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SUMMARY

The application of absolutely calibrated piezoelectric (PZT) sensors is increasingly used

to help interpret the information carried by radiated seismic waves in laboratory and

in situ seismology. In this paper, we revisit the methodology based on the finite ele-

ment method (FEM) to characterize PZT sensors. The FEM-based modelling tool is

used to numerically compute the Green’s function between a ball impact source, and

an array of PZT sensors used to detect laboratory-induced elastic stress wave propa-

gation excited by a unit step force-time function. Realistic boundary conditions that

capture the experimental conditions, are adopted to physically constrain the problem

of elastic wave propagation, reflection and transmission in/on the elastic medium. The

modelling methodology is first validated against the reference approach (generalized ray

theory) and is then extended down to 1 kHz where elastic wave reflection and trans-

mission along different types of boundaries are explored. We find the Green’s functions

calculated for realistic boundaries have distinct differences between commonly employed
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idealized boundary conditions, especially around the anti-resonant and resonant frequen-

cies. Unlike traditional methods that use singular ball drops, we find that each ball drop

is only partially reliable over specific frequency bands. We demonstrate, by adding spec-

tral constraints, that the individual instrumental responses are accurately cropped and

linked together over 1 kHz to 1 MHz after which they overlap with little amplitude shift.

This study finds that ball impacts with a broad range of diameters as well as the corre-

sponding valid frequency bandwidth and equivalent seismic magnitude, are necessary to

characterize broadband PZT sensors from 1 kHz to 1 MHz. This work bridges the gap

between microcrack/damage mechanics and laboratory/in situ acoustic emissions (AEs)

by unraveling sources in terms of the physics that generates AE signals.

Key words: wave propagation; Fourier analysis; numerical modelling; seismic instru-

ments

1 INTRODUCTION

1.1 Application of PZT sensors to AE monitoring

As brittle rocks are subjected to external stress in a laboratory setting, localized and rapid

inelastic deformation events occur that are associated with the growth or appearance of

small defects at the grain-scale (from microns to millimeters), which can generate acoustic

emissions (AEs) (e.g., Lockner 1993; Grosse & Ohtsu 2008; Ishida et al. 2017). These emis-

sions can cause high-frequency vibrations, at frequencies ranging from tens of kHz to several

MHz, within rocks and are recorded by piezoelectric (PZT) sensors at known locations. In

the last decade, much effort has been made to improve our understanding of laboratory-

generated AEs in a quantitative manner (McLaskey & Glaser 2011; McLaskey et al. 2014;

Goodfellow 2015; Selvadurai 2019). These studies differ from previous AE studies, in that

they characterized the absolute mechanical energy released by fracturing processes due to
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the radiated waves in the stressed solids instead of the traditional parametric analysis of the

voltage measured by PZT sensors (Moradian et al. 2016).

Fracture-induced seismic stress waves are not limited to the laboratory scale; they are

also referred to as induced seismicity, a negative byproduct of engineering activities, such

as hydrocarbon storage and extraction, shale gas exploitation, mining operations, and im-

poundment of water behind dams (Grigoli et al. 2017). To help understand the induced

seismicity and manage the induced seismic risk in geoEnergy applications, local down bore-

hole networks of PZT sensors were developed for in situ AE monitoring at the decameter

scale (Kwiatek et al. 2011, 2017; Manthei & Plenkers 2018; Goodfellow & Young 2014; Zang

et al. 2016; Kneafsey et al. 2018; Amann et al. 2018; Schoenball et al. 2019; Villiger et al.

2020). Recently, Villiger et al. (2020) reported on the induced seismicities caused by hy-

draulic stimulation experiments in a 20 m × 20 m × 20 m crystalline rock volume at the

Grimsel Test Site, Switzerland. They used calibrated PZT sensors in boreholes surrounding

the injection locations and monitored the induced seismic events in a magnitude range from

-6.2 to -2.5 over 1 to 50 kHz (Villiger et al. 2020).

1.2 Absolute characterization of PZT sensors

Recent advances in both laboratory and in situ AE monitoring during fracturing experiments

has greatly improved our understanding of microcrack mechanisms over broadband ranges

of source dimension and frequency. Prior to exploring such seismic characteristics, it is

essential to absolutely characterize the PZT sensors utilized in both laboratory and in situ

applications so that the information conveyed via the ground motions can be interpreted

from the measured voltages.

Fig. 1 shows the five concepts from the source to the receiver that are used in our

analysis: (1 ) active source, (2 ) Green’s function, (3 ) theoretical displacement, (4 ) voltage
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Figure 1. Schematic drawing of concepts to illustrate the operation principle of PZT sensor that
link the active source to generated voltage signals measured using a data acquisition system.

signal and (5 ) instrumental response. Elastic waves propagate through a body excited by an

active source. This causes vibrations through the body and theoretical displacement within

or along the boundary (Σ) of the body (Ω) is estimated using Green’s functions between the

location of the source and receivers. The time-varying displacement along the boundary (Σ)

deforms the PZT sensors and is then distorted into the voltage signal that is acquired by the

data acquisition (DAQ) system. We aim to quantify the instrumental response of the PZT

sensors, which is defined as the absolute calibration or characterization of PZT sensors.

Green’s functions, used to map theoretical displacement to active source, are vitally

important for PZT sensor characterization. McLaskey & Glaser (2012) investigated elas-

tic stress wave propagation within a semi-infinite homogeneous and isotropic elastic plate,

which was first solved by Lamb (1904) and known as ”Lamb’s problem”. More specifically,

Lamb’s problem focuses on calculating the elastic disturbance caused by stress waves due to

a point force in/on a half space. To find the solution of Lamb’s problem (or ”Green’s func-

tion”), researchers numerically solved Lamb’s problem starting from generalized ray theory

(Johnson 1974; Pao & Gajewski 1977; Hsu 1985; McLaskey & Glaser 2012).

Two main concerns limit the application of the generalized ray theory to solve Green’s
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functions. First, recent advances in both laboratory-generated and in situ AE monitoring

have shown that the corner frequency of amplitude spectra of AE events could be as low as

to 1 kHz (Wu & McLaskey 2019; Villiger et al. 2020). To model this we require the spectra

of Green’s functions down to 1 kHz in order to calibrate PZT sensors to the same frequency

band. This requires large computational loads to obtain the huge number of possible ray

paths of Green’s functions. Second, sample finiteness makes the semi-infinite conditions

associated with Lamb’s problem unrealistic for laboratory investigations and, therefore, the

ray paths of side reflections from a finite elastic plate are non-negligable.

The finite element method (FEM) is an alternative and promising approach to obtain

the numerical Green’s function (NGF) where more realistic physical boundary conditions,

similar to that of an experimental configuration, can be modelled. Although significant con-

tributions have been made on FEM applications at the engineering-scale (e.g. tens of meters

to hundreds of kilometers) with regard to elastodynamic wave propagation (e.g., Ye et al.

2016), few researchers have extended the well-developed FEM codes to calculate Green’s

functions between sources and receivers in laboratory experiments of PZT sensor charac-

terization. Wu & McLaskey (2018) described a FEM analysis to obtain empirical Green’s

function (EGF) down to 1 kHz by modelling long-duration elastic stress wave propagation

created by ball impacts of various sizes on the top surface of a thick aluminum plate. Their

approach, however, requires knowledge of two separate numerical tools to obtain the EGFs.

This is undoubtedly challenging since codes vary in their complexity. Moreover, previous

methods employ a plate that is ‘free-floating’ in the air and therefore a free stress condition

is applied to all boundaries.
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1.3 Overview of main scientific contributions in this study

An improved description of the FEM modelling methodology to obtain NGFs from 1 kHz to

1 MHz is provided. The methodology is first validated against another approach based on

the generalized ray theory (Hsu 1985) over a high-frequency range (from 100 kHz to 1 MHz)

and then extended to the low-frequency analysis (from 1 kHz to 100 kHz). We investigate

a variety of boundary conditions to simulate elastic stress wave propagation, reflection and

transmission in/on an elastic medium excited by a unit step force-time function, and use

the commercial FEM software, COMSOL Multiphysics (COMSOL AB 2019). The NGFs of

a group of source-receiver pairs are obtained and then the corresponding displacement at

the location of the receivers is derived.

We built a simple calibration station to perform ball impact tests over a range of diam-

eters and used PZT sensors to measure the seismic displacement field in terms of voltage

signal. Our analysis characterizes the broadband instrumental responses through accurately

cropping and linking a group of segmented instrument responses over a valid frequency

band in line with the solution accuracy of modelling methodology and quality of experimen-

tal data. Previous methods used to calibrate sensors have not provided the details to the

multi-diameter ball drop approach – a single ball drop is simply not capable of character-

izing a broadband understanding of the instrument response. As a result, observed seismic

events are interpreted improperly when coverting voltages to infered seismic source prop-

erties. Moreover, we extend the instrumental response analysis from a single sensor to an

array of PZT sensors from 1 kHz to 1 MHz, which is necessary to better constrain modelling

efforts at the laboratory and underground laboratory scales.
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2 THEORETICAL BACKGROUND AND EXPERIMENTAL SETUP

2.1 Instrumental response of PZT sensor

In Fig. 1, we study the theoretical displacement uk(x, t) in the k direction throughout the

medium at any location x and time t caused by a force-time function fj(ξ, τ) in the k

direction at point ξ and delayed time τ . Since elastic wave propagation has linear time-

invariant characteristics and due to the spatial reciprocity of the representation theorem

(Aki & Richards 2002), uk(x, t) can be expressed as the convolution of Green’s function

gkj(x, t; ξ, τ) and fj(ξ, τ)

uk(x, t) = gkj(x, t; ξ, τ) ∗ fj(ξ, τ), (1)

where * denotes the convolution operation. Note that the assumption of point representation

at the contact region of both the active source and PZT sensor is used, which is not exactly

true due to finite area of the active source and the aperture area of the PZT sensors. This

effect can be minimized by using a ball impact source and a conical-frustum PZT crystal

with minimal contact area; this is discussed further in Section 2.2.

The time-varying displacement uk(x, t) measured by the PZT sensors is then converted

into a voltage signal ψ(x, t), which is recorded by a connected DAQ system. The instrumental

response, ik(t), maps the measured voltage ψ(x, t) to the true mechanical input uk vibration

in the k direction. The mapping is assumed to satisfy a linear time-invariant system such

that

ψ(x, t) = uk(x, t) ∗ ik(t). (2)
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Figure 2. (a) General schematic of calibration station in the 1-2-3 directions, which consists of
electromagnetic holder, steel balls with different diameters, steel transfer plate, PZT sensor array,
extruded aluminum framework, etc. Concepts that link the active source to generated voltage
signals are listed here: force-time function f3(ξ, τ), Green’s function g33(x, t; ξ, τ), caused theoretical
displacement u3(x, t), voltage signal ψ(x, t) and instrumental response i3(x, t). (b) An array of PZT
sensors, fixed by array holder (yellow plate in (a)). Colors indicate their epicentral locations with
respect to the source.

We perform the deconvolution operation to Eq. (2) in the frequency domain to compute

Ik(ω) as

Ik(ω) =
Ψ(x, ω)

Uk(x, ω)
, (3)

where ω denotes the ordinary frequency. Ik(ω), Ψ(x, ω), and Uk(ω) are variables in the

frequency domain corresponding to ik(t), ψ(x, t), and uk(x, t), respectively.

To obtain an accurate instrumental response Ik(ω), we present the detailed analysis of

acquiring voltage Ψ(x, ω) in laboratory experiments (see Section 2.2) and numerically calcu-

lating Green’s function gkj(x, t; ξ, τ) (see Section 2.3). The force-time function is determined

from Hertzian impact theory (Reed 1985) (see Appendix A).

2.2 Experimental setup: PZT sensor calibration station

In this section, we introduce the laboratory experiments performed on a sensor calibra-

tion station (see Fig. 2(a)). We characterize the performance of PZT sensors to measured
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kinematic motion excited by elastic stress wave propagation through an elastic isotropic,

homogeneous steel transfer plate due to the active source produced by a steel ball impact.

A detailed comparison of characteristics, (dis)advantages and trade offs of laboratory active

sources was explained by Breckenridge et al. (1990).

An extruded aluminum framework is used to support an overlaid square steel transfer

plate (35 cm × 35 cm × 5 cm). Pads made of neoprene (4 yellow patches, 3 cm × 3 cm

× 0.5 cm), with low mechanical impedance (∼ 1/14 of steel), are used to effectively block

elastic wave refraction into the aluminum framework. An electromagnetic holder is built in

the upper crossbeam of the aluminum framework. Once the power is turned off, the steel

ball (green) is released and drops down freely until impact at the central location of the top

surface of the steel transfer plate.

In Fig. 2(b), we show 13 PZT sensors with the same KRN Services (model KRNBB-PC)

mounted at the bottom surface of the steel transfer plate fixed by an array holder (see yellow

plate in Fig. 2(a)). The array holder has 7 × 7 locations with 23 mm spacing in both the 1

and 2 directions, respectively. Since stress waves caused by ball impact in the 3 -direction are

symmetric about the 1-3 and 2-3 planes, we have focused most of our PZT sensor converge

to one quadrant of the array holder. Similar colors for the PZT sensors locations (A1 to D1)

in Fig. 2(b) represent the redundant epicentral locations with respect to the source. We use

the take-off angle θ to characterize 7 possible seismic ray paths between the source and PZT

sensors, θ = 0◦ (A1); 24.7◦ (A2, B1); 33.0◦ (B4); 42.6◦ (A3, B2, C3, C4); 52.4◦ (C1, D1);

54.0◦ (A3, B4); 62.9◦ (C2). The sensor performance analysis over these take-off angles is

discussed in Section 5.3.

Note that the contact area between the circular tip of the KRNBB-PC sensors and the

lower surface of the steel transfer plate has a radius of 0.75 mm, which is small relative to

the dimension of the steel transfer plate. Also, the contact area between the ball and the
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upper surface of the steel transfer plate at the time of impact is negligible. Thus we assume

that the point characteristics of the source and receiver in Section 2.1 is satisfied. These

sensors are sensitive to ground motion in the 3-direction over a wide frequency range (1 kHz

to 1 MHz) and their spectral characteristics have been well documented (Glaser et al. 1998;

McLaskey & Glaser 2010, 2012; Selvadurai 2019; Ono 2019).

To acquire voltage ψ(x, t), a DAQ system (Elsys Instruments TraNET, 32 Channel

TPCE-2016-4/8) is connected with the PZT sensors with a sampling frequency Fs of 20

MHz per channel. The Nyquist frequency is 10 MHz so that the Fs is adequate enough to

perform sampling. Elsys AE amplifiers (AE-Amp) were used to provide the internal ampli-

fication (JFET, see Glaser et al. 1998) to sensors with 25 mA excitation and the gain was 0

dB. The detection threshold is set to 1.5 to 2 times higher than the background noise. This

ensures that no acoustic signal is missed due to low signal to noise ratio (SNR), especially

in the case of the impacts from the smallest steel ball.

To obtain instrumental responses, we need to perform Fast Fourier Transform (FFT) of

the measured signals (Bracewell 1986) over the frequency band from 1/Tw to Fs/2, where Tw

is the time window and Fs is the sampling frequency. In this case, when the frequency ap-

proaches the lower bound 1/Tw, low resolution of amplitude spectra can occur if not enough

low-frequency cycles are analyzed. A proper time window Tw is critical to accommodate

trade offs between spectra resolution and computational costs in modelling the elastic wave

propagation. We suggest that there should be at least n = 8 bins from the lowest frequency

limit (fmin = 1 kHz) to its adjacent frequency 2 kHz. Since the linearly spaced increment of

frequency bins df equals 1/Tw, inequations can be given as

fmin + n 1
Tw

fmin

≤ 2, (4)
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Figure 3. Raw data (gray) and windowed data (colored) centered at the first P-wave arrival from
typical acoustic events due to ball impact, with diameters of 0.3 (red) and 3 mm (blue), measured
by the PZT sensor A1 located directly beneath the impact point. Window functions with two
lengths 80 µs (see inset) and 8000 µs are used for high- and low-frequency analysis in Section 4,
respectively.

Tw ≥
n

fmin

, (5)

where a window length of Tw = 8000 µs is used to crop caused voltage ψ(x, t) and displace-

ments u3(x, t) with an identical length.

To avoid spectral leakage, a symmetric window function with the same length as ψ(x, t)

and u3(x, t) is essential. In Fig. 3, we show the raw data (gray line) of ψ(x, t) for typical acous-

tic events due to ball impacts with diameters of 0.3 and 3 mm. A 8000-µs Blackman–Harris

window function win(t) (centered about the first P-wave arrival) is used throughout this

study to obtain windowed signals (red and blue lines). The windowed signals have the max-

imum in the middle, and taper away from the middle. By performing FFT to the windowed

ψ(x, t) and u3(x, t), and neglecting the phase information, we obtain

|U3(x, ω)| = |F{g33(x, t; ξ, τ) ∗ f3(ξ, τ) · win(t)}|, (6)
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Table 1. Material parameters of the steel ball, steel transfer plate and neoprene pad used in the
calibration station.

Parameter Symbol Value
steel ball steel transfer plate neoprene pad

Type GCr15 HABA CK45 NBR L8000
Young’s modulus (GPa) E 210 210

Possion’s ratio ν 0.303 0.27
Density (kg/m3) ρ 7800 7850 1490

P wave velocity (m/s) cp 5782 2690
S wave velocity (m/s) cs 3245 1340

Dimension (mm)
[0.3, 0.35, 0.4, 0.5,
0.6, 0.7, 0.8, 1.0,
1.5, 2.0, 2.5, 3.0]

350 × 350 × 50 30 × 30 × 5

|Ψ(x, ω)| = |F{ψ(x, t) · win(t)}|, (7)

where |U3(x, ω)| and |Ψ(x, ω)| are the amplitude spectra of windowed ψ(x, t) and u3(x, t),

respectively. |···| represents the absolute value operator. g33(x, t; ξ, τ) is the 33 -component of

Green’s function that maps the measured displacement u3(x, t) in the 3 -direction to the ball

drop impact force f3(x, t) in the 3 -direction. The details of Green’s function are discussed

further in Section 2.3.

Finally, Eq. (3) can be written as

I3(ω) =
|Ψ(x, ω)|
|U3(x, ω)|

=
|F{ψ(x, t) · win(t)}|

|F{g33(x, t; ξ, τ) ∗ f3(ξ, τ) · win(t)}|
, (8)

where · denotes dot product, and F{} represents the FFT operation.

Material parameters of the steel ball, steel transfer plate and neoprene pad used in the

calibration station are summarized in Table 1.

2.3 Green’s function

We now aim to obtain Green’s function, g33(x, t; ξ, τ), which reflects the displacement com-

ponent in the 3 -direction due to time-delayed Dirac delta (true impulse), δ(t − τ) in the

3 -direction. However, it is not easy to implement δ(t − τ) numerically. Instead, we use the
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Heaviside step function, H(t− τ), which is the integral of δ(t− τ) with respect to time. The

corresponding f3(ξ, τ) can be expressed as

f3(ξ, τ) = δ(x− ξ)H(t− τ), (9)

where δ(x− ξ) denotes the spatial source distribution of the Dirac delta function. In this

study, δ(x− ξ) is described as a limit representation of the Dirac delta

δ(x− ξ) = lim
S→0

1√
πS

e−
(x−ξ)2

S , (10)

where S is associated with the mesh size in the vicinity of the ideal loading point; its exact

value is discussed in Section 3.2. The u3(x, t) due to f3(ξ, τ) is given by

u3(x, t) = g33(x, t; ξ, τ) ∗ f3(ξ, τ) = g33(x− ξ, t− τ) ∗ {δ(x − ξ)H(t− τ)}

= {g33(x− ξ, t− τ) ∗ δ(x − ξ)} ∗H(t− τ)

= g33(x, t− τ) ∗H(t− τ).

(11)

Recalling the linear time-invariant characteristics of convolution in Section 2.1 and the prop-

erties of convolution differentiation (Bracewell 1986), we can conduct time differentiation

operation on Eq. (11)

v3(x, t) =
∂u3(x, t)

∂t
= g33(x, t− τ) ∗ ∂H(t− τ)

∂t

= g33(x, t− τ) ∗ δ(t− τ)

= g33(x, t).

(12)

Therefore, Green’s function g33(x, t) is derived as the particle motion velocity in the 3-
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direction, v3(x, t), caused by the force-time function H(t − τ) with a spatial distribution

described by Eq. (10).

3 MODELLING

In this section, we present the FEM-based methodology (i.e., governing equations, modelling

parameters) to calculate NGFs. We validate the methodology against the reference approach

over a high-frequency band (from 100 kHz to 1 MHz) and then extend it to low-frequency

analysis down to 1 kHz.

3.1 Governing equations

We simulate the elastic wave propagation using the state-of-art discontinuous Galerkin (DG)

FEM by COMSOL Multiphysics (COMSOL AB 2019). The steel transfer plate and neoprene

pads are modelled explicitly and their material properties are provided in Table 1. The

particle motion velocity, v, and strain, E, with the implementation for steel (k = 1) and

neoprene (k = 2) domains, obey the first-order elastodynamic equations

ρk
∂v

∂t
−∇ · S = f , (13a)

∂E

∂t
− 1

2

[
∇v + (∇v)T

]
= 0, (13b)

S = Ck : E, (13c)

where ρk stands for the material density, S denotes the Cauchy stress tensor, and f is the

applied loading described by Eq. (9). Ck represents the isotropic stiffness tensor character-

ized by Young’s modulus, E, and Poisson’s ratio, ν. To guarantee the uniqueness of v and
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E, the zero-traction condition is enforced on the free surface ΣF of the steel transfer plate

(see Fig. 2(a)), that is

n · S = 0, (14)

where n is unit normal vector. By incorporating numerical flux, DG FEM weakly imposes

mechanical continuity of v and E across the interior boundary, which is especially compu-

tationally efficient for studying 3D transient wave problems (Ye et al. 2016).

To model elastic stress wave transmission and reflection along the interface, ΣRA (see

Fig. 2(a)) between the neoprene pads and aluminum framework, we impose a velocity-

dependent traction on ΣRA. This traction is caused by the non-zero mechanical impedance

of the aluminum framework (k = 3) and can be written as a combined effect of P- and S-

waves (Cohen & Jennings 1983)

n · S = −ρkckp (v · n)n− ρkcks (v · t) t, (15)

where ρk, ckp, c
k
s are the P- and S- wave velocity of aluminum, respectively, and t is the unit

tangent vector.

3.2 Modelling parameters

In this section, we describe how the numerical calculations are performed to obtain NGFs,

including the meshing schemes, time step and simulation procedures.

For meshing schemes, one of most critical issues is to choose an optimized mesh size; a

relatively coarse grid works in a similar manner to a high-pass filter (HPF), leading to inac-

curate NGF solutions whereas a very fine grid results in huge computational consumption

(in terms of memory and CPU time). To produce a satisfactory solution, the maximum size
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Figure 4. 1/8 symmetric modelling configuration visualized in the 1-2-3 directions to study labo-
ratory elastic wave propagation caused by unit step force-time function. Boundary conditions are
schematically shown to constrain the wave propagation problem. (a) c-FEM model with a coarse
grid, (b) f-FEM model with a fine grid. The magnitude of the particle motion velocity field, ac-
quired from the results of the f-FEM model, are visualized at time 8.6 µs (c) and 25.8 µs (d),
respectively. Note that the time t = 0 is when the unit step force-time function is applied.

h of the mesh elements should be lower than the wavelength of interest λ (typically a ratio

lower than 1). Since higher-order Lagrange interpolation functions, up to the forth order, are

utilized, this ratio could be set as a larger value (COMSOL AB 2019). In this study, the ratio

is assumed to be 1, that is h
λ

= 1, where λ = cp
ω0

, λ, cp denote the wavelength and velocity of

P-wave, and ω0 represents the upper limit of the bandwidth of interest. Even when using the

efficient DG FEM, it is still time-consuming to calculate high-frequency NGFs. To reduce

the computational cost, the adaptive grid scheme in FEM, can be adopted; however, this,

is a non-trivial task. To remedy this, we introduce two separate simulations, which include

a low-frequency model with a relatively coarse grid (c-FEM ), and a high-frequency model

with a relatively fine grid (f-FEM ).

Due to the geometric symmetry of the calibration station, only 1
8

of the steel transfer
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plate and neoprene pad was modelled. We set ωc0 = 300 kHz (>100 kHz) and ωf0 = 1.2

MHz (>1 MHz) to control h, where the superscripts c and f stand for c-FEM and f-FEM,

respectively. The mesh around the center of loading area (red arrow) was locally refined to

ensure a correctly applied f3(ξ, τ). We determine the S value from Eq. (10) as 1e-6 (units:

1/m2) by comparing the numerical integration of normal stress around the loading against

f3(ξ, τ). The Delaunay tessellation method is adopted to create a tetrahedral mesh. Grid

discretizations of models simulated in c-FEM and f-FEM are shown in Fig. 4(a) and (b),

which have 762 and 104624 unstructured tetrahedral quartic elements, respectively. Details

of material properties and the geometry information are given in Table 1.

The Courant–Friedrichs–Lewy (CFL) condition is adopted to determine the stable time

step, ∆t, which is automatically optimized by COMSOL Multiphysics. During our simula-

tions, the 4th explicit Runge-Kutta (RK) method is adopted. Note that we use a pseudo-step

loading scheme in the modellings. In this case, when we enforce a unit step force-time func-

tion to the loading point, there is a small ’rise time’, τr, to reach the peak loading. By

probing the real applied force history around the loading point (see arrow in Fig. 4), we

found that τr is between 5 and 10 nanoseconds for c-FEM and f-FEM. Considering the

fact that the force-time function of glass capillaries fracturing has a τr of approximately

200 nanoseconds while most of its spectral energy does not fall below 2 MHz (Selvadurai

2019), this pseudo-step loading scheme has little effect on the spectrum over the bandwidth

of interest.

For modelling procedures, we simulate c-FEM for 4000 µs and f-FEM for 40 µs (half

length of suggested time window in Eq. (5)) such that the spectra resolution is satisfied down

to 1 kHz and 100 kHz, respectively. We obtain time-varying v3(x, t) probed at the location
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of the virtual seismometer (red square in Fig. 4(a)) and derive the NGFs from both models

by means of the transformation described by Eq. (12).

3.3 Model validation: high-frequency analysis of elastic waves

In above section, we propose using ωc0 and ωf0 to control the mesh size such that the frequency

component of NGF can be expected to be kept below 100 kHz and 1 MHz. Our aim is to

validate the capabilities of these models and find the corresponding valid frequency band

beyond which the calculated NGFs deviate from reference results. Note that the reference

(“true”) results are computed by an approach based on the generalized ray theory (GR) (Hsu

1985; McLaskey & Glaser 2012) that governs transient wave propagation in a semi-infinite

purely elastic plate.

Fig. 4(c) and (d) show the magnitude of the particle motion velocity (units: m/s) to qual-

itatively illustrate the performance of the f-FEM model in simulating elastic wave propaga-

tion. We see that the elastic wave initiates from the loading point and geometrically spreads.

Fig. 4(c) shows the first P-wave ray around the virtual seismometer and the first S-wave ray

that follows at time 8.6 µs. The spatial distance between the wavefront of the first P- and

S-wave is controlled by the wave propagation times and the speed difference between them.

In Fig. 4(d), we observe multiple reflections of different rays of the propagated elastic

waves between the upper and lower surface of the steel plate at time 25.8 µs: first P-wave,

first S-wave, PPP-wave, etc. The PPP-wave ray is shown around the virtual seismometer.

These rays are important since they offer important information and frequency content

in the velocity seismogram. We note that here we are only showing validation efforts for

scenarios where the virtual seismometer is located directly below the source; however, this

methodology can be extended to more source-receiver pairs (see Section 5.3), which will be

a major benefit once the validation is complete.
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modelling results match well with that of the generalized ray theory.

We now validate the NGFs evaluated at the virtual seismometer over a short duration.

The seismometer starts calculating v3(x, t) from the instantaneous loading until the initial

side reflection back. In our case, this duration is not allowed to exceed 60 µs so that NGF

should, theoretically, be the same as that of the semi-infinite elastic plate since the wavefront

has not reached the edges of the transfer plate. We simulated both c-FEM and f-FEM and

the GR for 40 µs under the loading described by Eq. (9).

Fig. 5(a) presents solutions of the time-domain Green’s function calculated by a reference

approach GR (black line), c-FEM (blue line) and f-FEM (red line), respectively. Green’s

function from GR shows sharp peaks for the P and PPP phases of the elastic waves, which

reflect the singularities of ‘true’ Green’s functions at either P or PPP arrivals (Johnson

1974). The NGF from f-FEM can also capture similar behavior as the GR but has more

oscillation near the sharp peaks associated with the phase arrivals. This oscillation is mainly

due to the Gibbs phenomena (Bracewell 1986), as the piece-wise high-order Legendre basis

function is used in FEM modelling.
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Fig. 5(b) shows the amplitude spectra of NGFs in the frequency domain. The amplitude

spectrum calculated using the GR approach is almost flat below 2 MHz the GR solution

is semi-analytical. For NGFs from FEM modelling, the amplitude spectra match well with

these of the GR when the frequency ranges from 100 to 324 kHz (for c-FEM ) and from 100

to 1.17 MHz (for f-FEM ). However, the NGFs from both the c-FEM and f-FEM deviate

rapidly from that of the GR around 324 kHz and 1.17 MHz, which corresponds approximately

to the proposed ωc0 and ωf0 . The capabilities of both the c-FEM and f-FEM simulations are

validated: we obtain accurate NGFs up to 100 kHz from the c-FEM and to 1 MHz from

f-FEM. Note that to increase the accuracy, we consider that the NGF from the c-FEM

model is valid up to 174.6 kHz instead of 324 kHz. After validating the capabilities of our

built model with a simple geometry boundary, now we have a tool for studying elastic wave

propagation that can accommodate realistic geometries with a validated level of accuracy.

3.4 Model extension: low-frequency analysis of long-duration excitation down

to 1 kHz

We extend the capability of c-FEM to perform low-frequency analysis by elongating the sim-

ulation duration. Due to the finite dimension of the calibration station, the simpler Lamb

problem, where only the elastic wave reflection between the bottom and top surface of the

steel transfer plate is modelled, is no longer valid. To study the effects of realistic bound-

aries on the elastic wave propagation problem, we conducted the following three modelling

scenarios:

• float-NF : modelling the elastic wave propagation through an unsupported/floating steel

transfer plate. We adopt similar boundary conditions (free of stress over all surfaces of the

tested specimen) to those used in Wu & McLaskey (2018) and construct a float model.

• float-HP : in the float model, rigid body motion occurs because there are no constraints
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from the supported material (i.e., the neoprene pad beneath the steel plate) are modelled.

To correct the NGFs imposed by improper boundary conditions, we process the raw v33(x, t)

using a minimum-order high-pass filter. This filter has a stopband attenuation of 60 dB and

a passband frequency of 1 kHz.

• true BC : to better model the real elastic wave propagation, more physical boundary

conditions, described by Eqs. (14) and (15) were already introduced in the c-FEM model

to simulate the elastic wave reflection and refraction occurring at the interfaces of the steel

transfer plate, neoprene pads and aluminum framework.

We extract v33(x, t) with a duration of 8000 µs (centered at the first P-wave arrival)

in the above scenarios and use the transformation (see Eq. (12)) to obtain the NGFs for

the same source-receiver pair. By performing FFT and neglecting the phase information, we

obtain the amplitude spectra of low-frequency NGFs, which are termed as float-NF (blue

line in Fig. 6(a)), float-HP (black line in Fig. 6(a)) and true BC (red line in Fig. 6(a))

corresponding to the three scenarios given above, respectively.

In Fig. 6(a), float-NF tends to decrease ‘linearly’ from ∼1e-12 to ∼1e-14 m/N from 1 kHz

and 100 kHz. The large amplitude of low-frequency components is caused by the rigid body

motion of the steel transfer plate. By performing a high-pass filter operation on float-NF,

the rigid body motion is significantly removed. We see that the float-HP has a relatively flat

spectrum with few distinct spectral peaks representing the low-frequency resonances and

anti-resonances of mechanical vibration. The resonant frequencies from float-HP and true

BC match well over 1 to 100 kHz, demonstrating that a consideration of the true physical

boundaries has little effect on the shift of the resonant frequency.

For a better comparison, we plot the ratio of true BC to float-HP from 1 to 100 kHz

in Fig. 6(b). From 1 to 10 kHz, the ratio at the locations of resonant and anti-resonant
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float-HP (black line) and true BC (red line). (b) Ratio of NGFs from true BC to that of float-HP.
Locations of resonant and anti-resonant frequencies are labelled as R and A, respectively.

frequencies deviates significantly from 1. These locations are labelled A (anti-resonance)

and R (resonance). We find that around the resonant frequency (i.e., R1 and R2 ), the true

BC is nearly half the float-HP. Conversely, around the anti-resonant frequency, the true BC

can be 7 to 13 times than of the float-HP. This ratio tends to be flat and close to 1 for

frequencies between 10 to 100 kHz. This suggests that both scenarios have similar NGFs

over 10 to 100 kHz.
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We modelled how the physical constraints resulting from the experimental configuration

affected the elastic wave propagation problem. We interpret the results from the realistic

boundary conditions. Kinematic energy of the elastic stress waves initially flows from the

loading point, travels through the steel transfer plate and neoprene pads, and finally leaves

the c-FEM model naturally where the spatiotemporal evolution of the energy field is domi-

nated by properties of both media (steel plate, neoprene pads) and their interfaces. No extra

high-pass filter operation is needed to remove the low-frequency component of the kinematic

energy, which is fully trapped inside the steel transfer plate in the float model. Therefore,

the constructed c-FEM model can be utilized to obtain the NGF in a more physical way,

which becomes important when more complex geometries and boundary conditions are ap-

plied. To solve the multiphysics problem of elastic wave propagation, our constructed models

can potentially be integrated with state-of-the-art multiphysics couplings (i.e. temperature

and fluids) from the COMSOL Multiphysics software whose abilities have been validated

against theoretical solutions and/or laboratory experiments in the geomechanics communi-

ties (Gasch et al. 2016; Selvadurai & Najari 2013, 2017; Selvadurai et al. 2015; Selvadurai

& Selvadurai 2014; Selvadurai & Suvorov 2017).

4 PZT SENSOR CHARACTERIZATION USING THE BALL IMPACT

EXPERIMENT

In the above sections, we described the FEM-based methodology used to obtain high-

frequency NGFs from 100 kHz to 1 MHz as well as low-frequency counterparts from 1

to 100 kHz. We now use the source from a ball impact experiment to generate theoretical

f3(t). To obtain u3(x, t), we performed the convolution of NGFs with f3(t) (from 0 to tc).

For details of characterization experiments, refer to Section 2.2.

To obtain a nearly flat spectrum of f3(t) from 1 kHz to 1 MHz, we dropped a series
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of steel balls with different diameters from the same height. The impact from balls with

a small diameter (i.e., 0.3 mm) has a rise time (∼ 0.5 µs) and imposes a high-frequency

mechanical pulse resulting in spectral energy concentrated well below its corner frequency

(e.g. ≥ 1 MHz). Conversely, the ball impact with relatively large diameter balls (e.g. 3 mm)

has a much longer rise time (∼ 4.7 µs) where most of the spectrum energy is concentrated

under the low-frequency bandwidth (from 1 to 100 kHz).

Larger diameter (e.g. 10 mm) ball impacts were performed and we found that the re-

sponse of the PZT sensor used was saturated. For this reason, smaller diameter balls were

used. Schnabel et al. (2017) dropped balls of varying diameter (1.5 to 10 mm) onto a disk

plate with a diameter of 103.8 mm. They found that when the contact time is extended by

performing larger ball impacts, the elastic waves resulting from the impact and subsequent

boundary reflections interacted with each other. As a result, the convolution between f3(t)

and g33(x, t) does not hold true and u3(x, t) cannot be obtained. Therefore, we needed to

evaluate the contact time tc and ensure that the travel time of the elastic waves was (at

minimum) twice the plate thickness. Sensor saturation and convolution ineffectiveness are

two factors that are under reported in the literature and, considered together, constrained

the largest ball diameter to 3 mm in this study.

The same drop height hd = 138 mm was used for all impact tests; this was high enough

to generate mechanical vibrations that could be measured by PZT sensors over all take-off

angles. We repeated dropping the steel ball 5 times with 10 diameters (0.3, 0.35, 0.4, 0.5,

0.6, 0.7, 0.8, 1, 1.5, 2, 2.5, 3 mm). Note that the detection threshold set in the DAQ system

needs to be adjusted with the various source intensities associated with the ball diameter.

We introduced data processing techniques described in Section 2.2 to determine u3(x, t) and

ψ(x, t), which were used to obtain the segmented amplitude spectra of displacement |U3|

and voltage |Ψ|, from Eqs. 6 and 7, respectively.
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Figure 7. Amplitude spectra of voltage |Ψ|s (red line), background noise (thin gray line), Omega-n
model (thick gray line) and displacement |U3|s (blue line) of (a) 0.3 mm and (b) 3mm diameter
ball impacts over a short duration (80 µs). In (b), a group of local minima of |U3|s (pink dash line)
and |Ψ|s (green line) are labelled to show the horizontal offset.

4.1 Short-duration excitation (100 kHz to 1 MHz)

In this section, we windowed the raw voltage caused by short-duration (80 µs, denoted by

superscript s) excitation of 0.3 and 3 mm ball impacts as shown in the inset region of Fig.

3. The time t = 0 is when first P-wave arrives.

The amplitude spectra of |Ψ|s and |U3|s due to the 0.3 mm ball impact from 100 kHz to

2.5 MHz are shown in Fig. 7(a). Since we are interested in the plateau part of the amplitude
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spectrum, we need to determine the corresponding corner frequency ωc. We use the Omega-n

model, which has been shown to well-characterize both the ball impact spectra (McLaskey

et al. 2015) and earthquake spectra (Hanks 1979). To obtain ωc, we performed spectral

fitting of |Ψ|s:

Ω(ω) =
Ω0

1 + (ω/ωc)n
, (16)

where Ω initially refers to earthquake displacement spectra but is also useful due to the

similarties to the ball drop placement spectra (McLaskey et al. 2015). In this study, Ω refers

to |Ψ|s. Ω0 denotes the plateau amplitude, n is the absolute value of the slope describing the

high-frequency falloff. The ωc and n to be fitted are bounded from 100 kHz to 2.5 MHz and

from 1 to 5, respectively. Researchers suggest that the amplitude spectra of groud motion

due to ball drop can be generally characterized by Eq. 16 (McLaskey et al. 2015; Selvadurai

2019). The ωc is determined as 1.17 MHz (green line) in Fig. 7(a) and the fitted result is

plotted as the thick gray line.

The relative error of |Ψ|s (black error bar) among the repeated tests (5 times) is shown.

Minor variations suggest that the ball impact is a very repeatable mechanical source and

works well at high-frequencies below ωc. The variations in the noise floor was obtained by

cropping the background noise data with same length as |Ψ|s. The amplitude spectra of

noise floor array was obtained through the same procedures to obtain |Ψ|s. We see the SNR

(signal-to-noise ratio) is continuously larger than 1 from almost 250 kHz to 1 MHz and this

acts as an indicator to crop a valid frequency band of |Ψ|s.

Fig. 7(b) presents the results from a 3 mm ball impact. We note that both |U3|s (blue

line) and |Ψ|s (red line) fall off rapidly with an almost constant slope (gray line) fitted from

a series of ”lobes” while the fitted ωc is fixed at 100 kHz. This means that we could not
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crop valid |U3|s and |Ψ|s segmentations from 100 kHz to 1 MHz. We suggest that these lobes

are caused by a group of local minima and maxima impact that forces itself in the phase of

spectrum energy fall off in accordance with Eq. (A.3). By labelling the local minima (i.e.,

1, 2, 3, 4, 5, 6, ...) of |U3|s (pink dash line) and |Ψ|s (green solid line), we find there exists

a horizontal offset of frequency. The resulting analysis of ball impact tests shows that from

the smallest (0.3 mm) to the largest (3 mm) size, changes in the momentum of the relatively

large balls and their impact (e.g. 3 mm) can damage the steel transfer plate and cause

greater associated plastic deformation of the steel transfer plate. As a result, Reed’s elastic

impact theory (Appendix A and Reed 1985) does not work accurately at high-frequencies

for larger diameter ball drops.

4.2 Long-duration excitation (1 kHz to 100 kHz)

In this section, we extend the short-duration analysis to long-duration case (8000 µs, denoted

by superscript l). The raw and windowed ψ(x, t)l caused by 0.3 mm and 3 mm ball impacts

are shown in Fig. 3.

Following the same data processing technique given in Section 4.1, we obtain the ampli-

tude spectra of voltage |Ψ|l and displacement |U3|l from 0.3 mm ball impact testing. In Fig.

8(a), both |U3|l (blue line) and |Ψ|l (red line) are relatively flat from 1 kHz below the corner

frequency ωc (1.27 MHz, green line) of |Ψ|l. The displacements |U3|l are calculated from the

c-FEM model, which is only validated below 174.6 kHz from the methodology validation

(see Section 3.3). We see that the amplitude spectrum of the noise floor almost overlaps

with or even higher than |Ψ|l below 174.6 kHz. Therefore |Ψ|l from 1 to 174.6 kHz cannot

be used with |U3|l for further analysis of I3, see Eq. (8).

By incrementally increasing the ball diameter until 3 mm, we obtain the corresponding

|Ψ|l and |U3|l as shown in Fig. 8(b). We find ωmin as the minimum between ωc = 71.1 kHz
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Figure 8. Amplitude spectra of voltage |Ψ|l (red line), background noise (thin gray line), Omega-n
model (thick gray line) and displacement |U3|l (blue line) of (a) 0.3 mm and (b) 3 mm diameter
ball impacts over a long duration (8000 µs).

of |Ψ|l and 174.6 kHz and determine the valid frequency band from 1 to 71.1 kHz, where the

the mean value of SNR is around 20. Both |U3|l and |Ψ|l are relatively flat below ωc; they

have a distinct and similar spectrum shape regarding the local minima and maxima, which

indicates the resonance and anti-resonance of the steel transfer plate due to the ball impact.

By comparing Fig. 8(a) and (b), we find that, with the longer contact times (i.e., from 0.5

to 4.7 µs) associated with larger (i.e., from 0.3 to 3 mm) ball drops, the interaction between

elastic waves and the Hertz impact force history could enhance the resonance and anti-

resonance observed in the experimental data. The similarity between the experimental data
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(voltage) and theoretical estimation (displacement) validates the proposed methodology for

deriving low-frequency NGFs.

5 BROADBAND CHARACTERIZATION OF PZT SENSORS

In above sections, we presented the displacement |U3|s,lχ and voltage |ψ|s,lχ in low- and high-

frequency analyses of the dynamic Hertz impact problem, with a unique ball diameter label,

χ ∈ [1, N ], where N denotes the number of ball sizes. In accordance with Eq. (8), we obtain

a group of segmented instrumental responses Is,l3,χ with different forces and durations of ball

impact. In this section, we develop an algorithm to integrate a group of Is,l3,χ into a truly

broadband understanding of I3 from 1 kHz to 1 MHz for an array of PZT sensors.

5.1 Integrate segmented instrumental response

We are reminded of the fact that a specific member of the Is,l3,χ group is not valid over the

whole frequency bandwidth (from 1 kHz to 1 MHz). Instead, the accuracy of Is,l3,χ is regulated

by the quality of the experimental data (i.e., ωc of |Ψ|s,l, SNR) and solution accuracy of the

FEM-based numerical modelling. If we perform a simple union operation of the Is,l3,χ group,

the broadband I3 will be distorted, with various level of uncertainty, by introducing all the

components of Is,l3,χ. To obtain a more accurate I3, we perform several ‘cropping’ operations

to constrain the Is,l3,χ group.

The solution accuracy of the modelling methodology is closely related to the mesh dis-

cretization. In high-frequency analysis, Is3,χ is picked from 100 kHz (the lower bound of

the valid frequency band for the f-FEM model) to ωc of |Ψ|s by spectrum fitting. In low-

frequency analysis, I l3,χ is cropped from 1 kHz to the minimum between 174.6 kHz (the

upper bound of the valid frequency band of the c-FEM model) and ωc of |Ψ|l. This primary

cropping operation can be denoted as / · · · /.
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The quality of the experimental data is mainly controlled by the SNR (or ball size: large

ball impacts generate higher SNR, see Section 4.2) and the repeatability of the test data.

To alleviate the effect of background noise, a secondary cropping operation is proposed to

better select the frequency band of Is,l3,χ based on the criterion of SNR > 1. We denote this

as 〈· · ·〉. In this case, the small ball impact has a limited contribution to the broadband I3

due to its low SNR especially at the low-frequency range. We have illustrated the repeatably

of ball impact tests in Section 4, but there exists an amplitude offset of Is,l3,χ during repeated

tests. We therefore remove the frequency band where the relative error of |Ψ|s,l is larger

than 2 %. We then average Is,l3,χ over the rest of the frequency band; this tertiary cropping

operation as · · · is denoted.

Once the above ’cropping’ operations are implemented, the Is3,χ group is well constrained.

We now need to link all the cropped Is3,χ together from the low- and high-frequency analyses

over a broad range of ball diameters. The final broadband I3 is written as

I3 =
N∑
χ=1

〈/| I l3,χ| /〉 ∪ 〈/| Is3,χ| /〉, (17)

where ∪ is the primary link operation between the low- and high-frequency cases,
∑

denotes

the secondary link operation over different ball diameters.

Apart from selecting the frequency bandwidth of interest, we also explore the seismic

sensitivity of the PZT sensors. McLaskey et al. (2015) provided a theoretical formulation

to relate the seismic moment of internal seismic sources to the change in momentum from

the external ball impact sources. Here, seismic moment is estimated using the magnitude

moment Mw. In Fig. 9, we present the seismic magnitude Mw versus valid frequency band

of the grouped ball impacts. We find that Mw is equivalent to extremely small earthquakes

ranging from -7.9 to -5.9. This suggests that after our characterization work, we should be
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able to study microcrack mechanisms by investigating source parameters via radiated elastic

waves, where the amount of slip could be on the order of sub-micrometer (Selvadurai 2019).

In Fig. 9, the region between ωminχ (black dashed line) and ωmaxχ (black solid line) suggests

that these overlapped frequency bands of ball drops could fully cover the frequency scope of

interest (from 1 kHz to 1 MHz). Here ωminχ and ωmaxχ represent the minimum and maximum

valid frequencies of ball drops, respectively. We see that the results from ball impact tests

with diameters of 0.3, 1 and 3 mm almost cover broadband frequency range. This provides

researchers with straightforward instructions about how to choose the right parameters for

ball impact tests in accordance with their frequency range of interest when performing PZT

sensor characterization. Moreover, if characterization tests of PZT sensors are performed on

the test platens made of brittle rocks instead of steel under same range of ball sizes, the

detected Mw of ball impacts would shift to a lower bound (i.e. -8.5 to -6.5) because of the

differences in material density, P- and S-wave speeds for steel and brittle rock (see Appendix

from McLaskey et al. (2015)). The results can also be extended to seismic events with larger

magnitude and lower frequency components, but this might require longer durations of

the elastic wave propagation, larger ball sizes, larger test platens, and different digitization

ranges.

5.2 Single PZT sensor: broadband I3

In this section, we illustrate the differences in the calculated broadband instrumental re-

sponse I3 of a single PZT sensor with and without cropping algorithm (see Eq. (17)). In the

lower part of Fig. 10(a), we show the original Id3 in a marker symbol series from 1 kHz to 1

MHz (units: dB, the superscript d denotes displacement). We use 1 V/nm as the reference

sensitivity of the PZT sensors to measured displacement. We see that, without cropping
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Figure 9. Seismic magnitude Mw versus valid frequency band from a series of repeated ball drop
tests (marker symbols) with diameters ranging from 0.3 to 3mm.

some components from the final I3, there are remarkable amplitude variations of Id3 in the

frequency bandwidth of 1 to 7 kHz and 14 to 170 kHz, respectively.

Following the proposed algorithm described in Eq. (17), we obtain the cropped broad-

band Id3 . In the lower part of Fig. 10(b), we see that the 12 data series (for 0.3 to 3 mm

ball diameters) overlap with little vertical shift. This suggests a promising stability of the

developed algorithm, as well as the characterization methodology. The linked Id3 (gray thick

line) is almost flat from 10 kHz to 1 MHz with a slope of nearly 0 dB/decade and shows a

strong dependence on the measured displacement. We suggest that the PZT sensors used in

this study can be used as a displacement-sensitive transducer from 10 kHz to 1 MHz. In the

left lower part of Fig. 10(b), from 1 to 10 kHz, the linked Id3 has a slope of 40 dB/decade.

By performing the transformation of displacement into acceleration in the frequency

domain, we rewrite the displacement-based Id3 into the acceleration-based Ia3 as

Ia3 =
Id3

(2πω)2
, (18)

where the superscript a denotes acceleration. We add the original and cropped Ia3 into Fig.

10. In Fig. 10(a), that has no cropping, we find remarkable amplitude variations for the
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based (blue thick line) instrumental response of a single PZT sensor from a series of repeated ball
drop tests (marker symbols) with diameters ranging from 0.3 to 3 mm. The cropping operations
to I3 refers to Eq. 17.

data series of Ia3 from 1 to 7 kHz. In Fig. 10(b), we find that the Ia3 segments overlap well

with little vertical shift and the linked Ia3 (blue thick line in the upper part of Fig. 10(b))

is relatively flat from 1.2 to 6 kHz. The PZT sensor is sensitive to time-varying acceleration

over this frequency range, where the sensor shows similar responses as accelerometers.
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5.3 PZT sensor array: broadband I3 group

We now extend the analysis of the instrumental response of a single PZT sensor to that of

an array of PZT sensors of the same KRN Services model. The detailed arrangement of the

PZT sensor array is given in Section 2.2.

In Fig. 11(a), we show the voltage signals near the first P-wave arrival (blue square) for

all sensors, with the take-off angle ranging from 0◦ to 62.9◦ caused by a 0.5 mm diameter

ball impact. At time t = 0, the first P-wave arrives in the ray path θ=0◦. We see that the
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Figure 12. Summary of displacement-based instrumental responses (colored) over 13 PZT sen-
sors. A1 to D1 represent the label given to the PZT sensors. We have shown displacement- and
acceleration-dependence (gray dash dot line) of Id3 over 10 kHz to 1 MHz and 1 to 6 kHz, respec-
tively.
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time of the first P-wave arrival has a positive dependence (gray line) on the take-off angle

while the first peak amplitude of the P-wave decreases significantly as the take-off angle

increases. Since there are several sensors at the same take-off angle (i.e., θ=42.6◦ - A3,

B2, C3, C4), we find that the corresponding shape of the voltages matches well with each

other. But, due to the I3 variation at the level of uncertainty among these sensors, there

exist scaling factors of the absolute amplitude of voltages. Through these observations, we

suggest that the proposed experimental configuration realistically captures the elastic wave

propagation phenomena using an array of PZT sensors.

We obtain a group of NGFs from all source-receiver pairs and derive the corresponding

displacements. The same procedures used for characterization of a single PZT sensor are

followed. By using the algorithms described in Eq. (17), we obtain the valid frequency

bandwidth over a broad range of ball diameters for all PZT sensors. In Fig. 11(b), we show

the ωmaxχ of the valid frequency bandwidth versus the take-off angle θ under ball impacts with

different diameters. We find that when θ ranges from 0◦ to 54.0◦, the ωmaxχ of all PZT sensors

from the same ball impact has minor variations. Moreover, ωmaxχ has a positive dependence on

the ball size. However, when θ increases to 62.9◦, there is weak resultant displacement in the

3-direction measured by PZT sensor C2. The derived ωmaxχ group corresponding to small ball

diameters (< 2 mm) are out of order, suggesting that in the characterization experiments,

we should keep the epicenter of PZT sensors close to the location of the ball impact. Note

that we used conical shaped PZTs throughout these experiments; the corresponding analysis

could be quite different for cylindrically shaped PZTs (Ono 2019).

All the PZT sensors used in this study have been used in laboratory fracturing exper-

iments for some time (more than 3 years). Therefore they are assumed to have a similar

response to mechanical vibration but are not exactly identical due to damage of the crystal

material as well as uncertain variations in the manufacturing. In Fig. 12, we show well-
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stacked Id3 of all the PZT sensors from 1 kHz to 1 MHz . We see that all these PZT sensors

have similar displacement- and acceleration-dependence from 10 kHz to 1 MHz and from 1

to 6 kHz, respectively.

6 CONCLUSIONS

In this study, we presented a comprehensive FEM analysis of laboratory elastic stress wave

modelling to obtain accurate NGFs between an active source and an array of PZT sensors

where the modelling parameters are similar to the experimental configuration. To avoid

expensive computational costs on separate simulations to calculate the EGFs of a group

of ball impacts, we used a unit step force-time function to describe the loading applied at

the same location for the ball impacts. The resulting theoretical displacement was readily

calculated by performing the convolution between the NGFs and the force-time function of

the ball impacts.

We performed two separate simulations; low-frequency modelling based on a relatively

coarse grid (c-FEM ), and high-frequency modelling based on a relatively fine grid (f-FEM ).

Both models were validated against the reference approach over the high-frequency band. We

performed the low-frequency analysis of wave propagation phenomena which integrated more

realistic boundary conditions among the different experimental components. We suggest that

the results from the c-FEM model have better physical foundations. Both the high-frequency

validation and low-frequency extension work successfully demonstrate the capabilities of the

constructed model to solve the elastic wave propagation problem.

We performed impacts tests using balls with diameters changing from 0.3 to 3 mm and

obtained a group of segmented instrumental responses Is,l3,χ with various levels of bandwidth

overlap. To obtain the broadband I3, we developed algorithms to accurately pick the band-
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width of Is,l3,χ by considering the solution accuracy of the modelling methodology and quality

of the experimental data. We showed that, to rigorously understand the measured seismic

magnitude Mw and valid frequency bandwidth of I3, a broad range of ball diameters are

needed. Finally we obtained an accurate I3 for an array of PZT sensors at different take-off

angles.

This study focused on developing methods that can bridge the gap between qualitative

analysis and quantitative characterizations of laboratory and in situ AEs. Following the pro-

posed methodology, we can absolutely calibrate PZT sensors and thus properly interpret the

messages of ground motion from AE monitoring. In future, to study the physics of dynamic

failures from near-surface to subsurface conditions, PZT sensors need to be characterized in

prior under complicated conditions (i.e. sensors sit inside a pressurised, fluid filled triaxial

cell at high-temperature). Our constructed models can potentially be integrated with state-

of-the-art multiphysics couplings from COMSOL Multiphysics such that a well-validated

FEM model capable at solving (multiphysics) problems of elastic wave propagation can be

developed. We can then provide accurate insights into the source properties of microcrack

behavior and quantitatively study the damage evolution and fracture propagation in brittle

rocks over a broadband frequency range and source dimensions.
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Figure A1. (a) Force-time function, f3(t), and (b) its amplitude spectrum, F3(ω). For visualiza-
tion, f3(t) and F3(ω) with diameters of 0.3 mm (red), 1 mm (gray) and 3 mm (blue) are displayed.

APPENDIX A: HERTZIAN IMPACT SOURCE

We used spherical ball impacts as the mechanical active source to excite stress waves in our

transfer plate. In Fig. A1(a), when the steel ball instantaneously impacts the steel transfer

plate, the force-time function f3(t) derived from the Hertzian impact theory (Reed 1985)

can be written as

f3(t) = fmax sin

(
πt

tc

) 3
2

, 0 < t ≤ tc,

f3(t) = 0, t > tc,

(A.1)

where fmax = 1.917ρ
3/5
1 (δ1 + δ2)

−2/5R2
1v

6/5
0 denotes the maximum force of the ball impact,

and tc = 4.53 (4ρ1π (δ1 + δ2) /3)2/5R1v
−1/5
0 is the contact time between the ball and test

specimen. R1 and ρ1 are the ball radius and density, respectively. δi is a material constant

depending on Young’s modulus, Ei, and Poisson’s ratio, µi, of the ball and the plate, that is

δi = (1−µ2
i )/(πEi), i = 1, 2. v0 =

√
2ghd represents the impact velocity due to the free drop

motion, where hd and g are the dropping height and gravitational acceleration, respectively.

The amplitude spectrum of f3(t), denoted by F3(ω), is expressed as
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F3(ω) = 0.2689
∆P

Γ
(
7
4

+ tcω
)
|Γ
(
7
4
− tcω

)
|
, (A.2)

where ∆P ≈ 0.5564(tcfmax) is the change in momentum that the ball imparts to the steel

transfer plate. Γ is the Gamma function (Askey & Roy 2010).

Due to the properties of Γ(z) at non-positive integers, there exists a group of local minima

and maxima of F3(ω), where

7

4
− tcω0 = 0,−1,−2, ...,−i⇒ ωi0 =

i+ 7
4

tc
,

7

4
− tcωp = −1

2
,−3

2
, ...,−2j + 1

2
⇒ ωjp =

j + 9
4

tc
.

(A.3)

Here i, j are non-negative integers. ωi0 and ωjp are the frequency group corresponding to the

local minima F3(ω
i
0) of the i th and local maxima F3(ω

j
p) of the j th lobe of F3(ω). ωi0 is

also termed the “zero frequency” (McLaskey & Glaser 2010). Fig. A1(b) illustrates this.

When F3(ω) deviates from a flat plateau, spectral energy attenuates rapidly with changes

of 2 to 3 orders of magnitude, from 100 kHz to 1 MHz for the force-time function of the 1

mm diameter ball impact (grey lines). The marker symbols positioned by ωi0 and ωjp show

the separation of a series of lobes in the spectral energy falloff phase. These characteristics

of a series of lobes are useful to validate the theoretical f3(t) against the calibration at

experimental data discussed in Section 4.1.
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