References
Abercrombie, R.E. (1995), Earthquake source scaling relationships from
-1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys. Res.
100, 24015–24036.
Aki, K. (1965), Maximum likelihood estimate of \(b\) in the formula\(\log N=a-bM\) and its confidence limits, Bull. Earthquake Res.
Inst. 43, 237-239.
Alava, M.J., Nukala, P.K.V. and Zapperi, S. (2008), Fracture size
effects from disordered lattice models, Int. J. Fract. 154, 51-59.
Alber, M. and Hauptfleisch, U. (1999), Generation and visualization of
micro-fractures in Carrara marble for estimating fracture toughness,
fracture shear and fracture normal stiffness, Int. J. Rock Mech. Min.
Sci. 36, 1065-1071.
Andrew, M. (2018), A quantified study of segmentation techniques on
synthetic geological XRM and FIB-SEM images, Computational Geosciences
22, 1503-1512.
Ashby M.F. and Sammis, C.G. (1990), The damage mechanics of brittle
solids in compression, PAGEOPH 133, 489-521.
Ashby, M.F. and Hallam, S.D. (1986), The failure of brittle solids
containing small cracks under compressive stress states, Acta Metall.
34, 497-510.
Bandini, A., Berry, P., Bemporad, E., and Sebastiani, M. (2012), Effects
of intra-crystalline microcracks on the mechanical behavior of a marble
under indentation, Int. J. Rock Mech. Min. Sci. 54, 47-55.
Bell, A.F., Naylor, M. and Main, I.G. (2013a), Convergence of the
frequency-size distribution of global earthquakes, Geophys. Res. Lett.
40, 2585-2589.
Bell, A.F., Naylor, M. and Main, I.G. (2013b), The limits of
predictability of volcanic eruptions from accelerating rates of
earthquakes, Geophys. J. Int. 194, 1541-1553.
Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. and
Berkowitz, B. (2001), Scaling of fracture systems in geological media,
Rev. Geophys. 39, 347-383.
Bouchaud, E. (1997), Scaling properties of cracks, J. Phys. Condens.
Matter 9, 4319-4344.
Bouchaud, E., Lapasset, G., and Planès, J. (1990), Fractal dimension of
fractured surfaces: a universal value?, Europhys. Lett. 13, 73-79.
Brace, W.F., Paulding, B. and Scholz, C. (1966), Dilatancy in the
fracture of crystalline rocks. J. Geophys. Res. 71, 3939-3953.
Brantut, N., Baud, P., Heap, M.J. and Meredith, P.G. (2012),
Micromechanics of brittle creep in rocks, J. Geophys. Res. 117, B08412.
Brantut, N., Heap, M.J., Baud, P. and Meredith, P.G. (2014), Rate- and
strain-dependent brittle deformation of rocks, J. Geophys. Res. Solid
Earth 119, 1818-1836.
Bruce, A. and D. Wallace (1989). Critical point phenomena: universal
physics at large length scales, in: Davies, P. (ed.), The New Physics,
Cambridge University Press, Cambridge UK.
Bruner, W.M. (1984), Crack growth during unroofing of crustal rocks:
effects of thermoelastic behavior and near-surface stresses, J. Geophys.
Res. 89, 4167-4184.
Bruner, W.M. (1979), Crack growth and the thermoelastic behavior of
rocks, J. Geophys. Res. 84, 5578-5590.
Bufe, C.G. and Varnes, D.J. (1993), Predictive modeling of the seismic
cycle of the greater San Francisco Bay region, J. Geophys. Res. 98,
9871-9883.
Burnham, K.P. and Anderson, D.R. (2002), Model selection and multi-model
inference: a practical information-theoretic approach (2nd ed.),
Springer, New York.
Butler, I.B., Flynn, M., Fusseis, F. and Cartwright-Taylor, A. (2017),
Mjolnir: a novel x-ray transparent triaxial rock deformation apparatus,
ICTMS2017-56, 3rd International Conference on Tomography of Materials
and Structures, Lund, Sweden, 26-30 June.
Cartwright-Taylor, A. (2015), Deformation-induced electric currents in
marble under simulated crustal conditions: non-extensivity,
superstatistical dynamics and implications for earthquake hazard, PhD
thesis, University College London.
Cartwright-Taylor, A., Main, I.G., Butler, I.B., Fusseis, F., Flynn M.
and King, A. (2020): In-situ rock deformation and micron-scale crack
network evolution: a high-resolution time-resolved x-ray
micro-tomography dataset, British Geological Survey (Dataset)
https://doi.org/10.5285/0dc00069-8da8-474a-8993-b63ef5c25fb8.
Ceva, H. and Perazzo, R.P.J. (1993), From self-organized criticality to
first-order-like behaviour: A new type of percolative transition, Phys.
Rev. E 48, 157-160.
Cho, N., Martin, C.D. and Sego, D.S. (2007), A clumped particle model
for rock, Int. J. Rock Mech. Min. Sci. 44, 997-1010.
Clint, O.C., Meredith, P.G. and Main, I.G. (2001), Relation between
crack damage and permeability near the percolation threshold in a near
perfect crystalline rock, Geophys. Res. Abstr. 3, 346.
Cornelius, R.R. and Voight, B. (1994), Seismological aspects of the
1989-1990 eruption at Redoubt Volcano, Alaska: The Materials Failure
Forecast Method (FFM) with RSAM and SSAM seismic data, J. Volcanol.
Geotherm. Res. 62, 469-498.
Cowie, P.A., Sornette, D. and Vanneste, C. (1995), Multifractal scaling
properties of a growing fault population, Geophys. J. Int. 122, 457-469.
Crawford, B.R., Smart, B.G.D., Main, I.G. and Liakopoulou-Morris, F.
(1995). Strength characteristics and shear acoustic anisotropy of rock
core subjected to true triaxial compression, Int. J. Rock Mech. Min.
Sci. 32, 189-200.
Damjanac, B. and Fairhurst, C. (2010), Evidence for a long-term strength
threshold in crystalline rock, Rock Mech. Rock Eng. 43, 513-531.
David, C., Menendez, B. and Darot, M. (1999), Influence of
stress-induced and thermal cracking on physical properties and
microstructure of La Peyratte granite, Int. J. Rock Mech. Min. Sci. 36,
433–448.
Descoteaux, M., Audette, M., Chinzei, K. and Siddiqi,K. (2005), Bone
enhancement filtering: application to sinus bone segmentation and
simulation of pituitary surgery, in: Duncan, J.S. and Gerig, G. (eds.),
Proceedings of Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Palm Springs, California, USA, Lecture Notes in
Computer Science 3749, 09–16.
Desrues, J., Chambon, R., Mokni, M. and Mazerolle, F. (1996), Void ratio
evolution inside shear bands in triaxial sand specimens studied by
computed tomography, Geotechnique 46, 529-546.
Fairhurst, C. and Cook, N.G.W. (1966), The phenomenon of rock splitting
parallel to the direction of maximum compression in the neighborhood of
a surface, In: Zeitlen, J.G. (ed) Proceedings of First Congress of the
International Society of Rock Mechanics (Lisbon, September-October 1966)
Vol 1., LNEC, Lisbon, 687-692.
Faulkner, D.R., Mitchell, T.M., Healy, D. and Heap, M.J. (2006), Slip on
‘weak’ faults by the rotation of regional stress in the damage zone,
Nature 444, 922-925.
Fredrich, J.T., and Wong T.-F. (1986), Micromechanics of thermally
induced cracking in three crustal rocks, J. Geophys. Res. 91,
12743–12764.
Fredrich, J.T., Evans, B., and Wong, T.-F. (1989), Micromechanics of the
brittle to plastic transition in Carrara marble. J. Geophys. Res. Solid
Earth 94, 4129-4145.
Fusseis, F., Steeb, H., Xiao, X., Zhu, W., Butler, I., Elphick, S. and
Mäder, U. (2014), A low-cost X-ray-transparent experimental cell for
synchrotron-based X-ray microtomography studies under geological
reservoir conditions, J. Synchrotron Rad. 21, 251-253.
Girard, L., Amitrano, D. and Weiss, J. (2010), Failure as a critical
phenomenon in a progressive damage model, J. Stat. Mech. Theory Exp.
P01013.
Goodfellow, S.D. and Young, R.P. (2014), A laboratory acoustic emission
experiment under in-situ conditions, Geophys. Res. Lett. 41, 3422-3430.
Graham, C.C., Stanchits, S., Main, I.G. and Dresen, G. (2010),
Comparison of polarity and moment tensor inversion methods for source
analysis of acoustic emission data, Int. J. Rock Mech. Min. Sci. 47,
161-169.
Greenhough, J. and Main, I.G. (2008), A Poisson model for earthquake
frequency uncertainties in seismic hazard analysis, Geophys. Res. Lett.
35, L19313.
Griffith, A.A. (1921), The phenomena of rupture and flow in solids,
Phil. Trans. R. Soc. A 221, 163-198.
Griffith, A.A. (1924), Theory of rupture, Proc. First Int. Congress
Appl. Mech., Delft, 55-63.
Griffiths, L., Lengliné, O., Heap, M.J., Baud, P. and Schmittbuhl, J.
(2018), Thermal cracking in Westerly granite monitored using direct wave
velocity, coda wave interferometry and acoustic emissions, J, Geophys.
Res. Solid Earth 123, 2246-2261.
Guéguen, Y. and Schubnel, A. (2003), Elastic wave velocities and
permeability of cracked rocks, Tectonophys. 370, 163-176.
Hallbauer, D.K., Wagner, H. and Cook N.G.W. (1973), Some observations
concerning the microscopic and mechanical behaviour of quartzite
specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min.
Sci. Geomech. Abstr. 10, 713-726.
Haneberg, W.C. (2004), Computational Geosciences with Mathematica,
Springer-Verlag, Berlin Heidelberg New York.
Healy, D., Blenkinsop, T.G., Timms, N.E., Meredith, P.G., Mitchell, T.M.
and Cooke, M.L. (2015), Polymodal faulting: time for a new angle on
shear failure, J. Struct. Geol. 80, 57-71.
Hildebrand, T. and Rüegsegger, P. (1997), A new method for the
model‐independent assessment of thickness in three‐dimensional images,
J. Microscopy 185, 67-75.
Horii, H. and Nemat-Nasser, S. (1985), Compression-induced microcrack
growth in brittle solids: axial splitting and shear failure, J. Geophys.
Res. 90, 3105-3125.
Horii, H. and Nemat-Nasser, S. (1986), Brittle failure in compression:
splitting, faulting and brittle-ductile transition, Phil. Trans. R. Soc.
A 319, 337-374.
Hurvich, C.M. and Tsai, C.-L. (1989), Regression and time series model
selection in small samples, Biometrika 76, 297-307.
Kagan, Y.Y. (2002), Seismic moment distribution revisited: i.
statistical results, Geophys. J. Int. 148, 520-541.
Kagan, Y.Y. and Schoenberg, F. (2001), Estimation of the upper cutoff
parameter for the tapered Pareto distribution, J. Appl. Probab. 38,
168-185.
Kamb, W.B. (1959), Ice petrofabric observations from Blue Glacier,
Washington, in relation to theory and experiment, J. Geophys. Res. 64,
1891-1909.
Kandula, N., Cordonnier, B., Boller, E., Weiss, J., Dysthe, D.K. and
Renard, F. (2019), Dynamics of microscale precursors during brittle
compressive failure in Carrara marble, J. Geophys. Res. Solid Earth,
124, 6121-6139.
Kijko, A. and Graham, G. (1998), Parametric-historic procedure for
probabilistic seismic hazard analysis part i: estimation of maximum
regional magnitude \(m_{\max}\), PAGEOPH 152, 413-442.
Kilburn, C.R.J. (2003), Multiscale fracturing as a key to forecasting
volcanic eruptions, J. Volcanol. Geotherm. Res. 125, 271-289.
Kilburn, C.R.J. and Voight, B. (1998), Slow rock fracture as eruption
precursor at Soufriere Hills, Geophys. Res. Lett. 25, 3665-3668.
Kosterlitz, J.M. (1974), The critical properties of the two-dimensional
xy model, J. Phys. C: Solid State Phys. 7, 1046-1060.
Kosterlitz, J.M. and Thouless, D.J. (1973), Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid State
Phys. 6, 1181-1203.
Kranz, R.L. (1979), Crack-crack and crack-pore interactions in stressed
granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16, 37-47.
Kun, F., Pal, G., Varga, I. and Main, I.G. (2018), Effect of disorder on
the spatial structure of damage in slowly compressed porous rocks, Phil.
Trans. R. Soc. A 377, 20170393.
Kun, F., Varga, I., Lennartz-Sassinek, S. and Main, I.G. (2013),
Approach to failure in porous granular materials under compression,
Phys. Rev. E 88, 062207.
Lajtai, E.Z. (1974), Brittle fracture in compression. Int. J. Fract. 10,
525-536.
Lei, X. and Satoh, T. (2007), Indicators of critical point behavior
prior to rock failure inferred from pre-failure damage, Tectonophys.
431, 97-111.
Lei, X., Kusunose, K., Nishizawa, O., Cho, A. and Satoh, T. (2000), On
the spatiotemporal distribution of acoustic emissions in two granitic
rocks under triaxial compression: the role of pre-existing cracks,
Geophys. Res. Lett. 27, 1997-2000.
Lennartz-Sassinek, S., Main, I.G., Zaiser, M. and Graham, C.C. (2014),
Acceleration and localization of subcritical crack growth in a natural
composite material, Phys. Rev. E 90, 052401.
Leonard, T. and Hsu, J.S.J. (1999), Bayesian Methods, Cambridge
University Press, Cambridge UK.
Liakopoulou-Morris, F., Main, I.G., Crawford, B.R. and Smart, B.G.D.
(1994), Microseismic properties of a homogeneous sandstone during fault
nucleation and frictional sliding, Geophys. J. Int. 119, 219-230.
Lockner, D., Byerlee, J.D., Kuksenko, V., Ponomarev, A. and Sidorin, A.
(1992), Observations of quasi-static fault growth from acoustic
emissions, in: Evans, B. and Wong, T.-F. (eds.), Fault Mechanics and
Transport Properties of Rocks (1st ed.), International Geophysics 51,
3-31.
Lockner, D., Byerlee, J.D., Kuksenko, V., Ponomarev, A. and Sidorin, A.
(1991), Quasi-static fault growth and shear fracture energy in granite.
Nature 350, 39-42.
Lominitz-Adler, J., Knopoff, L. and Martinez-Mekler, G. (1992),
Avalanches and epidemic models of fracturing in earthquakes, Phys. Rev.
A 45, 2211-2221.
Main, I.G. (1996), Statistical physics, seismogenesis and seismic
hazard, Rev. Geophys. 34, 433-462.
Main, I.G., Meredith, P.G., Sammonds, P.R. and Jones, C. (1990),
Influence of fractal flaw distributions on rock deformation in the
brittle field, in: Knipe, R.J. and Rutter, E.H. (eds.), Deformation
Mechanisms, Rheology and Tectonics, Geol. Soc. Spec. Pub. 54, 81-96.
Main, I.G. (1992). Damage mechanics with long-range interactions:
correlation between the seismic b-value and the two point correlation
dimension, Geophys. J. Int. 111, 531-541.
Main, I.G., Sammonds, P.R. and Meredith, P.G. (1993), Application of a
modified Griffith criterion to the evolution of fractal damage during
compressional rock failure, Geophys. J. Int. 115, 367-380.
Mandelbrot, B., Passoja, D.E., and Paullay, A.J. (1984), Fractal
character of fracture surfaces of metals, Nature 308, 721-722.
Meijering, E.H.W. (2010), FeatureJ 1.6.0, Biomedical Imaging Group
Rotterdam, Erasmus MC, University Medical Center Rotterdam, The
Netherlands, 2002-2010
(http://www.imagescience.org/meijering/software/featurej/).
Meredith, P.G., Clint, O.C., Ngwenya, B., Main, I.G., Odling, N.W.A. and
Elphick, S.C., (2005), Crack damage and permeability evolution near the
percolation threshold in a near-perfect crystalline rock, in: Shaw,
R.P., (ed.) Understanding the Micro to Macro Behavior of Rock-Fluid
Systems, Geol. Soc. Spec. Pub. 249, 159-160.
Meredith, P.G., Main, I.G., Clint, O.C. and Li, L. (2012), On the
threshold of flow in a tight natural rock, Geophys. Res. Lett. 39,
L04307.
Mignan, A. and Woessner, J. (2012), Estimating the magnitude of
completeness for earthquake catalogues. Community Online Resource for
Statistical Seismicity Analysis, pp. 1–45.
Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. and Kieffer, J.
(2014), The PyHST2 hybrid distributed code for high speed tomographic
reconstruction with iterative re-construction and a priori knowledge
capabilities. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact.
Mater. Atoms 324, 41–48.
Mitchell, T.M. and Faulkner, D.R. (2012), Towards quantifying the matrix
permeability of fault damage zones in low porosity rocks, Earth Planet.
Sci. Lett. 339-340, 24-31.
Molli, G. and Heilbronner, R. (1999), Microstructures associated with
static and dynamic recrystallization of Carrara marble (Alpi Apuane, NW
Tuscany, Italy), Geologie en Mijnbouw 78, 119-126.
Moura, A., Lei, X.-L., Nishizawa, O., 2005. Prediction scheme for the
catastrophic failure of highly loaded brittle materials or rocks. J.
Mech. Phys. Solids 53, 2435–2455
Nemat-Nasser, S. and Horii, H. (1982), Compression-induced nonplanar
crack extension with application to splitting, exfoliation, and
rockburst, J. Geophys. Res. 87, 6805-6821.
Nemat-Nasser, S. and Obata, M. (1988), A microcrack model of dilatancy
in brittle materials, J. Appl. Mech. 55, 24-35.
Nicksiar, M. and Martin, C.D. (2013), Crack initiation stress in low
porosity crystalline and sedimentary rocks, Eng. Geol. 154, 64-76.
Nicksiar, M. and Martin, C.D. (2014), Factors affecting crack initiation
in low porosity crystalline rocks, Rock Mech. Rock Eng. 47, 1165-1181.
Nozieres, P. (1992), Shape and growth of crystals, in: Godrèche, C.
(ed.), Solids Far From Equilibrium, Cambridge University Press,
Cambridge UK.
Odling, N.W.A., Elphick, S.C., Meredith, P., Main, I. and Ngwenya, B.T.
(2007), Laboratory measurement of hydrodynamic saline dispersion within
a micro-fracture network induced in granite, Earth Planet. Sci. Lett.
260, 407-418.
Oesterling, N. (2004), Dynamic recrystallization and deformation
mechanisms of naturally deformed Carrara marble: a study on one- and
two-phase carbonate rocks, PhD thesis, University of Basel.
Ojala I.O., Main, I.G. and Ngwenya, B.T. (2004), Strain rate and
temperature dependence of Omori law scaling constants of AE data:
implications for earthquake foreshock-aftershock sequences, Geophys.
Res. Lett. 31, L24617.
Ollion, J., Cochennec, J., Loll, F., Escudé C. and Boudier, T. (2013),
TANGO: A Generic Tool for High-throughput 3D Image Analysis for Studying
Nuclear Organization, Bioinformatics 29, 1840-1841.
Olson, J.E., & Pollard, D.D. (1991), The initiation and growth of en
échelon veins, J. Struct. Geol. 13, 595-608.
Ouillon, G. and Sornette, D. (2000), The concept of ‘critical
earthquakes’ applied to main rockbursts with time-to-failure analysis,
Geophys. J. Int. 143, 454–468.
Pál, G., Jánosi, Z., Kun, F. and Main, I.G. (2016). Fragmentation by
slow compression of porous rocks, Physical Review E 94, 053003.
Pisarenko, V.F. (1991), Statistical evaluation of maximum possible
earthquakes, Phys. Solid Earth 27, 757-763.
Potyondy, D.O. and Cundall, P.A. (2004), A bonded particle model for
rock, Int. J. Rock Mech. Min. Sci. 41, 1329-1364.
Ramez, M.R.H. and Murrell, S.A.F. (1964), A petro-fabric analysis of
Carrara marble. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1, 217-229.
Reches, Z. and Lockner, D.A. (1994), Nucleation and growth of faults in
brittle rocks, J. Geophys. Res. 99, 18159-18173.
Renard, F., Cordonnier, B., Dysthe, D.K., Boller, E., Tafforeau, P. and
Rack A. (2016), A deformation rig for synchrotron microtomography
studies of geomaterials under conditions down to 10 km depth in the
Earth, J. Synchrotron Rad. 23, 1030-1034.
Renard, F., Cordonnier, B., Kobchenko, M. and Kandula, N. (2017),
Microscale characterization of rupture nucleation unravels precursors to
faulting in rocks, Earth Plan. Sci. Lett. 476, 69-78.
Renard, F., Weiss, J., Mathiesen, J. Ben-Zion, Y., Kandula, N. and
Cordonnier, B. (2018), Critical evolution of damage toward system-size
failure in crystalline rock, J. Geophys. Res. 123, 2017JB014964.
Richter, D. and Simmons G. (1974), Thermal expansion behaviour of
igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15,
145–148.
Roberts, N.S., Bell, A.F. and Main, I.G. (2015), Are volcanic seismic\(b\)-values high, and if so when? J. Volc. Geotherm. Res. 308, 127-141.
Robertson, M.C., Sammis, C.G., Sahimi, M. and Martin, A.J. (1995),
Fractal analysis of three-dimensional spatial distributions of
earthquakes with a percolation interpretation, J. Geophys. Res. 100,
609-620.
Rundle, J.B. and Klein, W. (1989), Nonclassical nucleation and growth of
cohesive tensile cracks, Phys. Rev. Lett. 63, 171-174.
Russ, J.C. (1994), Fractal Surfaces, Plenum Press, New York.
Rydelek, P.A. and Sacks, I.S. (1989), Testing the completeness of
earthquake catalogues and hypothesis of self-similarity, Nature 337,
251–253.
Sammis, C.G. and Ashby, M.F., (1986), The failure of brittle porous
solids under compressive stress states, Actaa Metall. 34 511-526.
Sammis, C.G. and Sornette, D. (2002), Positive feedback, memory and the
predictability of earthquakes, PNAS 99, 2501-2508.
Sammonds, P.R., Meredith, P.G. and Main, I.G. (1992), Role of pore
fluids in the generation of seismic precursors to shear fracture, Nature
359, 228-230.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.,
Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P.,
Cardona, A., (2012), Fiji: an open-source platform for biological-image
analysis, Nature Methods 9, 676–682.
Schmittbuhl, J. and Maloy, K.J. (1997), Direct observation of a
self-affine crack propagation, Phys. Rev. Lett. 78, 3888-3891.
Schmittbuhl, J., Schmitt, F., and Scholz, C. (1995), Scaling invariance
of crack surfaces, J. Geophys. Res. 100, 5953-5973.
Sethna, J.P. (2006). Statistical mechanics: entropy, order parameters,
and complexity. Oxford University Press, Oxford UK.
Simmons, G. and Cooper, H.W. (1978), Thermal cycling cracking in three
igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 145-148.
Smith, R., Sammonds, P.R. and Kilburn, C.R.J. (2009), Fracturing of
volcanic systems: experimental insights into pre-eruptive conditions,
Earth Planet. Sci. Lett. 280, 211-219.
Sornette, D. (2006), Critical phenomena in natural sciences: chaos,
fractals, self-organization and disorder: concepts and tools, Springer,
Berlin.
Sornette, D. (2009), Dragon-kings, black swans and the prediction of
crises, in press in the Int. J. of Terraspace Sci. and Eng. 2, 1-18,
https://arxiv.org/abs/0907.4290
Sornette, D. and Sammis, C.G. (1995), Complex critical exponents from
renormalization group theory of earthquakes: implications for earthquake
predictions, J. Phys. I [French] 5, 607-619.
Stanley, H.G. (1971), Introduction to phase transitions and critical
phenomena, Oxford University Press, Oxford UK.
Sykes, L.R. and Jaumé, S. (1990), Seismic activity on neighboring faults
as a long-term precursor to large earthquakes in the San Francisco Bay
area, Nature 348, 595–599.
Tapponnier, P. and Brace, W.F. (1976), Development of stress-induced
microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. Geomech.
Abstr. 13, 103-112.
Thomas, A.L., & Pollard, D.D. (1993), The geometry of echelon fractures
in rock: implications from laboratory and numerical experiments, J.
Struct. Geol. 15, 323-334.
Thouless (1989), Condensed matter physics in less than three dimensions,
in: Davies, P. (ed.), The New Physics, Cambridge University Press,
Cambridge UK.
Turcotte, D. (1997), Fractals and chaos in geology and geophysics,
Cambridge University Press, Cambridge UK.
Tyupkin, Y.S. and Giovambattista, R.D. (2005), Correlation length as an
indicator of critical point behavior prior to a large earthquake, Earth
Planet. Sci. Lett. 230, 85–96.
Utsu, T., Ogata, Y. and Matsu’ura, R.S. (1995), The centenary of the
Omori formula for a decay law of aftershock activity, J. Phys. Earth 43,
1-33.
Vasseur, J., Wadsworth, F.B., Heap, M.J., Main, I.G., Lavallée, Y. and
Dingwell, D. B. (2017), Does an inter-flaw length control the accuracy
of rupture forecasting in geological materials? Earth Plan. Sci. Lett.
475, 181-189.
Vasseur, J., Wadsworth, F.B., Lavallée, Y., Bell, A.F., Main, I.G. and
Dingwell, D. B. (2015), Heterogeneity: the key to failure forecasting,
Sci. Rep. 5, 13259.
Vinciguerra, S., Trovato, C., Meredith, P.G. and Benson P.M. (2005),
Relating seismic velocities, thermal cracking and permeability in Mt.
Etna and Iceland basalts, Int. J. Rock Mech. Min. Sci. 42, 900–910.
Voight, B. (1988), A method for prediction of volcanic eruptions, Nature
332, 125-130.
Voorn, M., Exner, U. and Rath, A. (2013), Multiscale Hessian fracture
filtering for the enhancement and segmentation of narrow fractures in 3D
image data, Comp. Geosci. 57, 44-53.
Weiss, J. (2001), Self-affinity of fracture surfaces and implications on
a possible size effect on fracture energy, Int. J. Fract. 109, 365-381.
Woessner, J. and Wiemer, S. (2005), Assessing the quality of earthquake
catalogues: estimating the magnitude of completeness and its
uncertainty, Bull. Seismol. Soc. Am. 95, 684-698.
Zhang, S., Cox, S.F., and Paterson, M.S. (1994), The influence of room
temperature deformation on porosity and permeability in calcite
aggregates. J. Geophys. Res. Solid Earth, 99, 15761-15775.
Zöller, G., Hainzl, S. and Kurths, J. (2001), Observation of growing
correlation length as an indicator for critical point behavior prior to
large earthquakes, J. Geophys. Res. 106, 2167-2175.