
manuscript submitted to Water Resources Research 

1 

 

Effect of three pillars on hydrological model calibration: data length, spin-up 1 

period and spatial model resolution 2 

Ömer Ekmekcioğlu
 1*

, Mehmet Cüneyd Demirel 
1
, Martijn J. Booij 

2
 3 

1 
Department of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, 4 

Turkey. 5 

2
 Water Engineering and Management, Faculty of Engineering Technology, University of 6 

Twente, Enschede 7500 AE, The Netherlands 7 

Corresponding author: Ömer Ekmekcioğlu (omer.ekmekcioglu@itu.edu.tr)  8 

 9 

Key Points: 10 

 A systematic approach is presented to identify appropriate calibration data length, spin-up 11 

period and spatial model resolution  12 

 Dependency of model performance on data length, spin-up period and spatial resolution 13 

of the model schematization is revealed for the Moselle River 14 

 Three user-defined pillars in modelling should not be overlooked due to trade-off 15 

between computational costs and model performance  16 

  17 



manuscript submitted to Water Resources Research 

2 

 

Abstract 18 

In general, calibration of a hydrologic model is essential to better simulate the basin processes 19 

and behaviour by fitting the model simulated fluxes to observed fluxes. A major challenge in the 20 

calibration process is to choose the appropriate length of the observed data series and spatio-21 

temporal resolution of the model schematization. We present a multi-case calibration approach 22 

for determining three pillars of an optimum hydrological model configuration: calibration data 23 

length, spin-up period and spatial resolution of the hydrological model. The approach is 24 

evaluated for the Moselle River basin using calibration and validation results from the spatially 25 

distributed meso-scale Hydrological Model (mHM) for 105 different cases representing the 26 

combinations of three calibration data lengths, seven spin-up periods and five spatial model 27 

resolutions. A metaheuristic global optimization method, i.e. Dynamically Dimensioned Search 28 

(DDS) algorithm, and a well-known hydrological performance metric, i.e. Nash Sutcliffe 29 

Efficiency (NSE), are utilized for each of the 105 calibration cases. The results show that a 10-30 

year calibration data length, 2-year spin-up period and a 4 km model resolution are appropriate 31 

for the Moselle basin to reduce the computational burden. Analyzing the combined effects 32 

further allowed us to understand the interactions of these three usually overlooked pillars in 33 

hydrological modeling.  34 

1 Introduction 35 

Hydrological models are crucial tools to evaluate physical processes and quantify water 36 

balance components in a catchment. They can be classified according to the amount of physics 37 

incorporated as empirical (or data-driven), conceptual and physically-based models. The focus in 38 

this study is on physically-based regarding the amount of physics and fully-distributed regarding 39 

the spatial resolution of the models. Obviously, the choice of the model type together with data 40 
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availability such as the spatial resolution of inputs, the length of the spin-up period and the 41 

parameter calibration strategy all affect the model performance (Blöschl & Sivapalan, 1995). The 42 

determination of all these aspects in a calibration framework is related to appropriate modeling in 43 

hydrology and should be based on the modeling objective, data availability and a systematic 44 

analysis of the model-catchment interaction (Booij, 2005). We focus on user-defined options in 45 

hydrological modelling as we are interested in identifying the appropriate calibration data length, 46 

spin-up period and spatial model resolution in the Moselle River basin.  47 

The calibration process, which has utmost importance to minimize the parameter 48 

uncertainty (Sreedevi & Eldho, 2019; Westerberg et al., 2020), is described as the optimization 49 

of uncertain parameter values in the model to obtain sufficient accuracy in model outcomes 50 

(Simunek et al., 2012). Since calibration can be performed by trial-and-error for different 51 

conditions, i.e. manual calibration (Gelleszun et al., 2017), and also with mathematical 52 

algorithms, i.e. automatic calibration (Madsen, 2003), time-efficiency is a major challenge. The 53 

main constraint in determining the calibration period is the availability of data, i.e. long time-54 

series of runoff or other model output or state variables (Sorooshian et al., 1997). In general, 55 

using 20-year data for the calibration period is assumed to be sufficient for large basins to 56 

account for climatological and hydrological variability (Epstein et al., 1998). Although data 57 

records for large basins might be available for more than 30 years, keeping the calibration period 58 

as long as possible is computationally inefficient and not always meaningful, in particular when 59 

climatic or other trends are present in the time series and the model only should be calibrated on 60 

the most representative (i.e. most recent) time period (Daggupati et al., 2015). For instance, 61 

Perrin et al. (2007) found that a much smaller number of random days (~300 days) is sufficient 62 

for calibration of models with a small number of parameters.  63 
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In different studies, even data periods of 10 years or less have been used considering both 64 

computational resources and limited data availability (Andersen et al., 2001; Kim et al., 2018). 65 

Zheng et al. (2018) analyzed the impact of different calibration periods on model results using 66 

data-driven techniques. They concluded that the model performance may increase by considering 67 

temporal variability and extreme events in the calibration process. In addition, a number of 68 

studies has confirmed that quality of data increases calibration performance in distributed 69 

hydrological models (Beck et al., 2017; Herman et al., 2018; Näschen et al., 2018). Raihan et al. 70 

(2020) evaluated the calibration performance of hydrological models according to different 71 

performance criteria and showed that the simulations were not considerably successful 72 

particularly for extreme low flows due to the limited temporal variability and poor data quality of 73 

the calibration data.  74 

Another factor affecting the calibration performance of hydrological models is the length 75 

of the spin-up period, which provides the required initial model state (Yang et al., 1995). The 76 

required spin-up period highly depends on the input data of the catchment and the hydrological 77 

response (Rodell et al., 2005). In addition, determining the optimum spin-up period is essential, 78 

since both shorter and longer spin-up periods may have negative effects on the calibration 79 

performance. A shorter spin-up period inevitably leads to a low (even wrong) performance 80 

evaluation, whereas a longer spin-up period can lead to a waste of the data and misinterpretation 81 

of the results (Ajami et al., 2014). Practitioners generally consider the first two or three years as 82 

acceptable as spin-up period depending on the model structure. There have been studies using 83 

only a spin-up period of one year for lumped models (Rahman et al., 2016), semi-distributed 84 

models (Abdo et al., 2009; Xu et al., 2013) and distributed models (Cuo et al., 2006; Lohmann et 85 

al., 1998; Revilla-Romero et al., 2016). Although there is common sense that the spin-up period 86 
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varies from one year to several years up to ten years (Shi et al., 2008), no consensus has been 87 

reached in this regard (Kim et al., 2018). Sood et al. (2013) performed simulations with a 88 

monthly time step, since they had monthly streamflow observations, and the first two years of a 89 

13-year data period have been used as spin-up period, while the remaining 11 years have been 90 

utilized for model calibration. Ashraf (2013) performed simulations on a monthly basis as well 91 

and divided the entire data set into two periods with six years as spin-up period and ten years as 92 

calibration period. With a few exceptions, studies conducted to identify the optimum spin-up 93 

period surprisingly did not attract the research community's attention, particularly for physically-94 

based distributed hydrological models.  95 

Besides, heterogeneous land surface conditions require a sufficiently long spin-up period 96 

(Shrestha & Houser, 2010). Ajami et al. (2014) emphasize the importance of a multi-criteria 97 

approach, which includes the groundwater storage, unsaturated zone storage, depth to water 98 

table, root zone storage, discharge, snow water equivalent and energy fluxes, in determining the 99 

spin-up period of integrated hydrological models. The length of spin-up periods also depends on 100 

the initial soil moisture content, soil depth, soil and vegetation type and groundwater storage at 101 

the start of the simulations, in addition to the temperature and rainfall forcings (Cosgrove et al., 102 

2003). With a method based on relative changes in monthly groundwater storages, Ajami et al. 103 

(H. Ajami et al., 2014) presented a hybrid approach on the basis of integration of ParFlow, which 104 

is an integrated hydrological model, and the empirical depth-to-water-table function, to satisfy 105 

state equilibrium conditions. They reduced the spin-up period by approximately 50% (from 20 106 

years to 10-12 years) compared to the conventional continuous recursive simulation approach, 107 

which is widely employed for the determination of spin-up periods in land surface models.  108 
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Regardless of the model complexity, another issue which has a significant impact on 109 

hydrological model performance is the spatial model resolution (Koren et al., 1999). The spatial 110 

resolution to be used in a model is not only related to the availability of meteorological input 111 

data but also to the computational resources (Sood & Smakhtin, 2015). Accordingly, simulation 112 

performance may either increase or decrease depending on the spatial resolution (Booij, 2002; 113 

2005; Bucchignani et al., 2016; Pang et al., 2020). However, in some cases, a considerable 114 

change is not observed indicating that the model structure is suitable for all resolutions (Merz et 115 

al., 2009). In addition, the spatial variability of storm events also has an influence on the 116 

appropriate spatial resolution of the model. Lumped models may perform accurately with a 117 

spatially uniform input distribution, while they may need a higher spatial resolution (e.g. sub-118 

basins) in the case of a non-uniform spatial input distribution (Tian et al., 2020). Pang et al. 119 

(Pang et al., 2020) evaluated the precipitation model input, both temporally and spatially, based 120 

on the differences of various open access precipitation products.. In semi-distributed conceptual 121 

models, the spatial resolution is determined based on the sub-basin distribution. Distributed 122 

models provide distributed outputs since spatial heterogeneity is taken into account (Dehotin & 123 

Braud, 2008). Etchevers et al. (2001) performed simulations for spatial resolutions of 1 km, 8 km 124 

and 46 km  using the soil-vegetation-atmosphere transfer (SVAT) model. They obtained 125 

mediocre simulation results for the 46 km resolution, whereas flash-flood events were better 126 

captured in the model with a 8 km resolution. Chen et al. (2017) employed the Liuxihe model, 127 

i.e. a physically based distributed hydrological model, to investigate flood events in Liujiang 128 

River basin, China, which covers an area of about 60000 km². They calibrated the model using 129 

Particle Swarm Optimization (PSO) for a total of 29 flood events. Considering five different 130 

spatial model resolutions, i.e. 200, 400, 500, 600 and 1000 m, they concluded that the results for 131 
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the 1 km grid were not meaningful. The peak values were captured when applying resolutions of 132 

500 m or smaller. Although slightly better results were obtained for 400 m, they chose 500 m 133 

grids as the appropriate spatial resolution considering the computational burden. Fully distributed 134 

models are more sensitive to resolution of the rainfall input as compared to semi-distributed 135 

models (Gires et al., 2015). Most of the current studies  investigated either the effects of the 136 

model input resolution or the spin-up period on the model results. No study is known to the 137 

authors which explicitly assesses the effects of the spatial resolution of the model together with 138 

the length of the spin-up period and calibration period on the model performance.  139 

We aim to comprehensively investigate the impact of the three major but overlooked 140 

pillars, (1) calibration period, (2) spin-up period and (3) spatial model resolution, on the 141 

calibration and validation performance of a physically-based distributed hydrological model for 142 

the Moselle River basin in France and Germany. The study area and data are introduced in 143 

section 2. The model and calibration framework are presented in section 3. The calibration and 144 

validation results are presented and discussed in sections 4 and 5. Finally, the key conclusions 145 

are drawn in Section 6.  146 

2 Study Area and Data  147 

2.1 Study area 148 

The focus of this study is the Moselle River basin (Figure 1), i.e. the largest sub-basin of 149 

the Rhine River. The main channel of the Moselle River has a length of about 545 km (Demirel 150 

et al., 2013). The Moselle River basin, covering parts of the three countries France, Germany and 151 

Luxembourg, has a surface area of approximately 27262 km². The three longest tributaries of the 152 

Moselle River are the Saar, Sauer and Meurthe. The basin has different lithological and 153 
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topographic characteristics, while it has a rain dominated regime (Brenot et al., 2007). The 154 

minimum, mean and maximum discharge values observed for the Moselle (at Cochem station) 155 

are 14 (dry summer), 130 (long term average until 2009) and 4000 m³/s (winter), respectively 156 

(Demirel et al., 2013). The mean altitude of the basin is around 340 m and the land use is 157 

dominated by agriculture (54%) with arable areas, pastures and natural grasslands  (Uehlinger et 158 

al., 2009), and forests (37%) in the mountains and hillslopes (Demirel et al., 2019). 159 

 160 
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 161 

Figure 1. Moselle River network, basin boundary and elevation map 162 

2.3 Data 163 

Distributed hydrological models not only need hydrometeorological and geographical 164 

data as input, but also require parameters relevant for different hydrological processes such as 165 

interception and infiltration. At this point, the data availability and the spatio-temporal resolution 166 

of the input data play a vital role in the accuracy of a model. In this study, the model uses 167 

spatially distributed precipitation, temperature and potential evapotranspiration data as input 168 
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(Table 1). Meteorological data are from the E-OBS gridded data set on a daily basis (Haylock et 169 

al., 2008) and the discharge data at Cochem station was obtained from the Global Runoff Data 170 

Center (GRDC) in Koblenz (Germany).  171 

The digital elevation model (DEM) is based on the Shuttle Radar Topography Mission 172 

(SRTM) from NASA (Ballabio et al., 2016). The soil classes are derived from the harmonized 173 

world soil database (Fischer et al., 2012), while land cover data is provided from the CORINE 174 

data set (Girard et al., 2019). Table 1 provides a brief summary of the data used in this study.  175 

Table 1 Summary of geographical and meteorological data used as input for mHM. 176 

Variable Description 

Spatial 

Resolution 

Temporal 

Resolution 

Source 

Q (daily) 

Streamflow (Cochem station, 

#6336050) 

Point Daily GRDC 

P (daily) Precipitation 24 km Daily 

E-OBS 20.0e, 

MODIS 

ETref (daily) Reference evapotranspiration 24 km Daily E-OBS 20.0e, MODIS 

Tavg (daily) Average air temperature 24 km Daily E-OBS 20.0e, MODIS 

Land cover 

Pervious, impervious and 

forest 

250 m 1 map for all period CORINE 

DEM data 

Slope, aspect, flow 

accumulation and direction 

250 m 1 map for all period SRTM 

Geology 

class 

Two main geological 

formations  

250 m 1 map for all period 

EUROPEAN SOIL 

DATABASE 

Soil class Soil texture data 250 m 1 map for all period 

HARMONIZED 

WORLD SOIL 

DATABASE 
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(SRTM: Shuttle Radar Topography Mission, CORINE: Coordination of Information on the Environment, GRDC: 177 

Global Runoff Data Center) 178 

3 Methods  179 

3.1 Meso-scale hydrological model 180 

The grid-based meso-scale hydrological model (mHM) is a fully-distributed model in 181 

which for each grid cell incoming and outgoing fluxes for different storage compartments are 182 

calculated and the water balance of each compartment is updated after each time step (Dembélé 183 

et al., 2020; Kumar et al., 2013; Samaniego et al., 2010). In mHM, runoff is transferred to the 184 

downstream cells along the basin and river using three different routing methods i.e. 185 

Muskingum, adaptive time step with constant celerity and adaptive time step with varying 186 

celerity (Thober et al., 2019). In this study, we used adaptive time step with constant celerity 187 

method as it only requires one parameter i.e. streamflow celerity. In the last decade, mHM has 188 

been applied to basins in many countries in Europe (Marx et al., 2017; Samaniego et al., 2018), 189 

including Germany (Baroni et al., 2019; Höllering et al., 2018; Jing et al., 2019) and Denmark 190 

(Demirel et al., 2018; Koch et al., 2018), as well as to various large basins world-wide (Eisner et 191 

al., 2017; Huang et al., 2018).  192 

mHM is an open source software written in the Fortran 2003 language and accessible 193 

from www.ufz.de/mhm, while the model is also compatible with many platforms, such as Linux, 194 

Mac and Windows (Nijssen et al., 2001; Samaniego et al., 2021). One of the most appealing 195 

features of the model code is the transferability between different input resolutions (Figure 2) for 196 

the desired computational resolutions (mesh). The model handles different resolutions of soil 197 

related data and meteorological data (Figure 2) by automatic upscaling and downscaling of high 198 

resolution geographical data (L0) and coarse meteorological data (L2) to reach the user-defined 199 
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hydrological output resolution (L1). Also, the model provides flexibility to select a routing 200 

resolution (L11) different than the hydrological resolution (L1), so that the user can benefit from 201 

high resolution geographical input (soil, geology, aspect, LAI, elevation etc.) and does not loose 202 

time with preprocessing of meteorological data to fit the resolutions for model runs. Transferring 203 

data to a coarser resolution is done based on harmonic averaging instead of arithmetic averaging. 204 

In addition, different temporal resolutions for the model outputs can be used, e.g. daily, monthly 205 

or annual model results. For details of the process formulations, the readers and potential users 206 

may refer to the model papers (Kumar et al., 2013; Samaniego et al., 2010).  207 

 208 

Figure 2. Model input and output scale configuration in mHM.  209 

3.2 Parameter sensitivity analysis 210 

Sensitivity analysis (SA) is an important step before calibration and validation of 211 

complex hydrological models to reduce the dimension of the search space. This will increase the 212 

effectiveness of the calibration process by reducing the run time. mHM includes around 55 213 

global parameters used in physically based equations representing the different hydrological 214 

processes. In this study, we applied a local sensitivity analysis method based on the Jacobian 215 

matrix available in the PEST tool (Doherty, 2010). The parameters are perturbated one-at-a-time 216 

with a particular percentage (i.e. 5%) and the change in the performance metric is observed. 217 

PEST allows one side (only increase) or two side (increase and decrease) sensitivity analysis. We 218 
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applied two side SA which required 2n+1 model runs (n is the number of parameters), i.e. 55 219 

parameters x 2 sides + 1 =111 model runs.  220 

3.3 Model calibration and validation 221 

Since we are interested in capturing peak flows, we selected the Nash Sutcliffe Efficiency 222 

(NSE), i.e. the most commonly used metric in flood hydrology (Knoben et al., 2019), to present 223 

our calibration results. In this study, mHM version 5.10 was set-up for the Moselle River basin, 224 

and the effects of the three factors (pillars) on the model performance were examined. 225 

Accordingly, we tested all possible combinations of three factors, i.e. a total of 105 different 226 

cases comprising of three calibration data lengths, seven spin-up periods and five spatial model 227 

resolutions to design an appropriate calibration framework for the Moselle River basin. Here, we 228 

tested spatial model resolutions varying from 1 to 12 km (Figure 3). The mHM model internally 229 

upscales and downscales the input data to match the input scale to the hydrological model scale. 230 

Since we identified very small effects of the routing scale on the model performance, we fixed 231 

the routing scale to 6 km to save a substantial amount of run-time using the workstation 232 

configuration of the AMD Ryzen Threadripper 1900X 8-Core Processor (Win-10, 4.10 GHz and 233 

64GB RAM). Further, we used three different calibration periods between 1991-2005, 1996-234 

2005 and 2001-2005, corresponding to data lengths of 15, 10 and 5 years respectively. The four 235 

year period between 2006 and 2009 was selected as validation period for each model since we 236 

had data from 1991 to 2009. We tested seven spin-up period of 0, 1, 2, 3, 4, 5 and 10 years and 237 

five different spatial model resolutions of 1, 2, 4, 8 and 12 km. It should be noted that the 238 

geographical and geomorphological data of the mHM model is at a 250 m resolution and 239 

meteorological inputs (P, ETref and Tavg) are at a 24 km resolution. The discharge data at Cochem 240 

station was used both in the calibration and validation. 241 
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In addition, mHM internal auto-calibration tool provides four search algorithms. In this 242 

study, the Dynamically Dimensioned Search (DDS) algorithm (Tolson & Shoemaker, 2007) is 243 

used to calibrate the model parameters, since DDS is a fast converging method compared to local 244 

gradient based methods such as the steepest descent algorithm (Huot et al., 2019). Tolson and 245 

Shoemaker (2007) also highlighted that DDS outperformed one of the most popular optimization 246 

algorithm in hydrology i.e. Shuffled Complex Evolutionary algorithm (Duan et al., 1992). For a 247 

comprehensive analysis of the search space, we set the maximum number of iterations to 3000 248 

model runs. 249 

 250 
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 251 

Figure 3. The framework of the study. Each of the 105 cases has been calibrated with the Dynamically Dimensioned Search 252 

(DDS) algorithm with a maximum number of 3000 iterations and the Nash-Sutcliffe Efficiency (NSE) as objective function. 253 
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4 Results 254 

4.1 Parameter sensitivity analysis  255 

Table 2 shows the most important 18 parameters using the NSE metric and sorted based 256 

on the normalized sensitivities. The normalized values are used to take into account both intial 257 

parameter values and raw sensitivity indicators from the Jacobian matrix. This is a more 258 

objective way as compared to using raw sensitivities directly, since a small change in some very 259 

small valued parameters may have a huge impact on the results whereas high valued geo-260 

parameters may have a small raw sensitivity. In this approach, intial parameter values and raw 261 

sensitivities are multiplied (4
th

 column) and then normalized by the maximum of this column. 262 

The normalized sensitivity value of the most sensitive parameter is 1 in this approach. Around 263 

two-third of the 55 parameters were not influencial on the streamflow dynamics and similar 264 

parameters found to be sensitive in other mHM studies in different basins (Demirel et al., 2018) 265 

Table 2 Most sensitive parameters of mHM based on NSE performance.  266 

Parameter 
Initial 

value (-) 

Raw 

sensitivity 

(-) 

Abs (init. 

value* raw 

sensitivity) (-) 

Normalized 

Sensitivity (-) 

rotfrcoffore 0.9878 3.0199 2.9831 1.0000 

rotfrcofclay 0.9637 1.8252 1.7590 0.5900 

ptfksconst -1.3251 0.4033 0.5344 0.1790 

rotfrcofimp 0.9352 0.4676 0.4374 0.1470 

ptflowconst 0.7518 0.3340 0.2511 0.0840 

pet_bb 0.8942 0.2243 0.2006 0.0670 

rechargcoef 6.4266 0.0260 0.1674 0.0560 

pet_ap 0.4337 0.3569 0.1548 0.0520 

ptfkssand 0.0094 16.2841 0.1527 0.0510 

ptflowdb -0.3323 0.4565 0.1517 0.0510 

expslwintflw 0.0568 2.4514 0.1391 0.0470 

pet_cc -0.6204 0.1749 0.1085 0.0360 

slwintreceks 13.3225 0.0077 0.1027 0.0340 

pet_af 1.0445 0.0815 0.0851 0.0290 



manuscript submitted to Water Resources Research 

17 

ptfksclay 0.0035 11.2824 0.0399 0.0130 

thetanormc1 0.4722 0.0749 0.0354 0.0120 

geoparam4 215.6520 0.0002 0.0335 0.0110 

muskatrivslp 0.4657 0.0674 0.0314 0.0110 

 267 

4.2 Effect of calibration data length on model performance 268 

Figure 4 shows the model performance results in the calibration (left column) and 269 

validation (right column) periods as a function of the calibration data length for different spin-up 270 

periods and spatial resolutions. Besides the calibration results, we also present validation results 271 

as an independent test to evaluate the effects of the 105 cases.  272 

For a 1 km resolution, Figure 4a shows that the model calibration performance varies 273 

depending on the spin-up period when the calibration data length increases from 5 to 15 years. 274 

Besides, Figure 4b indicates that the model validation performance increases with increasing 275 

calibration data length independently from the spin-up period. The results obtained for a 4 km 276 

resolution showed that the model calibration performance decreased when the calibration data 277 

length increased from 5 to 15 years except for a 1-year spin-up period (Figure 4c). However, the 278 

model validation performance increased when the calibration data length increased from 5 to 10 279 

years and did not show a significant change between 10 and 15 years for 4 km resolution (Figure 280 

4d). Figure 4e shows that the increase in calibration data length from 10 years to 15 years did not 281 

lead to significant changes in model calibration performance for a 8 km resolution except for a 0-282 

year spin-up period. In addition, Figure 4f illustrates that the increase in calibration data length 283 

from 10 to 15 years deteriorates the model validation performance for spin-up periods of 4, 5 and 284 

10 years. Overall, a calibration data length of 10 years is sufficient for 4-km and 8-km 285 

resolutions, whereas setting the calibration data length to 15 years is required when the spatial 286 

resolution of the model is 1 km.   287 
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 288 

 289 

Figure 4. Model results (NSE) as a function of calibration period (length) for different spin-up 290 

periods (0 to 10 years) and different spatial resolutions; i.e. a) and b) 1 km c) and d) 4km, e) and 291 
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f) 8 km. Left column represents the calibration results; right column represents the validation 292 

results. Horizontal axis points to three scenarios i.e. 5 year calibration covers 2001-2005, 10 year 293 

calibration covers 1996-2005 and 15 year calibration covers 1991-2005. 294 

4.3 Effect of spin-up period on model performance 295 

Figure 5 highlights the impacts of the different spin-up periods on model performance by 296 

means of the NSE for different spatial resolutions and calibration data lengths. It is apparent 297 

from Figure 5 that an increase in spin-up period results in a higher model calibration 298 

performance (except the case with a calibration data length of 5 years and a 1 km resolution) as 299 

the model better adapts to the basin states. However, one can observe a decreasing trend in the 300 

validation performance when the spin-up period was set between 0-year and 5 years, particularly 301 

at a spatial resolution of 1 km and 2 km, while for a calibration data length of 15 years (Figure 302 

5f), we see a similar behavior for almost each spatial resolution (except for a 4 km resolution). 303 

Interestingly, for a calibration length of 15 years, from meso to coarse spatial model resolution 304 

(from 4 to 12 km), the model calibration performance jumps from a NSE value of 0.4 to 0.9 as 305 

the spin-up period increases from zero to two years (Figure 5e). With a few exceptions, model 306 

calibration and validation results show less sensitivity to changing spin-up periods after two 307 

years. On the other hand, the model calibration performance with a 1 and 2 km resolution show 308 

high sensitivity to the spin-up period. This is a clear indication of the importance of selecting an 309 

appropriate spin-up period for a selected spatial resolution in a systematic model calibration 310 

framework. In summary, considering a calibration data length of 10 years, a spin-up period of 2 311 

years is found to be adequate for the application of mHM to the Moselle River basin. 312 

 313 
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 314 

Figure 5. Model results (NSE) as a function of spin-up period for different spatial 315 

resolutions (1 km, 2km, 4km, 8km and 12 km) and calibration periods, i.e. a) and b) 5 years c) 316 
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and d) 10 years, e) and f) 15 years. Left column represents the calibration results; right column 317 

represents the validation results. 318 

4.4 Effect of spatial resolution on model performance 319 

Figure 6 shows the variation in NSE in the model calibration and validation as a function 320 

of spatial resolution. Colored lines represent different spin-up periods. Two adjacent sub-plots in 321 

each raw illustrates 5, 10 and 15 years of calibration data lengths, respectively. The results 322 

obtained for both model calibration and validation illustrated that the model performance 323 

increased as the model resolution increases from 1 to 4 km (except for the validation 324 

performance of 15 years calibration data length). Even though this is contrary to the expectations 325 

considering the physical point of view, this can be from the fact that different uncertainties in the 326 

input data are less influential (reduced) after averaging data to coarser scales (upscaling). In 327 

addition, Figure 6a depicts that a 2 km spatial resolution gave satisfactory results in model 328 

calibration, while the model shows the best validation performance when the spatial resolution is 329 

set to 4 km (Figure 6b). Also, for a calibration data length of 10 years, a 4 km resolution seems 330 

the best option for both calibration and validation (Figure 6c and Figure 6d). However, some 331 

inconsistencies may exist for shorter spin-up periods (such as a 0-year spin-up period). What is 332 

striking about the cases with a 15-year calibration period is that there is no improvement in 333 

model performance beyond a spatial resolution of 4 km (Figure 6e and Figure 6f) as the NSE 334 

values tend to decrease towards 8 and 12 km resolutions.  335 

 336 
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  337 

Figure 6. Model results (NSE) as a function of spatial resolution for different spin-up 338 

periods (0 to 10 years) and calibration periods, i.e. a) and b) 5 years from 2001 to 2005 c) and d) 339 

10 years from 1996 to 2005, e) and f) 15 years from 1991 to 2005. Left column represents the 340 

calibration results; right column represents the validation results. 341 
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5 Discussion 342 

Model calibration 343 

Model calibration is usually executed with the available data and computational 344 

resources. More data and higher model resolutions are assumed to provide a more realistic 345 

simulation requiring less need for model calibration than those with coarser data. In this study, 346 

we analyzed 105 different model calibrations to identify an appropriate configuration of three 347 

pillars, i.e. calibration data length, spin-up period and spatial resolution. We followed a smart 348 

sampling approach for the choice of experimental details. For instance, instead of testing all spin-349 

up periods from one year to ten years, we only focused on zero to five years with one year 350 

interval and added an experiment with a ten year spin-up period as the last case. Similarly, we 351 

included only some of the most commonly used spatial model resolutions, i.e. 1, 2 and 4 km. 352 

Although we could include more spatial resolutions between 250 m (L0 geographical data 353 

resolution) and 24 km (L2 meteorological data resolution) such as 3, 6 and 24 km, we only 354 

considered two additional resolutions (8 and 12 km). Testing 11 spin-up periods (i.e. 0 to 10 355 

years) together with 10 spatial resolutions (i.e. 250 m, 500 m, 1, 2, 3, 4, 6, 8, 12 and 24 km) 356 

would enormously increase the number of cases directly affecting the total duration of the 357 

calibration experiments. This would also raise the question of redundancy due to the testing of 358 

minor changes in the resolutions and spin-up periods. Furthermore, the model is incapable of 359 

upscaling and downscaling of model inputs for the non-integer spatial resolutions, e.g. 5, 7, 9, 360 

10, 11 and 23 km.  361 

Although NSE is the most commonly used metric to assess hydrological model 362 

performance (Mizukami et al., 2019), it is critisized for being dominated by high flow 363 

performance (Pushpalatha et al., 2012). We used the DDS method, which is available in the 364 
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model tool, to calibrate our model. To develop a full picture of hydrological model behavior, 365 

additional studies will be needed that consider multi-objective calibrations using pareto archived 366 

DDS (Asadzadeh & Tolson, 2009) with additional metrics such as the Kling-Gupta Efficiency 367 

(Gupta et al., 2009) and Spatial Efficiency (Demirel et al., 2018). We chose a sufficiently large 368 

number of iterations (3000 runs) and reached reasonable performance results. Here, our 369 

motivation was to scan a wide spectrum of the parameter domain instead of a short calibration 370 

with several hundereds of iterations. Also, we only focused on single gage temporal calibration 371 

with NSE. Further research should investigate effect of multi-gage and spatial model calibrations 372 

using Spatial Efficiency (SPAEF) as objective function to assess the model performance 373 

(Demirel et al., 2018). 374 

 375 

Effect of three pillars on model performance 376 

Based on the trade-off between available data and computational resources, the modeler 377 

has to choose an appropriate combination of the three pillars. In this study, we assessed the effect 378 

of each pillar on the model performance. It is somewhat surprising that higher spatial model 379 

resolutions (1 and 2 km) lead to a higher sensitivity to the length of the calibration period. For 380 

spin-up periods longer than 2 years, the model performance is relatively less sensitive. This 381 

indicates that using a longer spin-up period in hydrological simulations does not always have a 382 

positive effect on the model performance. From a physical point of view, the spin-up period 383 

should be basin dependent and influenced by factors such as geographical heterogenity, land 384 

cover anduse and flow regime. For instance, in rainfed catchments, the performance of 385 

hydrological models is relatively higher than those in snowmelt dominated regions which can 386 

reduce the dependency of the model for longer data length and spin-up period. However, 387 
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capturing rainfall heterogeneity at higher spatial resolutions is necessary for better performance. 388 

The size of the catchment (Wallace et al., 2018), heterogeneity of rainfall (Nicótina et al., 2008) 389 

and karstic geomorphology can greatly effect the spatio-temporal variations of hydrological 390 

processes and three pillars (Zhang et al., 2020). Larger gird-size (coarser spatial resolution) can 391 

be used in larger basins whereas especially for the latter cases (rainfall heterogeneity and 392 

complex geology), the need for better quality data and longer time series increases significantly. 393 

We are aware that spin-up periods longer than 5 years are not realistic in many hydrological 394 

modeling studies (Ajami et al. 2014), however, we intended to test a wide range of periods.  395 

Spatial model resolution directly effects the number of cells and the pattern of the 396 

hydrological variable, e.g. actual evapotranspiration (AET), over the model domain (Booij, 2002; 397 

Chen et al., 2017; Cosgrove et al., 2003; Etchevers et al., 2001; Zheng et al., 2018). For instance, 398 

a single cell with spatial resolution of 24 km does not provide any pattern of AET depending on 399 

the vegetation and soil type. To have a descent histogram of the spatial patterns, resolutions that 400 

result in around 1000-2000 cells (pixels) are required to calculate spatial performance as shown 401 

in other basins (Demirel et al., 2018).  402 

 403 

Uncertainties and Data  404 

Assessing uncertainities raising from model structure, inputs and parameters is important for 405 

assessing the reliability of the results. Model structure uncertainty can be analyzed by using 406 

multiple models (Demirel et al., 2013). Here, we only focused on one distributed model (i.e. 407 

mHM) and the EOBS meteorological dataset. Parameter uncertainty is assumed to be reduced 408 

during the model calibration. There are still many unanswered questions about the model input 409 

uncertainty. To compare the effect of input uncertainty on the results, the ERA5 meteorological 410 
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dataset (Hersbach et al., 2020) can be used in the model in addition to the EOBS dataset (Cornes 411 

et al., 2018). Further, we chose aspect based potential ET correction in the model as leaf area 412 

index (LAI) based potential ET correction will be a topic of our future study. It is assumed that 413 

the LAI based potential ET correction would yield better AET estimates; therefore, better 414 

discharge performance as compared to those with aspect data (Demirel et al., 2018).  415 

Data quality and length can be big issues for modelers from developing countries. Even 416 

though the modeler has a long time series with unlimited computational resources, a ten-year 417 

part of the new data set with a spin-up period of two or three years is sufficient for the model 418 

calibration. Then, the remaining, i.e. not wasted, data can be used for model validation (Royer-419 

Gaspard et al., 2021). Further work should examine the effect of model input data resolution in 420 

addition to the model spatial resolution. Also, the length of the validation period can be varied in 421 

addition to the length of the calibration period.  422 

  423 
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6 Conclusions 424 

This study was designed to comprehensively investigate the effects of three user-defined 425 

model configurations that are usually determined based on local expert knowledge and available 426 

data. We focused on the identification of the appropriate length of the calibration period, the 427 

length of the spin-up period and the appropriate spatial model resolution for the Moselle River 428 

basin. For that, we used a fully distributed hydrological model (mHM) and performed 105 429 

different calibrations with the DDS optimization algorithm and NSE objective function. The 105 430 

cases are combinations of three calibration periods, seven spin-up periods and five spatial model 431 

resolutions. 432 

The main conclusions from this work can be summarized as follows: 433 

• Based on the results of the comparison of three calibration data lengths, 10 years 434 

is found to be an appropriate length for the Moselle River basin. The interaction between 435 

calibration period and 1-2 km spatial resolution has the strongest effect on the results.  436 

• Based on the results of the comparison of three spin-up periods, two years of spin-437 

up period in addition to the 10 years of calibration data is found to be sufficient for the model to 438 

adopt to the initial conditions in the Moselle River basin. Longer spin-up periods than two years 439 

did not significantly improve the model calibration and validation performances. 440 

• Based on the results of the comparison of five spatial resolutions, 4 km is found to 441 

be the most appropriate model resolution for the Moselle River basin since the performance 442 

slightly deteriorated at coarser resolutions (i.e. 8 and 12 km).  443 

Overall, the three factors analyzed in our study are usually overlooked in hydrological 444 

modeling. However, the results showed that we should carefully analyze the different 445 
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combinations of calibration data length, spin-up period and spatial resolution instead of selecting 446 

an arbitrary combination. It is important to mention that our multi-case analysis framework 447 

proposed in this study can be applied to any other spatially distributed model and catchment. 448 

  449 
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