to 2014, SSP2-4.5 — — —

SPEAR MED SSP585 Historical to 2014, SSP5-8.5 — — —

SPEAR MED NATURAL Natural Forcing Only — — —

Due to the availability of more individual ensemble members to train, validate, and150

test our neural network than in the configuration with the highest atmospheric resolu-151

tion, we focus on simulations from only the SPEAR MED (atmosphere/land of 0.5◦) and152

SPEAR LO (atmosphere/land of 1.0◦) configurations. Ensemble members in each are153

initialized from conditions in an 1850 control simulation that are branched 20 years apart.154

Both SPEAR MED and SPEAR LO are forced with CMIP6 historical forcing through155

2014 (Eyring et al., 2016). From 2015 to 2100, they are then forced with future projec-156

tions from the Shared Socioeconomic Pathway 5-8.5 scenario (SSP5-8.5; Kriegler et al.,157

2017; Riahi et al., 2017). Recent work has shown that SSP5-8.5 is likely an unrealisti-158

cal extreme future emission scenario (e.g., Burgess et al., 2020; Hausfather & Peters, 2020;159

Peters & Hausfather, 2020). Although our study here is mostly focused on the ToE in160

the recent and historical past, we also compare the sensitivity of our machine learning161

results to training and testing on SPEAR MED simulations conducted with more prob-162
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able SSP scenarios (Pielke et al., 2022), including the low-end SSP1-1.9 and more mod-163

erate SSP2-4.5 (O’Neill et al., 2016).164

Finally, we compare our SPEAR climate change simulations with a large ensem-165

ble experiment starting from the same initial conditions in 1921 as SPEAR MED, but166

holding all anthropogenic forcings (i.e., greenhouse gases, anthropogenic aerosols, land167

use/land change) fixed at 1921 levels. This experiment, referred to as SPEAR MED NATURAL168

is instead prescribed with only natural radiative forcings, such as those due to solar ir-169

radiance and volcanoes (historical to 2014, hypothetical thereafter; see Delworth et al.170

(2022)). By comparing SPEAR MED and SPEAR MED NATURAL, we can extract the171

role of anthropogenic forcing on changes in summertime temperatures in the climate model172

and gain insights for understanding how well the neural network performs by training173

on data without a long-term anthropogenic signal.174

To summarize, we consider collections of 30-member large ensembles from either175

SPEAR MED or SPEAR LO for designing our machine learning architecture. These sim-176

ulations are conducted on two different horizontal atmosphere/land grids, which we will177

now refer to as either MED (nominal 0.5◦ grid) or LOW (nominal 1.0◦ grid) through-178

out the text. We point this out since a key focus of this work is on comparing the effect179

of higher spatial resolution on the performance of the neural network. Given the limited180

availability of other fully-coupled large ensembles with high-resolution atmospheric mod-181

els, we can only assess the MED grid using simulations conducted by SPEAR MED or182

its previous generation version called the Forecast-Oriented Low Ocean Resolution (FLOR)183

system (Vecchi et al., 2014). FLOR is a fully-coupled global climate model based upon184

GFDL’s CM2.5 (Delworth et al., 2012); its large ensemble includes 30 members with CMIP5185

historical forcing from 1921 to 2004 and Representative Concentration Pathway 8.5 (RCP8.5;186

Riahi et al., 2011; Vuuren et al., 2011) thereafter from 2005 to 2100. FLOR has a land-187

atmosphere resolution of 0.5◦ using the AM2.5 and LM3 model components (Milly et188

al., 2014), but includes a coarser ocean from OM2.1 (Gnanadesikan et al., 2006) at a nom-189

inal resolution of 1.0◦. Since FLOR does not offer a corresponding LOW version of the190

large ensemble like SPEAR, we simply bilinearly interpolate its corresponding temper-191

ature maps to the LOW grid (denoted as FLOR (LO)) for again attempting to compare192

the advantange of inputting more (or less) spatial information into our neural network193

framework.194
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We also briefly make use of three more GCM large ensembles, which offer a sim-195

ilar horizontal resolution and data availability as SPEAR LO (i.e., data from at least 1921196

to 2100 and a grid size of approximately 1.0◦×1.0◦). These include the 40-member Com-197

munity Earth System Model Large Ensemble Project Version 1 (CESM1-LE; Hurrell et198

al., 2013; Kay et al., 2015) (CMIP5 class; RCP8.5), 100-member CESM2-LE (Danabasoglu199

et al., 2020; Rodgers et al., 2021) (CMIP6 class; SSP3-7.0), and the 50-member large en-200

semble using the sixth version of the Model for Interdisciplinary Research on Climate201

(MIROC6-LE; Tatebe et al., 2019; Shiogama et al., 2023) (CMIP6 class; SSP5-8.5). While202

other climate model large ensembles are available from the multi-model large ensemble203

archive that contain at least 30 members (NCAR, 2020; Deser et al., 2020), their hor-204

izontal resolution is generally too coarse for our regional deep learning approach, par-205

ticularly when considering the three smaller geographic areas of the United States. In206

other words, an insufficient number of grid points nearly reduces the problem to a change-207

point time series task. This then limits the real utility of the neural network method-208

ology, which here is to exploit any possible (non)linear temperature patterns across the209

maps in order to identify the emergence of forced climate signals.210

For the climate model data, we leverage monthly mean near-surface daily maxi-211

mum, minimum, and average temperature data (i.e., TMAX, TMIN, TAVG) and then212

calculate the seasonal mean over June to August (JJA) using only grid points across the213

conterminous United States. A summary of the large ensemble data can be found in Ta-214

bles 1 and S1, which include the final horizontal resolution elected to be used as input215

to the neural network.216

2.2 Observations217

To evaluate the ToE of summertime surface temperatures in the United States, we218

primarily use the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid; Vose et219

al., 2014), which is a station-based gridded product of temperature (and precipitation)220

across land areas of the conterminous United States since 1895. NClimGrid is based on221

the interpolation of quality-controlled station data onto 5 km latitude/longitude grids222

using records from the Global Historical Climatology Network (GHCN; Durre et al., 2010;223

Menne et al., 2012). The homogenized dataset from NClimGrid also accounts for bias224

correction of artificial station breaks, such as for changes in weather station locations,225

instruments, and other temporal inconsistencies (Menne & Williams, 2009). Area-average226
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NClimGrid temperature errors are larger over CONUS prior to 1990, but generally still227

within 1◦C for both TMAX and TMIN (Vose et al., 2014). Here we focus on the period228

of 1921 to 2022, which overlaps with the output from the SPEAR climate model sim-229

ulations.230

Table 2. Summary of the station-based and atmospheric reanalysis datasets (i.e., observa-

tions) used in this study. The observational maps are then regridded to make inferences using

the neural networks onto either the same LOW (1.0◦; ERA5/NClimGrid/20CRv3) or MED (0.5◦;

ERA5/NClimGrid) atmospheric resolution as from GFDL SPEAR. See Section 2.1.

Name Data Years Horizontal Resolution Reference

ERA5 ECMWF Reanalysis v5 1940-2022 ∼ 0.25◦ Hersbach et al. (2020)

NClimGrid NOAA Monthly U.S. Climate Gridded Dataset 1895-2022 ∼ 1/24◦ Vose et al. (2014)

20CRv3 NOAA-CIRES-DOE Twentieth Century Reanalysis v3 1836-2015 ∼ 1.0◦ Slivinski et al. (2019, 2021)

For comparing the sensitivity of our observational neural network predictions to231

the use of NClimGrid, we also briefly evaluate our results with two atmospheric reanal-232

ysis datasets: the European Center for Medium-Range Weather Forecasts (ECMWF)233

fifth generation of atmospheric reanalysis (ERA5) available from 1940 to 2022 and the234

NOAA/Cooperative Institute for Research in Environmental Sciences/Department of En-235

ergy Twentieth Century Reanalysis (20CR) version 3 (20CRv3) available from 1836 to236

2015. Using ECMWF’s Integrated Forecast System release 41r2 and four-dimensional237

variational analysis as a data assimilation scheme, ERA5 provides global data at a hor-238

izontal resolution of 31 km in near-real time (Hersbach et al., 2020). It is constrained239

by numerous observations, like land-based weather stations, satellites, radiosondes, and240

other aircraft records. We focus on near-surface temperature (2-m height) from ERA5241

through its entire available temporal period (1940 to 2022). To compare with a longer242

reanalysis record, we use near-surface temperature (2-m height) from 20CRv3 (Slivinski243

et al., 2019) during the overlapping period from 1921 to 2015. Unlike ERA5, this 20CR244

product only assimilates surface pressure observations (Compo et al., 2011), which is com-245

pleted through four-dimensional incremental analysis updates and an 80-member ensem-246

ble Kalman filter approach (Lei & Whitaker, 2016; Slivinski et al., 2019). 20CRv3 uses247

the coupled atmosphere-land National Centers for Environmental Prediction (NCEP)248

Global Forecasting System (GFS) version 14.0.1 with boundary conditions from prescribed249

sea surface temperatures and sea-ice concentration. Overall, 20CRv3 is an improvement250
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over its predecessor (20CRv2c) for simulating synoptic dynamics and other long-term251

surface climate fields (Slivinski et al., 2021), though work continues to improve temper-252

ature data earlier in the twentieth century due to greater uncertainties (Gillespie et al.,253

2023).254

We use monthly mean temperature output from all observational and reanalysis255

datasets to calculate the JJA seasonal mean. The neural network used here requires the256

input data to have the same latitude and longitude dimensions. Therefore, we bilinearly257

regrid NClimGrid and ERA5 onto the MED (0.5◦) and LOW (1.0◦) spatial maps which258

are also used by the climate model large ensemble data. The coarser 20CRv3 dataset259

is instead only interpolated onto the LOW resolution grid. Importantly, these three ob-260

servationally based products encompass a wide range of different structural methodolo-261

gies and uncertainties, which therefore provide ample opportunity to test the robustness262

of the neural network results on out-of-sample data (Table 2). A comparison of average263

JJA CONUS temperature anomalies is also presented in Figure S1 for NClimGrid, ERA5,264

and 20CRv3.265

3 Methods266

3.1 Neural Network Framework267

We adopt a machine learning ToE method first proposed by Barnes et al. (2019),268

which uses a neural network to input geographic maps of climate variables and then to269

output the year associated with each map. While this is quite a simple prediction prob-270

lem, it has been shown that the neural network must learn to leverage time-evolving pat-271

terns of forced climate signals in order to correctly identify the year with a single map272

(Barnes et al., 2020). This attribution method has since been used in a wide range of273

climate applications (e.g., Anderson & Stock, 2022), such as for disentangling the role274

of aerosols and greenhouse gases in single-forcing large ensembles (Labe & Barnes, 2021),275

quantifying anthropogenic signals in extreme precipitation (Madakumbura et al., 2021),276

and identifying the ToE of combined variables like precipitation and temperature (Rader277

et al., 2022). For this work, we take a similar approach, but build upon these previous278

efforts by focusing on a narrower application. Here we train on high-resolution climate279

model data and evaluate the ToE on a smaller spatial region during a period with an ob-280

served absence of daytime warming (e.g., boreal summer in the Central United States)281
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(Partridge et al., 2018). While previous machine learning efforts in climate science have282

usually interpolated data to coarser grids for reasons such as computational limitations,283

we are particularly interested in considering whether the neural network skill (or the ac-284

tual ToE) changes by training and evaluating on higher resolution data.285

Figure 1. Schematic of the artificial neural network (ANN) used to take an input map of

average June to August (JJA) temperatures over the contiguous United States (CONUS) and

then output the likelihood that the map is from a particular decade. Fuzzy classification (Zadeh,

1965) is used to decode this decadal likelihood to associate each map with a single year (i.e., our

final predicted output). The ANN consists of different combinations of hidden layers and nodes

depending on the horizontal resolution of the training data. (see Section 3 for the architecture

and hyperparameter choices). Explainable artificial intelligence (XAI) attribution methods are

then used to reveal the regions that acted to increase or decrease the likelihood of the ANN’s

predicted year.

For this study, we use an ANN, which is a statistical algorithm that can learn to286

approximate nonlinear functions from large quantities of data. They have become in-287

creasingly popular tools for Earth science prediction problems and in numerical mod-288

eling (Boukabara et al., 2021; Chantry et al., 2021; Irrgang et al., 2021). ANNs are fully-289

connected networks, which in their simplest form are comprised of an input layer, a set290

number of hidden layers and nodes, and an output layer (i.e., the final prediction). Ev-291
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ery node in this feed-forward architecture receives information from the previous layer292

and can be individually computed by weighting the sum of the inputs and an added bias293

term. The weights and biases are updated iteratively until the training process is fin-294

ished, such as when the loss function is minimized (i.e., a measure of machine learning295

model error). Given enough available data and limited overfitting, the ANN can then296

be used to make skillful predictions on data it did not see during training (i.e., testing297

data). More thorough introductions to neural networks can be found in e.g., Lecun et298

al. (2015); Goodfellow et al. (2016); Neapolitan and Jiang (2018). Domain-specific tu-299

torials for machine learning applications, such as in atmospheric science, are also pro-300

vided by Chase, Harrison, Burke, et al. (2022) and Chase, Harrison, Lackmann, and Mc-301

Govern (2022).302

Figure 1 shows the ANN architecture used for this study. The ANN receives vec-303

torized latitude by longitude maps of JJA temperatures (TMAX, TMIN, or TAVG) with304

either 10,080 input values (70×144) per sample for the MED resolution maps or 2,520305

input values (35×72) for the LOW resolution maps. In addition, we also evaluate ANNs306

using regional map inputs for the Western, Central, and Eastern CONUS as depicted307

in Figure 2. We focus on only land areas and therefore mask all other areas by assign-308

ing values of zero, which the ANN then learns to ignore. This vector is fed into the ANN309

hidden layers, and the output is the probability of a particular decade midpoint (a clas-310

sification problem). These output values are then translated to a particular year (a re-311

gression problem) using fuzzy classification (Zadeh, 1965), which is described in detail312

in Barnes et al. (2020). Briefly, by denoting the central year of a particular decade (e.g.,313

1995 for 1990-1999), a particular output (e.g., 1994) can be mapped to more than one314

decade class. Using triangular membership functions (Zadeh, 1965) with a width of one315

decade, the weighted sum of the decadal class probabilities can finally be mapped to a316

specific year. For example, the year 1994 has a probability of 0.9 for falling within the317

decade class midpoint of 1995 and a probability of 0.1 for the decade class midpoint of318

1985. We refer to the regression problem of the predicted year throughout the rest of the319

study for evaluating the ANN skill and ToE calculations.320

We select our ANN architecture for different input maps by considering the effect321

of spatial region and grid resolution. The final ANNs are selected by identifying the low-322

est median Mean Absolute Error (MAE) on validation data after considering 20 ANNs323

(randomized combinations of training, testing, and validation data and initialization seeds)324
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over architectures that range in complexity by the number of hidden layers and nodes325

(see Figures S6 and S10). In other words, this is related to the number of parameters326

that the model can use to learn the relevant climate patterns to more accurately pre-327

dict the year of a map (i.e., variations of deeper or shallower neural networks). For CONUS328

inputs on the MED grid, we use an ANN with 3 hidden layers of 10 nodes each. For CONUS329

inputs on the LOW grid, we use an ANN with 3 hidden layers of 20 nodes each. Finally,330

for the regional CONUS maps on both the MED and LOW grids, we use an ANN with331

2 hidden layers of 100 nodes each. Despite selecting different ANN architectures, we find332

that our results are generally robust across minor changes in hyperparameter options.333

The rectified linear unit (ReLu; Agarap, 2018) activation function is used for the non-334

linear transformation in the hidden layers, and a softmax operator is included in the out-335

put layer to ensure that the decadal class probabilities of the output vector sum up to336

one. All ANNs here use the binary cross-entropy loss function, stochastic gradient de-337

scent optimizer (Ruder, 2016) with Nesterov momentum set to 0.9 (Nesterov, 1983), a338

learning rate of 0.01, and a batch size set to 32.339

Figure 2. (a) Composite of JJA average near-surface temperature (TAVG) from an example

of the training data mean used to standardize the input maps, which is calculated here using 24

ensemble members from SPEAR MED over the period of 1981-2010. (b) As in (a), but for the

training data standard deviation. See Section 3.1 for more details. The vertical yellow longitude

lines are displayed at 104◦W and 85◦W to differentiate the three regions of the CONUS consid-

ered for this work (i.e., the Western USA, Central USA, and Eastern USA). The thin yellow box

outlines the western Colorado (W. CO) region of interest used for this study (37◦N-41◦N and

108◦W-105◦W).
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Unless otherwise stated, we train on 24 ensemble members, validate on 4 ensem-340

ble members, and test on 2 ensemble members. To limit overfitting on the training data,341

we apply a few different methods. First, we apply early stopping, which ends the ANN342

training process if there is no improvement in the validation loss for 25 consecutive epochs.343

The epoch with the best performance is ultimately selected. Next, we apply ridge reg-344

ularization (set to 0.001) to the weights of the first hidden layer (L2; Friedman, 2012),345

which acts to limit how sensitive the weights are to outliers in the input data. This also346

helps to smooth out any spatial autocorrelation that exists in the temperature maps and347

improve overall interpretability (Sippel et al., 2019, 2020; Barnes et al., 2020). The sen-348

sitivity of our ANN results to the choice of the L2 parameter are shown in Figures S6349

and S10.350

Before inputting the data into the ANN, we standardize all climate model temper-351

ature maps by subtracting the training data mean and dividing by the training data stan-352

dard deviation over the 1981 to 2010 climatological baseline. This is computed separately353

at every grid point. Note that similar skill is found for training and testing data using354

other reference periods, such as 1951-1980. An example of the training mean and stan-355

dard deviation for 24 ensemble members in SPEAR MED is shown in Figure 2. Due to356

mean state biases that may exist between the climate model large ensembles and obser-357

vations, we separately standardize the observations by their own mean and standard de-358

viation over 1981 to 2010 before making ANN inferences. Though, as we discuss later,359

it is still possible that differences in the amount of mean warming between the climate360

model simulations and observations could influence the machine learning skill and re-361

lated ToE results.362

In addition to evaluating our ANN and ToE predictions, we consider several ad hoc363

attribution methods of XAI. Explainability methods have increasingly been shown to aid364

in building trust and understanding for the decision-making process of neural networks,365

including for climate science applications (e.g., Sonnewald & Lguensat, 2021; Labe & Barnes,366

2022; Shin et al., 2022; Rampal et al., 2022; Diffenbaugh & Barnes, 2023; Mamalakis et367

al., 2023). Output from XAI attribution methods describe the contribution of every in-368

put sample’s latitude and longitude grid point (described here as “relevance”) to the over-369

all prediction of the ANN. In other words, the XAI algorithms return a relevance heatmap370

(unitless) for every input year. To evaluate the sensitivity our explainability results across371

different methods (Mamalakis et al., 2022; Bommer et al., 2023), we consider three dif-372
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ferent attribution techniques: the layerwise relevance propagation z-rule (LRPz; Bach373

et al., 2015), LRP epsilon-rule (LRPϵ; Bach et al., 2015) and Integrated Gradients (Sundararajan374

et al., 2017). Though given the similarity of the results across the XAI methods, we only375

show relevance figures from LRPz and Integrated Gradients for brevity in the main re-376

sults. A more detailed overview on an application of LRP to a geoscience problem can377

be found in Toms et al. (2020). Lastly, we caution that although these XAI techniques378

are very useful for outlining the important climate patterns learned by the ANN, they379

do not imply causation, such as for the specific physical drivers.380

Our XAI heatmaps are based on composites of the testing ensemble members (or381

observations), where positive areas of relevance can be interpreted as regions that pushed382

the ANN toward its predicted year. Negative areas of relevance are subsequently inter-383

preted as vice versa, i.e., locations that tried to push the ANN away from making its yearly384

prediction. We only consider relevance maps for testing data predictions that are accu-385

rate to within 5 years of the actual year.386

3.2 Calculated Timing of Emergence for Observations387

An annotated graphic of our ToE approach is shown in Figure 3. The ANN in this388

example is trained and tested on SPEAR MED for maps of mean JJA TAVG. The test-389

ing ensemble predictions are shown using green scatter points with the actual year of a390

TAVG map on the x-axis, and the ANN predicted year is on the y-axis. Predictions for391

maps of mean JJA TAVG from NClimGrid data are then shown with red markers. The392

fundamentals of this ToE estimate are based on Mora et al. (2013), which is calculated393

as the year that a map of temperature first departs the bounds of historical climate vari-394

ability and continues to do so for all future years (e.g., the red shading in Figure 3). This395

general approach was also demonstrated using ANNs in Barnes et al. (2019) and Rader396

et al. (2022). Here we define the ToE as the first predicted year that is greater than the397

maximum prediction during our historical baseline of 1921-1950 (gray shading in Fig-398

ure 3). In addition to 1921-1950 being the earliest 30-year period available from SPEAR MED,399

it more importantly overlaps with the observed anomalous warmth of the 1930s in the400

United States (Program, 2018) (Figure 4). Thus, we can directly compare whether an401

observed JJA temperature forced signal has emerged outside of this historical record that402

includes the extreme heat of the Dust Bowl era.403
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Figure 3. Schematic of the output provided by the ANN and the subsequent calculation of

the timing of emergence (ToE) based on CONUS maps from observations. Blue scatter points

denote ANN predictions based on SPEAR MED (historical + SSP5-8.5 forcing) testing ensemble

members for the inputs of TAVG averaged over JJA. The actual year is shown on the x-axis,

and the predicted year on shown on the y-axis. Red markers are used for ANN predictions after

inputing maps from NClimGrid. A perfect prediction (1:1 slope) is annotated behind all ANN

predictions with a solid gray line. To first calculate the ToE of the NClimGrid maps, the latest

predicted year in the 1921 to 1950 climatological period (vertical gray shading) is identified (left,

bright red marker). The actual ToE (right, bright red marker) is then the first year when all

proceeding predictions (vertical red shading) exceed the year of the 1921-1950 maximum. The

observed ToE from this ANN is 2005.
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We also compare our results with a more traditional baseline ToE estimate using404

SPEAR MED data. For a given ensemble member, the ToE is the first year that the 10-405

year running JJA mean consistently stays above the 1921 to 1950 climatological period406

by greater than two standard deviations (Lehner et al., 2017). This variability is again407

based on the 10-year running mean temperature in 1921-1950. The actual ToE compos-408

ites from this method are then calculated from the mean across all ensemble members409

and at every grid point.410

4 Results411

4.1 Changes in United States Summertime Temperatures412

Before estimating the ToE by the neural network framework, we start by assess-413

ing changes in temperature in observations and as simulated by SPEAR MED. Figure414

4 shows the time-mean JJA temperature anomalies averaged over the CONUS for TMAX,415

TMIN, and TAVG from 1921 to 2022. We find that observations from NClimGrid lie out-416

side the ensemble spread of SPEAR MED in all three temperatures metrics during the417

Dust Bowl of the mid-1930s. This is especially prominent for JJA TMAX, which reaches418

values of more than 1◦C greater than the warmest ensemble member from SPEAR MED.419

The peak TAVG during this early 20th century period was reached in 1936 (Cowan et420

al., 2017, 2020), but it is now statistically tied with 2021 as the hottest summer on record421

(within 0.01◦C) over the CONUS (Thompson et al., 2022) (Figure 4c). The large climate422

response following the eruption of Mount Pinatubo (Parker et al., 1996), however, is well423

captured by SPEAR MED. 1992 subsequently remains the coldest mean summer TMAX424

in the NClimGrid observational record (since at least 1921) (Figure 4a). In more recent425

years, temperatures from NClimGrid have remained consistently below the ensemble mean426

and therefore exhibit less net warming than the forced response in SPEAR MED, espe-427

cially for TMAX. We also compare NClimGrid with ERA5 and 20CRv3 reanalysis prod-428

ucts for TAVG anomalies in Figure S1. While NClimGrid and ERA5 agree well in cap-429

turing the interannual variability and long-term trends, we find a larger discrepancy in430

TAVG prior to 1975 where 20CRv3 shows larger warm anomalies. These discontinuities431

have been pointed out in previous studies using older model generations of 20CR (Ferguson432

& Villarini, 2014), which were found to be largest in the mid-20th century for the Cen-433

tral United States (Ferguson & Villarini, 2012).434
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Figure 4. (a) Time series of mean JJA maximum temperature (TMAX) anomalies over the

CONUS from 1921 to 2022 for the ensemble mean of SPEAR MED (dark green line) compared

to observations from NClimGrid (dashed red line). The spread across SPEAR MED ensemble

members is shown with the light green shading. Anomalies are computed for each dataset with

respect to their own 1981-2010 climatological mean. (b) As in (a), but for the mean JJA mini-

mum temperature (TMIN). (c) As in (a), but for the mean JJA average temperature (TAVG)
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Figure S2 shows the time series of TAVG anomalies broken down by the three re-435

gions of interest, including the Western, Central, and Eastern United States. This more436

clearly distinguishes the anomalous heatwaves of the mid-1930s across the Central United437

States, which again fall outside the ensemble spread of SPEAR MED. All three regional438

domains experience substantial interannual temperature variability in the NClimGrid439

record and reveal less long-term warming compared to the SPEAR MED ensemble mean440

over the 1990 to 2022 period.441

Figure 5. Linear least squares trends of average JJA TAVG from 1921 to 1989 (a, b, c) and

1990 to 2022 (d, e, f) for NClimGrid (a, d), the ensemble mean from SPEAR MED (b, e), and

the ensemble mean from SPEAR MED NATURAL (c, f). For maps of NClimGrid, black hatch

marks indicate TAVG trends that are not statistically significant following a Mann-Kendall test

(Bevan & Kendall, 1971; Mann, 1945) for the 95% confidence level.

Figure 5 provides spatial maps of the TAVG trends for 1921 to 1989 and 1990 to442

2022. Statistically significant cooling trends in NClimGrid are found over the southern443

United States (Figure 5a), which are close to the warming hole region for this period (Mascioli444

et al., 2017). The observational trends are also compared to SPEAR MED and its par-445

allel natural forcing-only simulation (SPEAR MED NATURAL) in Figure 5b-c, which446

does not simulate any long-term TAVG trends in their ensemble means. However, greater447

warming is found in observations for the more recent past (1990-2022; Figure 5d), which448

is largest over the Southwestern United States. The warming hole spatial pattern is again449

found over the Central United States (Figure 5d). In comparison to observations, SPEAR MED450
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simulates greater ensemble mean warming over the entire CONUS and shows the largest451

TAVG trends over the northern Rocky Mountains (Figure 5e). Without anthropogenic452

forcings, such as greenhouse gases or aerosols, Figure 5f reveals little to no warming sim-453

ulated over CONUS as found in the ensemble mean of SPEAR MED NATURAL. Lastly,454

comparing over the entire 1921 to 2022 historical record, we find that the ensemble mean455

of SPEAR MED simulates slightly greater warming trends over CONUS (Figure S3b)456

and does not show evidence of the warming hole as in Figure S3a. Though it remains457

unclear whether this is simply due to internal variability in the observational record, which458

would not be captured in a composite of the ensemble mean trends of a large ensemble459

(Eischeid et al., submitted).460

Focusing on JJA mean maximum and minimum temperatures, Figure S4 shows larger461

recent trends in TMAX than TMIN across the Northern and Western United States in462

the observed record. Consistent with previous findings, the warming hole is also more463

prominent in TMAX. This is reflected by an area of insignificant cooling across the South-464

eastern United States (Figure S4a). Although SPEAR MED again simulates greater pos-465

itive trends in TMAX (Figure S4b) and TMIN (Figure S4d) for the CONUS (exceed-466

ing 1◦C per decade at its local maximum), there are similarities in the spatial pattern467

of mean warming compared to NClimGrid. This includes a relative maximum in warm-468

ing over the Western United States and relative minimum over the Southeastern United469

States (Figure S4d,b).470

Lastly, we show in Figure S5 the JJA mean CONUS TAVG for NClimGrid com-471

pared to a collection of 30-member large ensembles of SPEAR MED, but using differ-472

ent radiative forcing scenarios from 2015 to 2100. This includes future projections from473

SSP1-1.9, SSP2-4.5, and SSP5-8.5, which are compared to the natural-only forcing ex-474

periment of SPEAR MED NATURAL from 1921 to 2100. The forced response in the475

SPEAR MED historical simulations only begins to clearly rise outside the variability in476

the natural forcing simulation between 1990 and 2000. This occurs a decade later when477

comparing NClimGrid to SPEAR MED NATURAL. While there is a large range in pro-478

jected ensemble mean JJA TAVG change across the climate change scenarios to 2100,479

the uncertainty due to internal variability alone is almost 2◦C across the ensemble spreads.480

Notably, we also find that the ensemble mean TAVG begins to cool by 2040 for the ag-481

gressive climate mitigation scenario of SSP1-1.9. This continues through the end of the482

21st century for SSP1-1.9. We also point out that there are only negligible differences483
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across future forcing scenarios in the ensemble means of JJA TAVG until between 2030484

and 2040, but by after 2080, there is very little overlap in their ensemble spreads due to485

the greater effects of projection scenario uncertainty.486

4.2 Predictions by Neural Networks487

We now turn to the machine learning results in Figure 6, which shows the skill of488

the ANN for predicting the year of CONUS maps of TAVG, TMAX, or TMIN. Note that489

Figure 6a is from the same ANN as the one displayed in the annotated schematic in Fig-490

ure 3. Again, we focus our results on only the testing ensemble members from SPEAR MED,491

which are data that the ANN has never seen before. The testing data predictions (blue492

scatter points) closely follow the 1:1 line (or perfect prediction) in all three ANNs, which493

suggests that the ANN is able to distinguish individual JJA temperature maps despite494

the background noise of internal climate variability. The robustness of these results to495

different ANN architectures and ridge regularization parameters are shown in Figure S6496

for TAVG, which are each assessed for 20 ANN iterations that used different combina-497

tions of training, validation, and testing ensemble members and random initialization498

seeds. The median MAE score from this distribution of ANNs is displayed in Figure S6h499

for the architecture used to produce Figure 6 (see Section 3.1). This helps to ensure that500

our high skill is not simply due to the chance that our ANN performed well on only one501

subset of testing data or overfit on the training ensemble members.502

The results for the observational predictions are also shown in Figure 6. To restate503

from earlier, these predictions are obtained by inputting maps of JJA temperature into504

the ANN after it has already been trained and tested on the climate model large ensem-505

ble data. However, unlike the predictions for SPEAR MED, we do not find that the ANN506

can correctly predict the year during most of the 20th century for TAVG, TMAX, or TMIN.507

As described in Rader et al. (2022), since the ANN is not confident in predicting the year508

of a given temperature map, it tends to predict around the same year in the middle of509

the entire time series (i.e., to reduce its potential error penalty in the loss function). How-510

ever, especially for TAVG and TMIN, we find that the ANN observational predictions511

begin to lie on the 1:1 line after around 1995. One measure that can be used to reveal512

whether the ANN has identified patterns of forced change is by evaluating the order of513

the predicted years (Labe & Barnes, 2021). Thus, this suggests that the ANN is begin-514

ning to identify common patterns of forced climate change in NClimGrid that were learned515
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Figure 6. (a) Predictions of SPEAR MED testing ensemble members by the ANN for in-

put maps of TAVG averaged over JJA. The actual year is denoted on the x-axis and the pre-

dicted year on the y-axis. Red markers are shown for ANN predictions after inputing maps

from NClimGrid. A red line is displayed showing the linear least squares regression through the

NClimGrid predictions along with its corresponding R2 value. A perfect prediction (1:1 slope)

is annotated behind all ANN predictions with a solid gray line. (b) As in (a), but for an ANN

trained and tested on maps of TMAX. (c) As in (a), but for an ANN trained and tested on maps

of TMIN.

from the SPEAR MED temperature maps in more recent years. As discussed later, we516

relate this point to the ToE of observed temperature change.517

Since the SSP5-8.5 radiative forcing may be an unrealistic future climate scenario518

(Peters & Hausfather, 2020), we examine our results using ANNs trained on TAVG maps519

from the same historical forcing in SPEAR MED, but then following either the SSP1-520

1.9 pathway (Figure S7a) or SSP2-4.5 pathway (Figure S7b). Overall, we find very sim-521

ilar skill for the testing ensemble member predictions across the SSP scenarios relative522

to SSP5-8.5 (Figure S7c), which is used throughout the remainder of the study. The pre-523

dictions for inputs of TAVG from NClimGrid are also strikingly similar. We do point out524

that there is some higher testing data error toward the end of the 21st century, especially525

for SSP1-1.9 (Figure S7a), which suggests that the forced patterns of change may be-526

come less prominent after climate mitigation efforts (Figure S5). This implies more ev-527

idence for highlighting that the ANNs are learning to extract time-evolving climate sig-528

nals, including from within a single ensemble member’s realization of internal climate529

variability. Both of these detection outcomes are not as easily addressed by traditional530

signal-to-noise time-mean statistics.531
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Figure 7. (a) Predictions of SPEAR LO testing ensemble members by the ANN for input

CONUS maps of TAVG averaged over JJA. The actual year is denoted on the x-axis and the

predicted year on the y-axis. Red markers are shown for ANN predictions after inputing maps

from NClimGrid. A perfect prediction (1:1 slope) is annotated behind all ANN predictions with

a solid gray line. The Root Mean Squared Error (RMSE) for the SPEAR LO testing ensemble

members is included for predictions over the actual years of before and after the year 1990. (b)

As in (a), but for SPEAR MED. (c) As in (a), but for SPEAR MED NATURAL. (d) As in (a)

but for SPEAR LO predictions based on input maps of only the Western USA. (e) As in (a), but

for SPEAR LO predictions based on input maps of only the Central USA. (f) As in (a) but for

SPEAR LO predictions based on input maps of only the Eastern USA.
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Another possibility is that our ANN inferences made on the observational maps532

are sensitive to the choice of data product. We evaluate this prospect in Figure S8 by533

inputting maps from either ERA5 reanalysis (Figure S8a) or 20CRv3 reanalysis (Fig-534

ure S8b). The results from ERA5 are very similar to NClimGrid and once again indi-535

cate that only by about 2000 is the ANN able to identify the order of the years of the536

CONUS maps with a high degree of accuracy. On the other hand, we find greater di-537

vergence in predicting the year for maps of 20CRv3. This could be due to the lower res-538

olution of the training and testing data (i.e., LOW grid; Section 2) and/or a result of539

the discontinuity in the TAVG anomalies prior to 1980 (Figure S1). As a result of the540

greater uncertainties in the early 20CR data and lack of available data for the Dust Bowl541

era in ERA5, we focus on NClimGrid for the remainder of this study.542

To identify the spatial regions that are important for the ANN testing skill for SPEAR MED,543

we evaluate composites of the XAI relevance maps in Figure S9 for the LRPz, LRPϵ, and544

Integrated Gradients methods. These composites are assessed over the entire time se-545

ries from 1921 to 2100. Again, positive areas can be interpreted as regions that were more546

relevant for the overall ANN yearly predictions. Although there are some small differ-547

ences outlined between the LRP methods and Integrated Gradients, all three compos-548

ites reveal that the northern Rocky Mountains, such as in western Montana, are an im-549

portant indicator region. Other relevant temperature regions include areas in the East-550

ern United States, especially in southern Florida and on the leeward side of the Appalachian551

Mountains. There is also a notable gradient along this topographic boundary, with neg-552

ative areas of relevance (i.e., locations that pushed the ANN to predict another year/decade)553

stretching from the Ohio Valley to western New York State.554

Although the ANNs are clearly able to learn a climate signal that distinguishes one555

climate model temperature map year from another, this does not necessarily imply it is556

related to anthropogenic forcing. We therefore explore this possibility in Figure 7b, which557

shows the predictions for an ANN trained on SPEAR MED compared to the simulation558

with only natural forcing (Figure 7c). This reveals that the ANN is no longer able to make559

an accurate prediction of the year when trained on maps from SPEAR MED NATURAL.560

Similarly, there is a much larger temporal spread in predictions after inputting NClimGrid561

data into this trained ANN (Figure 7c) compared to the SPEAR MED network. That562

is, the ANN is likely using the response to external forcings, such as those prescribed in563

SPEAR MED, to more skillfully predict the year of summertime temperature maps even564

–24–



manuscript submitted to Earth’s Future

when temperature trends are weaker prior to 1990 (Figure 2). Having said that, there565

is slightly smaller spread in the earlier yearly testing predictions of SPEAR MED NATURAL,566

which could be due to the ANN detecting a minor influence of solar or volcanic forcings.567

We did briefly explore training on an simulation of SPEAR with anthropogenic aerosols568

held fixed to 1921 levels (not shown), but found similar yearly map predictions as those569

from using SPEAR MED, which implies a limited role for anthropogenic aerosols on our570

ANN ToE results.571

As noted by the results when evaluating 20CRv3, a last possibility is that train-572

ing on the high spatial resolution of SPEAR MED is having an important role in the skill573

of the testing ensemble members. Put in another way, the ANN could be more likely to574

weight spatial information, such as temperatures around topographical gradients, for iden-575

tifying the relevant climate indicators. We can compare this effect by training on data576

with the LOW grid from the SPEAR LO configuration, which is demonstrated in Fig-577

ure 7a. In addition to higher Root Mean Squared Error (RMSE) for SPEAR LO pre-578

dictions before and after 1990, there is also greater spread in prediction years after in-579

putting NClimGrid TAVG maps. Similar to earlier, the robustness of the ANN skill for580

training and testing on SPEAR LO across different architectures is shown in Figure S10.581

Thus, the overall effect of grid size is explored more in Section 4.2.2.582

4.2.1 Regional Variations in Timing of Emergence583

So far, we have demonstrated that an ANN can distinguish the year of a given map584

of summertime temperatures across the contiguous United States after training on a high-585

resolution climate model large ensemble (SPEAR MED). Consistent with recent work586

(e.g., Barnes et al., 2020; Labe & Barnes, 2021; Rader et al., 2022), the ANNs here are587

learning time-evolving temperature patterns associated with external forcing to differ-588

entiate each individual year and in the correct sequential order. Moreover, the ANNs can589

make skillful predictions on the order of temperature map years from out-of-sample ob-590

servations, but only in the last decade or two.591

To associate the period when the ANN predictions for observations begin to fall592

along the 1:1 prediction line, we compute the observed ToE following the methods in Sec-593

tion 3.2 and outlined in Figure 3. In short, we find the maximum predicted year dur-594

ing the 1921-1950 reference period and then identify the ToE as the point where the forward-595
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looking ANN predictions no longer fall below this historical maximum. This is first cal-596

culated using NClimGrid maps of CONUS that are seasonally averaged for JJA. To en-597

sure the robustness of our observed ToE estimates, we conduct 100 ANNs that are trained598

on SPEAR MED and use the same architecture as previously outlined. The uncertainty599

spread in these ToE predictions, as displayed in Figure 8a for TAVG, TMAX, and TMIN,600

can be attributed to differences in ensemble members used for training and validation601

and through the choice of 100 different random initialization seeds. Figure 8b displays602

the Spearman’s rank correlation calculated between the actual and predict years across603

the NClimGrid inputs as a measure of skill for the ANN to correctly identify the order604

of the years (Labe & Barnes, 2021). Albeit, by construction, earlier ToEs will also cor-605

respond to higher correlation coefficients.606

Figure 8. (a) Distribution of ToE predictions for inputs of CONUS maps using NClimGrid

after training ANNs on SPEAR MED data of TAVG, TMAX, or TMIN. The median ToE is

shown with a thin white horizontal line. The mean ToE is shown with a dashed black line. Each

distribution of ToE years is constructed from 100 ANN iterations (use of random initialization

seeds and different combinations of training, testing, and validation ensemble members). (b) As

in (a), but for the distribution of Spearman’s Rank correlation coefficients between all the actual

years and predicted ANN years for NClimGrid data.

The earliest median ToE is found for maps of TMIN, which is calculated to be 2003607

(R=0.78). On the other hand, the latest median ToE occurs in 2018 for TMAX (R=0.31).608

An important caveat, however, is that these ToE estimates could be biased early. This609

–26–



manuscript submitted to Earth’s Future

is mainly an issue for late ToE predictions, like for TMAX, where by construction there610

are few future years to compare with against the historical 1921-1950 maximum. We also611

cannot rule out temporary reductions in temperature for a single JJA future year as a612

result of internal climate variability (Maher et al., 2020) or from the influence of an event613

like an explosive volcanic eruption (Sear et al., 1987).614

We now investigate the ToE for the three selected regions across the United States615

by separately training on mean JJA maps of TAVG, TMAX, and TMIN from SPEAR MED,616

but only over each smaller domain (outlined in Figure 2). Figure 9 shows the yearly pre-617

dictions for these testing ensemble members and for regional inputs from NClimGrid.618

If a forced signal has emerged in the observational record according to our definition, then619

the ToE is annotated per each region. Note that if the estimated ToE is within five years620

of present day (2022), then cautionary asterisks are included next to the ToE year, given621

the greater uncertainty that future predictions over the next several years will remain622

above the base period maximum. Across all three regions of CONUS, the earliest ToE623

occurs for TMIN, especially for the Eastern United States at an estimate of 1998 (R=0.84)624

(Figure 9f). We also find that the results for TMIN closely follow the 1:1 line, especially625

after 1950 for the Central and Eastern United States (Figures 8e-f). This suggests that626

these regional climate signals learned by the ANN after training on SPEAR MED are627

generalizable to NClimGrid. Most regions have not observed the emergence of a signal628

in JJA TMAX (Figure 9a-c), and the earliest possible estimate here is for the Western629

United States (ToE=2014, R=0.28) (Figure 9a). These results are consistent with re-630

cent station-based studies finding greater warming rates in TMIN than TMAX (Meehl631

et al., 2009; Abatzoglou & Barbero, 2014; Meehl et al., 2016; Program, 2018).632

In addition to the observational results, we find that the testing predictions from633

SPEAR MED closely follow the 1:1 line, especially after 1990. The lowest testing RMSE634

is found for the Western United States, and generally the worst ANN ensemble mem-635

ber skill is found for TMAX and TAVG in the Eastern United States (Figures 8c and636

8i). At the same time, the overall skill in the early to mid-20th century continues to be637

surprising, especially given the lack of ensemble mean warming for all three regions (Fig-638

ure S2). Therefore, in order to provide a baseline with a more traditional linear method639

of calculating the ToE at each grid point, we compare the ANN predictions with the es-640

timated ToE as shown in Figure S11 following Lehner et al. (2017) (see Section 3.2). For641

most regions of CONUS, the more conventional ToE in SPEAR MED for TAVG, TMAX,642
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Figure 9. ANN predictions of SPEAR MED testing ensemble members of TMAX maps for

the Western USA (a), Central USA (b), and Eastern USA (c). The actual year is denoted on the

x-axis and the predicted year on the y-axis. Red markers are shown for ANN predictions after

inputing maps from NClimGrid. A perfect prediction (1:1 slope) is annotated behind all ANN

predictions with a solid gray line. The RMSE for the SPEAR MED testing ensemble members is

included for predictions over the actual years of before and after the year 1990. If the observed

ToE occurs for the NClimGrid predictions, then it is denoted for each region with a bright red

marker and vertical line. If five or less years of predictions exist after this calculated ToE, then it

is annotated with two added asterisks. (d-f) As in (a-c), but for input maps of TMIN. (g-i) As in

(a-c), but for input maps of TAVG.
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and TMIN occurs in the 1990s or 2000s, though there is some evidence of an earlier ToE643

across the higher elevations of the Western United States (Figure S11).644

Figure 10. (a-f) Composite of LRPz heatmaps from predictions based on NClimGrid, which

are averaged over 2005 to 2022 for ANNs trained on SPEAR MED data using different L2 regu-

larization values (0.001, 0.01, 0.1, 0.5, 1, 5). The L2 value used for the main results of the paper

is labeled in bold font. Positive relevance indicates regions that pushed the ANN to make its

predicted year. Negative relevance suggests areas that tried to push the ANN away from its

predicted year.

Finally, we evaluate the XAI conclusions for NClimGrid (after training on SPEAR MED)645

by compositing those heatmaps over 2005 to 2022 in Figure 10a. This temporal range646

corresponds more closely to the period when a temperature signal has emerged (Figure647

8). As discussed in Section 3.1, the inclusion of ridge regularization can be a useful pa-648

rameter to limit the amount of overfitting. Likewise, it is also useful for interpreting the649

explainability results for how an ANN is making its predictions, as it is analogous to spa-650

tial smoothing for removing spurious outliers (Sippel et al., 2019; Barnes et al., 2020).651

These NClimgrid relevance maps are shown in Figure 10 for ANNs trained on SPEAR MED652

but using different regularization parameters. For lower ridge parameters, we find greater653

noise when interpreting the XAI maps, but overall higher positive relevance areas over654

portions of the Western United States in the vicinity of topography (Figure 10a-c). As655

the ridge parameter increases (i.e., penalizing larger weights to spread out the impor-656
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tance more evenly to reduce noisy collinearity), the spatial patterns of the XAI maps are657

smoothed, but note that the error of the ANN testing data skill begins to subsequently658

grow too (Figure S6). For the NClimGrid relevance maps in Figure 10d-f, we find that659

ANN is leveraging temperature patterns in the Eastern and Western United States (pos-660

itive relevance) to make its yearly predictions. Notably, this spatial pattern of relevance661

somewhat resembles the summertime warming hole (Mascioli et al., 2017).662

4.2.2 Influence of Horizontal Resolution663

As this stage, it is evident that the ANNs are leveraging different spatial features664

to predict the year depending on the availability of fine detail on a given map grid, es-665

pecially at temperature gradients around high and low geographic elevations. To eval-666

uate this finding more closely, we now compare our regional results in Figure 7 with ANNs667

trained and tested on coarser regional maps from SPEAR LO. Figure 7d-f shows these668

regional predictions of JJA TAVG and overall indicates poorer testing ensemble mem-669

ber skill for the Western, Central, and Eastern United States. In fact, the ANN is un-670

able to find any time-evolving signals in SPEAR LO for the Eastern United States un-671

til the late 1990s. There is also greater spread in the yearly predictions after inputting672

LOW grid size maps from NClimGrid. As such, this result is consistent with Section 4.2673

that found lower skill in predicting the year of CONUS maps after training on SPEAR LO674

compared to SPEAR MED. To better compare the prediction skill between the two dif-675

ferent spatial resolutions of SPEAR MED and SPEAR LO, we show in Figure 11 the676

distribution of MAE scores across 20 different ANNs with the same architecture, but for677

different combinations of training, testing, validation data and random initialization seeds.678

We also compare the MAE of ANNs trained on the FLOR climate model large ensem-679

ble (MED grid) compared to ANNs trained on maps of CONUS from FLOR, but inter-680

polated onto the LOW grid spacing (FLOR (LO); see Section 2.1). For both of these ANN681

experiments, we again find lower MAE scores for the ANNs trained on the maps with682

higher spatial resolution (MED grid). This performance is also contrasted to the exper-683

iment without any anthropogenic forcing (not shown). The results of SPEAR MED NATURAL684

show a median MAE score over 1921 to 2100 for its best performing ANN architecture685

that is about 22 years, more than four times the MAE of the ensemble with anthropogenic686

forcing (lowest MAE on one ANN iteration/seed is still more than 18 years).687
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Figure 11. (a) Distribution of MAE scores for validation predictions over 1921-1989 based on

inputs of CONUS maps for the overall ANN architecture with the lowest median MAE (e.g., Fig-

ure S6) after training neural networks on individual climate model large ensembles with the MED

resolution (see Section 3.1) (SPEAR MED or FLOR). Each distribution of scores (red points) is

constructed from 20 ANN iterations (different combinations of training, testing, and validation

ensemble members and random initialization seeds). The median score is shown with a thin black

horizontal line. (b) As in (a), but for MAE scores calculated over 1990-2100. (c) As in (a), but

for MAE scores calculated over 1921-2100. (d-f) As in (a-c), but for ANNs trained on individual

large ensembles with the LOW resolution (SPEAR LO, FLOR (LOW), CESM1-LE, CESM2-LE,

MIROC6-LE).
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Figure 11 also compares the skill using SPEAR and FLOR to other climate model688

large ensembles, but this is only possible for their coarser resolution (LOW grid). Over-689

all, the largest error in predicting the year of summertime TAVG maps is found for MIROC6-690

LE. Notably, and despite the coarser resolution, the lowest error is found for CESM2-691

LE across all climate model large ensembles for both before and after 1990. This is ex-692

amined more closely in Figure S12 for a single ANN using MIROC6-LE, CESM1-LE, and693

CESM2-LE along with the predictions after inputting observations from NClimGrid af-694

ter training each network. Taking into consideration that there are more ensemble mem-695

bers for these three climate models (compared to 30 total members in SPEAR and FLOR),696

one possibility for the better skill in CESM2-LE is greater availability of training data.697

Therefore, we conduct three more ANNs that are shown in Figure S12d-f, but use the698

same number of training and testing data ensemble members as done with SPEAR. Close699

results are found, and for that reason it is unlikely that the differences in skill are due700

to more training data ensemble members. Similar to the testing data results, there is greater701

spread in the NClimGrid predictions after training on MIROC6-LE (Figure S12a,d). Mean-702

while, the NClimGrid predictions after training on CESM1-LE and CESM2-LE agree703

broadly well with those from the SPEAR ANNs, but a TAVG signal again only emerges704

by the late 1990s (i.e., predictions closer to the 1:1 line).705

4.3 Early 20th Century Temperature Signals in SPEAR706

A remaining question still across all of the results is how the ANN is able to dis-707

tinguish summertime temperature maps for the climate model large ensemble data prior708

to the late 20th century. Stated another way, what signals existed prior to 1990 when709

the forced ensemble mean warming trend hasn’t started to clearly emerge yet (e.g., Fig-710

ure 4)? One advantage of using feature attribution XAI methods is that a relevance map711

is obtained for each input sample. Accordingly, it’s then possible to take XAI compos-712

ites over different temporal periods to better understand the time evolution of the most713

relevant temperature signals. Figure 12 shows the relevance maps using the LRPz and714

Integrated Gradients methods for composites of SPEAR MED testing data before and715

after 1990. For the 1921 to 1989 period, both XAI methods reveal a hotspot over west-716

ern Colorado and generally muted relevance elsewhere across the United States. A sim-717

ilar relevance pattern is also found for the XAI results based on inputs of TMAX (Fig-718
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ure S13). Apart from that, the relevance maps for 1990 to 2100 are more similar to those719

described in Figure S9.720

We compare the effect of regularization parameter and ANN architecture choices721

on ANN skill for predicting the year of temperature maps from only 1921 to 1989. This722

is displayed in Figures S14 and S15 for ANNs trained on SPEAR MED and SPEAR LO,723

respectively. As previously discussed in Section 4.2.2, we again find better skill for the724

higher resolution spatial grid and when using a lower ridge parameter. Relevance maps725

for ANNs using different regularization parameters are composited for SPEAR MED in726

Figure S16, which reveals this effect of the ANN using smaller regional information, like727

over the Rocky Mountains, for predicting the year of JJA temperature maps. With larger728

ridge parameters comes worse ANN skill (Figure S6) but improved interpretability for729

the XAI maps (Figure S16d-f). Correspondingly, it is then likely that the ANN is learn-730

ing temperature indicators from finer spatial information, especially across western Col-731

orado, during this early 20th century period.732

In addition to testing data from SPEAR, the ANNs were also able to predict the733

year of CONUS maps from other climate model large ensembles (Figure 11 and Figure734

S12). We again turn to XAI methods in Figure S17, but alternatively for evaluating the735

temperature signals leveraged by the ANN after inputs of CESM2-LE. The spatial pat-736

terns of positive relevance in the early 20th century are different for CESM2-LE over 1921-737

1989 (Figure S17a-b) compared to SPEAR MED (Figure 12a-b). Instead, there are pos-738

itive areas of relevance derived from CESM2-LE over the Southeastern United States and739

again across portions of the Rocky Mountains but located north of the previous Colorado740

hotspot.741

Although there are no long-term temperature trends in the time-mean of SPEAR MED742

for the Western United States prior to around 1990 (Figure S2a), it is still possible that743

there are spatial patterns of temperature change. Figure S18 shows the linear TAVG trends744

for NClimGrid, SPEAR MED, and SPEAR MED NATURAL from 1921 to 1950. While745

observations reveal a few areas of cooling across the West, most of the CONUS does not746

have any statistically significant temperature trends. In contrast, we find a patch of warm-747

ing over Western Colorado in SPEAR MED, which closely aligns with the previously iden-748

tified XAI relevance hotspot (Figure 12a-b). Conspicuously, this warming is absent for749

TAVG trends in SPEAR MED NATURAL (Figure S18c), which indicates it could be750
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Figure 12. (a) Relevance heatmaps of TAVG using the layerwise relevance propagation z-rule

(LRPz) and (b) Integrated Gradients method for testing ensemble members from SPEAR MED

composited over 1921 to 1989. The composited heatmaps are smoothed using a Gaussian filter

to improve interpretability. Positive relevance indicates regions that pushed the ANN to make

its predicted year. Negative relevance suggests areas that tried to push the ANN away from its

predicted year. (c-d) As in (a-b), but for composites over 1990-2100.
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caused by anthropogenic forcing in SPEAR. We compare trends for TMAX and TMIN751

in Figure S19 and also find mainly similar results for the small warming trend over west-752

ern Colorado in the ensemble mean of SPEAR MED.753

To understand the possible physical drivers for this local warming in SPEAR MED,754

we calculate averages over a small box in western Colorado (outlined in Figure 2). We755

find that this warming in SPEAR is strongly correlated with decreasing evaporation rates756

(Figure S20a and Figure S21a), greater surface runoff, and even higher land surface tem-757

perature warming (not shown). Despite this evidence, we do not find any correspond-758

ing changes to precipitation or antecedent wintertime snowfall that could completely ex-759

plain this effect (not shown). It is necessary to consider, however, that this small warm-760

ing trend is still insignificant compared to the large spread of internal climate variabil-761

ity as simulated by the individual ensemble members over the region (Figure S20b-d).762

These trends are not found for the ensemble mean of SPEAR MED NATURAL (Fig-763

ure S21b), as it is important to recall that land use and land change fields are also set764

to 1921 levels in SPEAR MED NATURAL. We hence hypothesize that this small warm-765

ing signal over western Colorado could be related to the land surface forcing in SPEAR MED,766

such as through the prescription of interactive vegetation influencing the surface energy767

budget, but this is outside the scope of this study, and more work would be needed to768

answer this question.769

Finally, one last point we wish to make is that despite the ANN using this tem-770

perature signal over western Colorado to help predict the year of a given map, it is not771

the only reason for the high 1921-1989 skill (Figure 10). This is reflected in the results772

from Figure 9, which shows that the ANN can still reasonably predict the year even for773

regions of CONUS that do not include western Colorado.774

5 Discussion and Conclusions775

In this study, we used a machine learning approach to identify the ToE of summer-776

time mean temperature extremes across the CONUS. There are several differences in this777

methodology compared to more traditional signal-to-noise metrics used in earlier ToE778

works. One advantage is that the ANN needs to learn time-evolving patterns of forced779

change to make an accurate prediction, instead of only comparing time-mean metrics over780

different epochs. In fact, we show that after training, the ANN is able to resolve these781
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forced signals even within a single ensemble member, i.e., one realization of internal cli-782

mate variability. Changes in these temperature signals can then be visualized by apply-783

ing XAI methods from one year to the next. Further, the ANN has the ability to learn784

and identify (non)linear relationships across the entire spatial map to associate with the785

ToE. These temperature patterns could differ from metrics calculated at the point-by-786

point level or aggregate over larger domains, which all could subsequently impact ToE787

estimates. By design, if observational predictions fall close to the 1:1 line, this suggests788

that climate change patterns in the training data are generalizable to the real-world. This789

is found to be the case in our ANN framework for the last two recent decades across dif-790

ferent large ensemble climate models used for training.791

We calculate the ANN-derived ToE by comparing to an early 20th century base-792

line period, which encompasses the record heatwaves of the Dust Bowl-era. Nonetheless,793

we find the emergence of a forced signal as early as the late 1990s for the observed TMIN794

in the Eastern United States. More broadly, we also find the emergence of summertime795

TAVG and TMIN across the entire conterminous United States. In other words, the ANN796

can still distinguish a climate signal in JJA temperature maps during recent years, de-797

spite the overall observed mean not exceeding the record warmth of the mid 1930s. It798

is also possible that if the size of the spatial domain of the temperature maps were in-799

creased, such as to consider all of North America, that the ToE may be identified even800

earlier than found in this work (e.g., Barnes et al., 2019; Sippel et al., 2020; Labe et al.,801

2023).802

The ANNs are also able to make accurate predictions of the year for a given tem-803

perature map using the climate model large ensemble data, and they are skillful before804

the temperature response to greenhouse gas forcing overwhelms later in the 20th cen-805

tury. This suggests that the ANN is still able to leverage patterns of temperature indi-806

cators for distinguishing these temperature maps. We find that this is related to the higher807

spatial resolution of the training data particularly in the vicinity of complex topogra-808

phy. We perceive that this is not simply related to more available data samples, as we809

do not find any skill improvement when training on additional individual ensemble mem-810

bers. Rather it is more likely this is related to the ANN learning information from the811

high-resolution grid and thus the ability for a climate model to represent finer temper-812

ature structures and gradients.813
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To consider this point further, these results indicate that there is considerable po-814

tential to use the machine learning methods described in this study to detect the emer-815

gence of climate signals much earlier than with conventional methods, but the ability816

to realize this potential is likely hindered by climate model error or biases. For exam-817

ple, this could be analogous to the difference between potential predictability and fore-818

cast skill in climate prediction studies. If you calculated the ToE in the same way de-819

scribed here but using individual ensemble members as truth, you could define a “po-820

tential ToE” that would be much earlier than the actual ToE (again, analogous to pre-821

dictability). The difference between the actual and potential ToE likely would reflect er-822

rors in the simulation of certain physical processes that the climate model deems impor-823

tant for distinguishing forced changes from internal variability. The ability to realize that824

potential ToE depends, however, on whether those processes are realistic and if the gap825

between simulated and observed changes can be narrowed. In this work, the gap also seems826

to be related to GCM resolution, as the earliest potential ToE generally occurs in the827

higher-resolution simulations. Similarly, we are also limited by the ability of most cli-828

mate models to accurately simulate the temperature variability realized over the 20th829

century across the CONUS (i.e., the warming hole spatial pattern) (Eischeid et al., sub-830

mitted).831

Moving forward, our findings have several potential broader implications for future832

work related to using machine learning methods on climate science applications. While833

many XAI applications have regridded to coarser inputs because of lower computational834

cost, this may come at the expensive of better machine learning model performance that835

potentially could be achieved if using high-resolution data. For example, it could be in-836

teresting to further explore this effect for applications of machine learning in subseasonal837

to decadal prediction (Merryfield et al., 2020; Meehl et al., 2021), where neural networks838

may be able to derive more information from features such as simulated mesoscale eddy839

activity. But this remains an active area of research even for the climate model devel-840

opment community (Hewitt et al., 2017; Scaife et al., 2019). It could also be interest-841

ing to leverage these XAI tools for diagnosing biases in GCMs, such as the utility briefly842

explored here for identifying an unexpected temperature response in western Colorado843

which may be related to the land surface forcing fields.844

However, having a greater number of input samples (e.g., higher resolution input845

map) can also raise the risk of statistical overfitting. It also tends to result in lower in-846
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terpretability for understanding the machine learning models, even after applying XAI847

attribution methods (Samek et al., 2019; Barnes et al., 2020; Toms et al., 2020). There848

are thus tradeoffs to balance in all of these machine learning design choices. Despite our849

observational ToE estimates, which are found to be robust across a range of ANN ex-850

periments and training data sets, we propose that it would be helpful for more work to851

investigate the sensitivity of machine learning model skill to variations in input data across852

a variety of climate science applications.853
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