Acknowledgements
This work was financially supported by the Natural Science Foundations of China (41690142; 41771076; 41961144021; 42071093), and the CAS ”Light of West China” Program. The logistical supports from the Cryosphere Research Station on the Qinghai-Tibet Plateau are especially appreciated. Datasets for this research are available athttps://data.mendeley.com/datasets/hbptbpyw75/1 . We also thank the three anonymous reviewers for their constructive suggestions.
References
Aalto, J., Harrison, S., & Luoto, M. (2017). Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100. Nature Communications , 8, 515. https://doi.org/10.1038/s41467-017-00669-3
Aalto, J., Karjalainen, O., Hjort, J., & Luoto, M. (2018). Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophysical Research Letters , 45, 4889-4898. https://doi.org/10.1029/2018GL078007
Boeckli, L., Brenning, A., Gruber, S., & Noetzli, J. (2012). Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere , 6(4), 807-820. https://doi.org/10.5194/tc-6-807-2012
Breiman, L. (2001). Random forests. Machine learning , 45, 5-32. https://doi.org/10.1023/A:1010933404324
Cao, B., Gruber, S., Zhang, T., Li, L., Peng, X., Wang, K., … & Guo, H. (2017). Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China.Journal of Geophysical Research: Earth Surface , 122(3), 574-591. https://doi.org/10.1002/2016JF004018
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., & Westermann, S. (2017). An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change , 7(5), 340-344. https://doi.org/10.1038/nclimate3262
Chang, Y., Lyu, S., Luo, S., Li, Z., Fang, X., Chen, B., Li, R., & Chen, S. (2018). Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data.International Journal of Climatology , 38(15), 5659-5676. https://doi.org/10.1002/joc.5770
Chen, B., Luo, S., Lyu, S., Fang, X., & Chang Y. (2017). Land surface characteristics in soil freezing and thawing process on the tibetan plateau based on community land model (in Chinese with English abstract). Journal of Glaciology and Geocryology, 39(04), 760-770.
Chen, H., Nan, Z., Zhao, L., Ding, Y., Chen, J., & Pang, Q. (2015). Noah modelling of the permafrost distribution and characteristics in the West Kunlun area, Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes , 26(2), 160-174. https://doi.org/10.1002/ppp.1841
Cheng, G., &Wang, S. (1982). On the zonation of high-altitude permafrost in China (in Chinese with English abstract). Journal of Glaciology and Geocryology , 4(2), 1-17.
Cheng, G., & Wu, T. (2007). Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau.Journal of Geophysical Research: Earth Surfac e, 112(F2). https://doi.org/10.1029/2006JF000631
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., … & Wu, Q. (2019). Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin , 64(27), 2783-2795.https://doi.org/10.1360/tb-2019-0191
Du, Y., Li, R., Zhao, L., Yang, C., Wu, T., Hu, G., … & Ma, J., 2020. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau. Catena , 193, 104608.