https://doi.org/10.1016/j.scitotenv.2020.137538.
Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., & Fu, B.
(2020b). Permafrost thawing puts the frozen carbon at risk over the
Tibetan Plateau. Science Advances. 6, eaaz3513.
Wang, W., Wu, T., Zhao, L., Li, R., Zhu, X., Wang, W., … & Hao, J.
(2018a). Exploring the ground ice recharge near permafrost table on the
central Qinghai-Tibet Plateau using chemical and isotopic data.Journal of Hydrology , 560, 220-229.
https://doi.org/10.1016/j.jhydrol.2018.03.032
Wang, Y., Spencer, R. G., Podgorski, D. C., Kellerman, A. M., Rashid,
H., Zito, P., … & Xu, Y. (2018b). Spatiotemporal transformation of
dissolved organic matter along an alpine stream flow path on the
Qinghai-Tibet Plateau: importance of source and permafrost degradation.Biogeosciences , 15(21), 6637-6648.
https://doi.org/10.5194/bg-15-6637-2018
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M.,
Etzelmüller, B., & Krinner, G. (2016). Simulating the thermal regime
and thaw processes of ice-rich permafrost ground with the land-surface
model CryoGrid 3. Geoscientific Model Development , 9(2), 523-546.
https://doi.org/10.5194/gmd-9-523-2016
Westermann, S., Østby, T. I., Gisnås, K., Schuler, T. V., &
Etzelmüller, B. (2015). A ground temperature map of the North Atlantic
permafrost region based on remote sensing and reanalysis data. The
Cryosphere , 9(3), 1303-1319. https://doi.org/10.5194/tc-9-1303-2015
Wheeler, D., Shaw, G., & Barr S. (2013). Statistical techniques in
geographical analysis. Routledge .
https://doi.org/10.4324/9780203821503
Wu, Q., Zhang, T., & Liu, Y. (2012a). Thermal state of the active layer
and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to
2010. The Cryosphere , 6(3), 607-612.https://doi.org/10.5194/tc-6-607-2012
Wu, T., Wang, Q., Zhao, L., Batkhishig, O. & Watanabe, M. (2011).
Observed trends in surface freezing/thawing index over the period
1987-2005 in Mongolia. Cold regions science and technology ,
69(1), 105-111.
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., … & Zhang, F.
(2019). The Beijing Climate Center Climate System Model (BCC-CSM): the
main progress from CMIP5 to CMIP6. Geoscientific Model
Development , 12(4), 1573-1600. https://doi.org/10.5194/gmd-12-1573-2019
Wu, X., Fang, H., Zhao, Y., Smoak, J. M., Li, W., Shi, W., … & Ding,
Y. (2017b). A conceptual model of the controlling factors of soil
organic carbon and nitrogen densities in a permafrost-affected region on
the eastern Qinghai-Tibetan Plateau. Journal of Geophysical
Research: Biogeosciences , 122(7), 1705-1717.https://doi.org/10.1002/2016JG003641
Wu, X., Nan, Z., Zhao, S., Zhao L., & Cheng G. (2018). Spatial modeling
of permafrost distribution and properties on the Qinghai‐Tibet Plateau.Permafrost and Periglacial Processes , 29(2):86-99.
Wu, X., Xu, H., Liu, G., Ma, X., Mu, C., & Zhao, L. (2017a). Bacterial
communities in the upper soil layers in the permafrost regions on the
Qinghai-Tibetan plateau. Applied soil ecology , 120, 81-88.
https://doi.org/10.1016/j.apsoil.2017.08.001
Wu, X., Zhao, L., Chen, M., Fang, H., Yue, G., Chen, J., … & Ding, Y.
(2012b). Soil organic carbon and its relationship to vegetation
communities and soil properties in permafrost areas of the central
western Qinghai-Tibet plateau, china. Permafrost and Periglacial
Processes , 23(2), 162-169. https://doi.org/10.1002/ppp.1740
Wu, X., Zhao, L., Fang, H., Zhao, Y., Smoak, J. M., Pang, Q., & Ding,
Y. (2016). Environmental controls on soil organic carbon and nitrogen
stocks in the high-altitude arid western Qinghai-Tibetan Plateau
permafrost region. Journal of Geophysical Research:Biogeosciences , 121(1), 176-187. Xin, X., Gao, F., Wei, M., Wu,
T., Fang, Y., & Zhang, J. (2018). Decadal prediction skill of BCC-CSM1.
1 climate model in East Asia. International Journal of
Climatology , 38(2), 584-592. https://doi.org/10.1002/joc.5195
Xu, X., Wu, Q., & Zhang, Z. (2017a). Responses of active layer
thickness on the qinghai-tibet plateau to climate change (in Chinese
with English abstract). Journal of Glaciology and Geocryology ,
39(01): 1-8.
Xu, X., Zhang, Z., & Wu, Q. (2017b). Simulation of permafrost changes
on the Qinghai-Tibet Plateau, China, over the past three decades.International journal of digital earth , 10(5), 522-538.
https://doi.org/10.1080/17538947.2016.1237571
Xue, B., Wang, L., Yang, K., Tian, L., Qin, J., Chen, Y., … & Li, X.
(2013). Modeling the land surface water and energy cycles of a mesoscale
watershed in the central Tibetan Plateau during summer with a
distributed hydrological model. Journal of Geophysical Research:
Atmospheres , 118(16), 8857-8868. https://doi.org/10.1002/jgrd.50696
Yang, C., Wu, T., Wang, J., Yao, J., Li, R., Zhao, L., … & Hao, J.
(2019). Estimating Surface Soil Heat Flux in Permafrost Regions Using
Remote Sensing-Based Models on the Northern Qinghai-Tibetan Plateau
under Clear-Sky Conditions. Remote Sensing , 11(4), 416.
https://doi.org/10.3390/rs11040416
Yang, K., He, J., Tang, W., Qin, J., & Cheng, C. C. (2010b). On
downward shortwave and longwave radiations over high altitude regions:
Observation and modeling in the Tibetan Plateau. Agricultural and
Forest Meteorology, 150(1), 38-46.
https://doi.org/10.1016/j.agrformet.2009.08.004
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., & Wan, G.
(2010a). Permafrost degradation and its environmental effects on the
Tibetan Plateau: A review of recent research. Earth-Science
Reviews, 103 (1-2), 31-44.
https://doi.org/10.1016/j.earscirev.2010.07.002
Yang, Z., Ou, Y., Xu, X., Zhao, L., Song, M., & Zhou, C. (2010c).
Effects of permafrost degradation on ecosystems (in Chinese with English
abstract). Acta Ecologica Sinica , 30(1), 33-39.https://doi.org/10.1016/j.chnaes.2009.12.006
Zhang, T., Frauenfeld, O.W., Serreze, M.C., Etringer, A., Oelke, C.,
Mccreight, J., Barry, R.G., Gilichinsky, D., Yang, D., & Ye, H. (2005).
Spatial and temporal variability in active layerthickness over the
Russian Arctic drainage basin. Journal of Geophysical
Research:Atmosphere . 110, 2227–2252.
Zhang, Z., Wu, Q., Zhang, Z., & Hou, Y.
(2012a).
Analysis of the mean annual ground temperature changes on the
Qinghai-Tibet plateau permafrost region under condition of climate
warming (in Chinese with English abstract). Journal of Engineering
Geology , 04, 610-613.
Zhang, W., Wang, G., Zhou, J., Liu, G., & Wang, Y. (2012b). Simulating
the Water-Heat Processes in Permafrost Regions in the Tibetan Plateau
Based on CoupModel (in Chinese with English abstract). Journal of
Glaciology and Geocryology , 34(5), 1099-1109.
Zhang, Z., & Wu, Q. (2012a). Predicting changes of active layer
thickness on the Qinghai-Tibet Plateau as climate warming (in Chinese
with English abstract). Journal of Glaciology and Geocryology ,
34(3), 505-511.
Zhang, Z., & Wu, Q. (2012b) Thermal hazards zonation and permafrost
change over the Qinghai-Tibet Plateau. Natural Hazards , 61(2),
403-423. https://doi.org/10.1007/s11069-011-9923-4
Zhao, D., & Wu, S. (2019). Projected Changes in Permafrost Active Layer
Thickness Over the Qinghai-Tibet Plateau Under Climate Change.Water Resources Research , 55, 7860-775.
https://doi.org/10.1029/2019WR024969
Zhao, L., & Sheng, Y. (2019). Permafrost and its changes on
qinghai-tibet plateau (in Chinese). Beijing: Science Press .
Zhao, T. J., Zhang, L. X., Shi, J. C., & Jiang, L. M. (2011). A
physically based statistical methodology for surface soil moisture
retrieval in the Tibet Plateau using microwave vegetation indices.Journal of Geophysical Research: Atmospheres , 116(D8).
https://doi.org/10.1029/2010JD015229
Zheng, G., Yang, Y., Yang, D., Dafflon, B., Lei, H., & Yang, H. (2019).
Satellite-based simulation of soil freezing/thawing processes in the
northeast Tibetan Plateau. Remote Sensing of Environment , 231,
111269. https://doi.org/10.1016/j.rse.2019.111269
Zhu, X., Wu, T., Zhao, L., Yang, C., Zhang, H., Xie, C., … & Du, Y.
(2019). Exploring the contribution of precipitation to water within the
active layer during the thawing period in the permafrost regions of
central Qinghai-Tibet Plateau by stable isotopic tracing. Science
of The Total Environmen t, 661, 630-644.
https://doi.org/10.1016/j.scitotenv.2019.01.064
Zou, D., Zhao, L., Yu, S., Chen, J., Hu, G., Wu, T., … & Wang,
W. (2017). A new map of permafrost distribution on the Tibetan Plateau.The Cryosphere , 11(6), 2527.https://doi.org/10.5194/tc-11-2527-2017
Figure 1. Location of the investigated regions and observation
sites. Green dots and red triangles stand for the mean annual ground
temperature (MAGT) and active layer thickness (ALT) monitoring sites,
respectively. The black polygons depict the five typical regions.
Figure 2. Observed vs . simulated mean annual ground
temperature (MAGT) for 84 borehole sites based on four statistical
techniques (GLM = generalized linear model, GAM = generalized additive
model, GBM = generalized boosting method, RF = random forest.) and an
ensemble method (the average of the four methods). The red dashed lines
are the ±1 ℃ intervals around the 1:1 line (in black solid line).
Figure 3. Observed vs . modeled active layer thickness
(ALT) based on four statistical techniques (GLM = generalized linear
model, GAM = generalized additive model, GBM = generalized boosting
method, RF = random forest.) and an ensemble method (the average of the
four methods). The red dashed lines are the ±1 m interval around the 1:1
line (in black solid line).
Figure 4. Spatial distribution of permafrost on the QTP based
on the MAGT.
Figure 5. Distribution of the ALT on the permafrost regions of
the QTP.
Figure 6. Forecast mean annual ground temperature (MAGT) and
active layer thickness (ALT) across the study domains under different
RCPs (RCP2.6, RCP4.5 and RCP8.5) for the 2070s (average of 2061−2080).
Figure 7. The uncertainty related to the spatial forecasts of
mean annual ground temperature (MAGT) and active layer thickness (ALT)
in RCP 2.6(a), RCP 4.5 (b), RCP 8.5 (c) scenarios. The uncertainty is
quantified using a repeated (n = 1,000) bootstrap sampling procedure
inside the study domain. The boxplots depict the mean, median, 1st and
3rd quartiles and range of variation over 1000 predictions for modeling
techniques.
Figure 8. Projections of the changes in permafrost area on the
QTP under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 via 7(a) surface frost index
(SFI) and 7(b) Kudryavtsev method (KUD). The graph is derived from Changet al. (2018). Shaded areas show the standard deviations across
the CMIP5 models, the black lines show the equivalent present-day area,
and the grey dotted line represent the degraded area in 2070 under
different RCPs.
Figure 9. Spatial differences between our results (2000–2015)
and those of Zou et al (2003–2012; TTOP model). P and SFG
represent permafrost and seasonally frozen ground, respectively; Result
is the permafrost distribution of this study. The permafrost
distribution is obtained from Zou et al. (2017).
Figure 10. Spatial distribution of the permafrost regions prone
to degradation.
Table 1. Model Error statistics of the ALT and MAGT in
different typical regions