https://doi.org/10.1175/JCLI-D-11-00334.1
Lee, W. L., Liou, K. N., & Wang, C. C. (2013). Impact of 3-D topography
on surface radiation budget over the Tibetan Plateau. Theoretical
and applied climatology , 113(1-2), 95-103.
https://doi.org/10.1007/s00704-012-0767-y
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson,
K., Steffen, W., & Schellnhuber, H. J. (2019). Climate tipping
points-too risky to bet against. Nature , 575(7784), 592.
https://doi.org/10.1038/d41586-019-03595-0
Liu, G., Zhao, L., Li, R., Wu, T., Jiao, K., & Ping, C. (2017).
Permafrost warming in the context of step-wise climate change in the
Tien Shan Mountains, China. Permafrost and Periglacial Processes ,
28(1), 130-139. https://doi.org/ 10.1002/ppp.1885
Liu, Y., Zhao, L., & Li, R. (2013). Simulation of the soil water
thermal features within the active layer in Tanggula Region, Tibetan
Plateau, by using SHAW model (in Chinese with English abstract).Journal of Glaciology and Geocryology , 35(2), 280-290.
McCune, B., & Keon, D. (2002). Equations for potential annual direct
incident radiation and heat load. Journal of vegetation science ,
13(4), 603-606.
https://doi.org/10.1658/1100-9233(2002)013[0603:EFPADI]2.0.CO;2
Michaelides, R. J., Schaefer, K., Zebker, H. A., Parsekian, A. D., Liu,
L., Chen, J., … & Schaefer, S. R. (2019). Inference of the impact of
wildfire on permafrost and active layer thickness in a discontinuous
permafrost region using the remotely sensed active layer thickness
(ReSALT) algorithm. Environmental Research Letters , 14(3).https://doi.org/10.1088/1748-9326/aaf932
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S.
K., Van Vuuren, D. P., … & Meehl, G. A. (2010). The next generation
of scenarios for climate change research and assessment. Nature ,
463(7282), 747. https://doi.org/10.1038/nature08823
Molders, N., & Romanovsky, V. E. (2006). Long-term evaluation of the
Hydro-Thermodynamic Soil-Vegetation Scheme’s frozen ground/permafrost
component using observations at Barrow, Alaska. Journal of Geophysical
Research. 111, D04105. https://doi.org/10.1029/2005JD005957
Nan, Z., Li, S., & Liu, Y. (2002). Mean Annual Ground Temperature
Distribution on the Tibetan Plateau: Permafrost Distribution Mapping and
Further Application (in Chinese with English abstract). Journal of
Glaciology and Geocryology. 24, 142-148.
Nan, Z., Li S., Cheng G., & Huang P. (2012). Surface frost number model
and its application to the Tibetan plateau (in Chinese with English
abstract). Journal of Glaciology and Geocryology , 34(1), 89-95.
Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models.Journal of the Royal Statistical Society: Series A (General) ,
135(3), 370-384.https://doi.org/10.1201/9780203753736
Nelson, F. E., & Outcalt, S. I. (1987). A computational method for
prediction and regionalization of permafrost. Arctic and Alpine
Research . 19, 279–288.
Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., Hinkel, K.M., Walker,
D.A., & Bockheim, J.G. (1997). Estimating active-layer thickness over a
large region: Kuparuk River Basin, Alaska, U.S.A. Arctic and
Alpine Research . 29, 367–378.
Nelson, F. E., Anisimov, O. A., & Shiklomanov, N. I. (2001). Subsidence
risk from thawing permafrost. Nature, 410(6831), 889.
https://doi.org/10.1038/35073746
Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., & Lawrence, D. M.
(2007). Improved modeling of permafrost dynamics in a GCM land-surface
scheme. Geophysical Research Letters , 34(8).https://doi.org/10.1029/2007GL029525
Nicolsky, D., Romanovsky, V., Panteleev, G. (2009). Estimation of soil
thermal properties using in-situ temperature measurements in the active
layer and permafrost. Cold Regions Science and Technology ,
55(1):120-129.
Nicolsky, D. J., Romanovsky, V. E., Panda, S. K., Marchenko, S. S., &
Muskett, R. R. (2017). Applicability of the ecosystem type approach to
model permafrost dynamics across the Alaska North Slope. Journal
of Geophysical Research: Earth Surface , 122(1), 50-75.
https://doi.org/10.1002/2016JF003852
Niu, F., Gao, Z., Lin, Z., Luo, J., & Fan, X. (2019). Vegetation
influence on the soil hydrological regime in permafrost regions of the
Qinghai-Tibet Plateau, China. Geoderma , 354, 113892.
https://doi.org/10.1016/j.geoderma.2019.113892
Niu, F., Yin, G., Luo, J., Lin, Z., & Liu, M. (2018). Permafrost
distribution along the Qinghai-Tibet Engineering Corridor, China using
high-resolution statistical mapping and modelling integrated with remote
sensing and GIS. Remote Sensing , 10(2), 215.
https://doi.org/10.3390/rs10020215
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H.
H., Dashtseren, A., … & Khomutov, A. (2019). Northern Hemisphere
permafrost map based on TTOP modelling for 2000-2016 at 1
km2 scale. Earth-Science Reviews , 2019.
https://doi.org/10.1016/j.earscirev.2019.04.023
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek,
E., Lawrence, P. J., … Zeng, X. (2010). Technical Description of
version 4.0 of the Community Land Model (CLM) (No. NCAR/TN-478+STR).
University Corporation for Atmospheric Research.https://doi.org/10.5065/D6FB50WZ
Painter, S., Coon, E., Atchley, A., Berndt, M., Garimella, R., Moulton,
J., Svyatskiy, D., & Wilson, C. (2016). Integrated surface/subsurface
permafrost thermal hydrology: Model formulation and proof‐of‐concept
simulations. Water Resources Research , 52(8):6062-6077.
Pang, Q., Cheng, G., Li, S., & Zhang, W. (2009). Active layer thickness
calculation over the Qinghai-Tibet Plateau. Cold Regions Science
and Technology , 57(1), 23-28.
https://doi.org/10.1016/j.coldregions.2009.01.005
Pang, Q., Zhao, L., Ding, Y., & Li, S. (2010). Analysis about the
influence on the thermal regime in permafrost regions with different
underlying surfaces. Sciences in Cold and Arid Regions , 2(3),
0203-0211.
Pang, Q., Zhao, L., Li, S., & Ding, Y. (2012). Active layer thickness
variations on the Qinghai-Tibet Plateau under the scenarios of climate
change. Environmental earth sciences , 66(3), 849-857.
https://doi.org/10.1007/s12665-011-1296-1
Paquin, J. P., & Sushama, L. (2015). On the Arctic near-surface
permafrost and climate sensitivities to soil and snow model formulations
in climate models. Climate Dynamics , 44(1), 203-228.https://doi.org/10.1007/s00382-014-2185-6
Peng, X., Zhang, T., Frauenfeld, O., Wang, K., Luo, D., Cao, B., … &
Wu, Q. (2018). Spatiotemporal changes in active layer thickness under
contemporary and projected climate in the Northern Hemisphere.Journal of Climate . 31 (7):251-266.
Ping, C. L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M.,
Epstein, H., Romanovsky, V. E., & Walker, D. A. (2008). High stocks of
soil organic carbon in the North American Arctic region. Nature
Geoscience , 1(9), 615. https://doi.org/10.1038/ngeo284
Qin, D., Yao, T., Ding, Y., & Ren, J. (2016). Introduction to
cryospheric science. China Meteorological Press .
Qin, Y., Wu, T., Zhao, L., Wu, X., Li, R., Xie, C., … & Liu, G.
(2017). Numerical modelling of the active layer thickness and permafrost
thermal state across Qinghai-Tibetan Plateau. Journal of
Geophysical Research: Atmospheres , 122(21), 11-604.
https://doi.org/10.1002/2017JD026858
Qu, Y., Zhu, Z., Chai, L., Liu, S., Montzka, C., Liu, J., … & Guo, Z.
(2019). Rebuilding a Microwave Soil Moisture Product Using Random Forest
Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the
Qinghai-Tibet Plateau, China. Remote Sensing, 11(6), 683.
https://doi.org/10.3390/rs11060683
Ran, Y., Li, X., & Cheng, G. (2018). Climate warming over the past half
century has led to thermal degradation of permafrost on the
Qinghai-Tibet Plateau. The Cryosphere, 12 (2), 595-608.
https://doi.org/10.5194/tc-12-595-2018
Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of
void-filling interpolation methods for SRTM data. International
Journal of Geographical Information Science , 21(9), 983-1008.
https://doi.org/10.1080/13658810601169899
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., &
Marchenko, S. (2008). Recent advances in permafrost modelling.Permafrost and Periglacial Processes , 19(2), 137-156.https://doi.org/10.1002/ppp.615
Romanovsky, V., Osterkamp, T. (2015). Effects of unfrozen water on heat
and mass transport processes in the active layer and permafrost.Permafrost & Periglacial Processes , 11(3):219-239.
Shiklomanov, N. I., & Nelson, F. E. (2002). Active-layer mapping at
regional scales: A 13-year spatial time series for the Kuparuk region,
north-central Alaska. Permafrost and Periglacial Processes ,
13(3), 219-230. https://doi.org/10.1002/ppp.425
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of
CMIP5 and the experiment design. Bulletin of the American
Meteorological Society , 93(4), 485-498.https://doi.org/10.1175/BAMS-D-11-00094.1
Walvoord, M. A., Voss, C. I., Ebel, B. A., Minsley, B. J. (2018).
Development of perennial thaw zones in boreal hillslopes enhances
potential mobilization of permafrost carbon. Environmental
Research Letters , 4(1). https://doi.org/10.1088/1748-9326/aaf0cc
Wan, W., Zhao, L., Xie, H., Liu, B., Li, H., Cui, Y., … & Hong, Y.
(2018). Lake Surface Water Temperature Change Over the Tibetan Plateau
From 2001 to 2015: A Sensitive Indicator of the Warming Climate.Geophysical Research Letters , 45(20), 11-177.
https://doi.org/10.1029/2018GL078601
Wang, C., Wang, Z., Kong, Y., Zhang, F., Yang, K., & Zhang, T. (2019b).
Most of the Northern Hemisphere Permafrost Remains under Climate Change.Scientific reports , 9(1), 3295.
https://doi.org/10.1038/s41598-019-39942-4
Wang, J., & Zhang, M. (2016). Change of snowfall/rainfall ratio in the
Tibetan Plateau based on a gridded dataset with high resolution during
1961-2013 (in Chinese with English abstract). Acta Geographica
Sinica , 71(1), 142-152.
Wang, Q., Jin, H., Zhang, T., Cao, B., Peng, X., Wang, K., … & Li, L.
(2017). Hydro-thermal processes and thermal offsets of peat soils in the
active layer in an alpine permafrost region, NE Qinghai-Tibet plateau.Global and Planetary Change, 156 , 1-12.
https://doi.org/10.1016/j.gloplacha.2017.07.011
Wang, T., Wu, T., Wang, P., Li, R., Xie, C., & Zou, D. (2019a). Spatial
distribution and changes of permafrost on the Qinghai-Tibet Plateau
revealed by statistical models during the period of 1980 to 2010.Science of the Total Environment, 650 , 661-670.https://doi.org/10.1016/j.scitotenv.2018.08.398
Wang, K., Jafarov, E., & Overeem, I. (2020a). Sensitivity evaluation of
the Kudryavtsev permafrost model.Science of the Total Environment , 720, 137538.