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Abstract: Subfootprint variability (SFV), or representativeness error, is variability within the 11 
footprint of a satellite that can impact validation done by comparison of in situ and remote sensing 12 
data. This study seeks to determine the size of the SFV as a function of footprint size in two regions 13 
that were heavily sampled with in situ data. The SPURS-1 (Salinity Processes in the Upper-ocean 14 
Regional Studies) experiment was conducted in the subtropical North Atlantic in 2012-2013, 15 
whereas the SPURS-2 study was in the tropical eastern North Pacific in 2016-2017. SFV was also 16 
computed using a high-resolution regional model based on ROMS (Regional Ocean Modeling 17 
System). We computed SFV at footprint sizes ranging from 20-100 km for both regions. SFV is 18 
strongly seasonal, but for different reasons in the two regions. In the SPURS-1 region, the meso- and 19 
submesoscale variability seemed to control the size of the SFV. In the SPURS-2 region, the SFV is 20 
much larger than SPURS-1 and controlled by patchy rainfall. 21 

Keywords: surface salinity, remote sensing, subfootprint variability, representativeness error, 22 
spatial scale 23 

 24 

1. Introduction 25 
Sea surface salinity (SSS) has been measured by satellite for over 10 years from three different 26 

platforms, ESA’s SMOS (Soil Moisture and Ocean Salinity), NASA and CONAE’s Aquarius and 27 
NASA’s SMAP (Soil Moisture Active Passive). The value of these measurements to the scientific 28 
community and for practical applications has become clear over this time as has the need for 29 
continuity. SMOS has been aloft since 2009 and, though still returning good data, is long past its 30 
expected lifetime. Aquarius stopped transmitting in 2015. SMAP, also still returning good data, is 31 
having to rely on ancillary measurements of sea surface roughness because its onboard scatterometer 32 
stopped functioning soon after launch. Given all of this, there has been much interest in developing 33 
new missions to measure SSS, and thus the need to understand the parameters of a such a mission. 34 

Currently-used SSS sensors are passive microwave radiometers, and use a relatively long 35 
wavelength of radiation to make their measurement. The measurements are thus averages over a 36 
large footprint, 10s to 100s of kilometers depending on the frequency of radiation and configuration 37 
of the satellite. Subfootprint variability (SFV) is the variance within the footprint of a satellite 38 
measurement [1-3]. Because satellite SSS measurements are areal averages over a relatively large 39 
footprint [4], and because existing validation is carried out by comparison to in situ point 40 
measurements from floats, moorings and so on [5-9], there is a mismatch that can introduce error into 41 
the validation process as explained in detail by [1]. The size of this error is beginning to be estimated 42 
and understood [1-3, 10]. However, these important previous studies have been based on the 43 
footprint the size of Aquarius, 100 km, whereas the SMAP and SMOS missions have smaller 44 
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footprints. The amount of SFV should depend on the size of the footprint, as well as many other 45 
factors such as season, geographic location and the strength of mesoscale and submesoscale stirring 46 
of the SSS field. 47 

One of the most interesting results that has come out of the increased measurement of SSS over 48 
the past decade is on the spatial scales of variability. While other surface variables measured by 49 
satellite, namely sea surface temperature (SST) and sea surface height (SSH), have relatively large 50 
scales [11-13], SSS variability occurs on a smaller scale [14]. Very high resolution numerical 51 
modelling, with output focused on the western North Pacific and Arabian Sea [15], found that about 52 
50% of open ocean SSS variance in these regions is on a scale of 50 km or less. That is, most ocean 53 
variance occurs on a scale that is smaller than the footprint of Aquarius, and of similar size to that of 54 
SMAP or SMOS. 55 

This paper is an extension of [1], who assumed the footprint size to be a constant 100 km. In the 56 
present work, we explore how SFV depends on footprint size, and begin to understand the dynamics 57 
that cause SFV. The approach is to look at two heavily sampled regions, in which contrasting 58 
dynamical processes are present, a couple of the small number places in the ocean where SFV can be 59 
reliably determined using in situ data. We guess that SFV can be roughly related to 4 causes: (1) 60 
rainfall-induced fresh patches (e.g. [16]); (2) internal ocean submesoscale and mesoscale variability 61 
(e.g. [3, 17]); (3) large-scale fronts such as the North Equatorial Countercurrent (NECC) front that 62 
moves between the equator and 10°N [17] and (4) mean gradients. These 4 causes are ordered roughly 63 
in terms of scale from smallest to largest. 64 

The two regions we are studying are SPURS-1 (Salinity Processes in the Upper Ocean Regional 65 
Study – 1) and SPURS-2. SPURS-1 is a field campaign that took place in the subtropical North Atlantic 66 
in 2012-2013 ([19] and references therein) centered on a mooring at (24.5°N,38°W). The SPURS-1 region 67 
is evaporation-dominated with small gradients and weak currents. SPURS-2 took place in the tropical 68 
eastern North Pacific in 2016-2017 ([20] and references therein) centered on a mooring at (10°N,125°W). 69 
The SPURS-2 region is precipitation-dominated, with strong currents, and falls within the intertropical 70 
convergence zone (ITCZ) for part of the year [21]. See [1] Figure 3 for the locations. We expect that SFV 71 
will be induced mainly by cause (2) above in the SPURS-1 region and by causes (1)-(3) in the SPURS-2 72 
region. 73 

2. Data and Methods  74 
This work uses the same dataset and methods as [1], and the reader is referred to section 2 of 75 

that paper for a more detailed description than is given here. 76 
For the SPURS-1 region we use a combination of drifter, waveglider and shipboard 77 

thermosalinograph measurements [22] to compute estimates of SFV. In the SPURS-2 region [23], we 78 
use waveglider measurements only – the region is too dynamic to make much use of drifter 79 
measurements for this purpose, and the cruises were usually too distant from the location of the 80 
central mooring to be useful. SFV is the square root of the weighted variance within a defined 81 
footprint of size 2d0. In [1], the footprint size is fixed at 100 km, whereas here it is allowed to vary 82 
from 20 to 100 km to determine the dependence of SFV on footprint size. Specifically, the SFV is 83 
obtained from taking the square root of 84 

 85 

𝜎! =
∑ 𝑤"(𝑆" − 𝑆̅)!#

∑ 𝑤"#
 86 

 87 
where the weight function wi for each observation is 88 

 89 
𝑤" = 𝑒$ %&(!)∗(*!/*")# 90 

 91 
Si is the observed SSS. The sum, C, is taken over all the observations being used to compute SFV 92 

at a given point in time - SFV was computed over 7-day blocks of time. di is the distance of each 93 
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observation from the location of the central mooring, i.e. (24.6°N,38°W) for SPURS-1 and 94 
(10°N,125°W) for SPURS-2. The weighted average SSS, 𝑆̅, is 95 

 96 

𝑆̅ =
∑ 𝑤"𝑆"#

∑ 𝑤"#
 97 

 98 
We display plots of median SFV, termed s50, as a function of footprint size over the approximately 1 99 
year of available data at each site. 100 

This paper uses the same ROMS (Regional Ocean Modeling System) [22, 24] output as was used 101 
in [1], and the method of computing SFV is the same as for the in situ data. 102 

Brief use is made of radar-derived rainfall collected during the SPURS-2 cruise in October-103 
November 2017. The data come from the Sea-viewing Polarimetric (SEA-POL) radar described by 104 
[25, 26]. Brief use is also made of rainfall data collected at the SPURS-1 and SPURS-2 central moorings 105 
[27, 28] 106 

A list of digital object identifier (DOI) references to the datasets used in this paper is included in 107 
the Acknowledgements section. 108 

 109 

3. Results 110 

3.1. In situ results 111 
Time series of SFV (Figure 1) in the SPURS regions indicate that it is a seasonal quantity, tending 112 

to be largest in summer and fall (June-December) and smallest in winter and spring (January-May). 113 
SFV in the SPURS-2 region is larger than SPURS-1, though the difference is least in the low variance 114 
season. In most instances, SFV is larger at the 100 km footprint size for both regions. There are isolated 115 
time periods when this is reversed, especially in the SPURS-1 region. There tends to be a larger 116 
distinction as a function of scale for the SPURS-1 region. That is, for SPURS-1, the ratio of 100 km SFV 117 
to 20 km SFV is generally larger than for SPURS-2. 118 

 
(a)  

(b) 

Figure 1. Time series of SFV in the SPURS regions. Top panels: Blue markers are SFV using a 100 km 119 
footprint size. Red markers use a 20 km footprint. Bottom panels: Ratio of 100 km to 20 km SFV. That 120 
is, the ratio of the blue markers in the top panels to the red markers. The horizontal dashed line 121 
indicates where this ratio is 1. (a) SPURS-1; (b) SPURS-2. Note vertical axes are not consistent between 122 
the top panels. 123 

The findings from the time series are presented in simpler form using s50 (Figure 2). As also seen 124 
in Figure 1, SFV is as much as 4X larger at SPURS-2 than SPURS-1. At SPURS-1, SFV increases with 125 
footprint size from 20 to 60 km, and then levels off at around 0.05. At the SPURS-2 site, SFV does not 126 
increase at all from 20 to 60 km, and then increases a little bit. There is proportionally much less 127 
dependence on footprint size at SPURS-2 than SPURS-1, in agreement with Figure 1. 128 
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 129 

Figure 2. s50 as a function of footprint size for SPURS-1 (black) and SPURS-2 (red) in situ data. 130 

In the SPURS-1 region there is little rainfall between March 1 and August 31 [27], and in the 131 
SPURS-2 region between February 1 and May 31 [28]. (Henceforth we use months in an inclusive 132 
sense. That is, “March-August” means March 1 – August 31.) Additionally, at the SPURS-2 site, the 133 
NECC front is well south of the mooring during those “dry” months [21]. So, for both sites, one can 134 
assume that any SFV there during these periods is due to internal variance within the ocean and not 135 
imprinted directly by the atmosphere through precipitation. Evaporation may imprint some SFV, but 136 
not likely much as SSS anomalies imposed by evaporation tend to dissipate quickly [29]. 137 

Separating the SFV out during the wet and dry periods (Figure 3), one can see a sharp contrast 138 
between the regions. In the SPURS-1 region, SFV increases strongly with footprint size from 20 to 70 139 
km during the dry season, but only out to 40 km in the wet season. SFV is about the same between 140 
wet and dry seasons to 40 km. At larger footprint sizes, it is counterintuitively much larger during 141 
the dry season. The dry season corresponds to spring and summer, so one has to assume that internal 142 
variability is larger during these months than during fall and winter at 50+ km length scales. This 143 
seems consistent with [30] who found elevated eddy kinetic energy (EKE) in the SPURS-1 region 144 
during the months of April-September. Larger EKE presumably means stronger eddy activity at the 145 
mesoscale, and thus larger variability of SSS at that scale as well. 146 

At the SPURS-2 site, the situation is very different. Wet season SFV is much larger than dry 147 
season. Dry season median SFV is comparable between the two regions at the largest (70-100 km) 148 
scales, but smaller in the SPURS-1 region at smaller scales. 149 

It should be noted that the dry season and the low SFV season are not the same for the SPURS-150 
1 region. The dry season is March – August, whereas the low SFV season is approximately January – 151 
April (Figure 1a). On the other hand, the dry season and low SFV season do mostly overlap for the 152 
SPURS-2 region. This suggests that there is seasonal variability inherent to the ocean at the SPURS-1 153 
site that may be more important than rainfall in determining the size of SFV. A similar plot separating 154 
high SFV and low SFV seasons at the SPURS-1 site is presented in Figure 4. This may be a more logical 155 
way of separating parts of the year for SPURS-1, and shows the variation of SFV with scale, which is 156 
consistent between low SFV and high SFV seasons. Both curves level off at around 70 km footprint 157 
size. 158 
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Figure 3. Median SFV vs. footprint size in the SPURS regions. Solid lines with markers: wet season. 159 
Thinner solid lines with no markers: all year, same as curves shown in Figure 2. Dashed lines with 160 
markers: dry season. (a) SPURS-1. Dry season is March – August. (b) SPURS-2. Dry season is February 161 
– May. Note vertical axes are not consistent between the panels. 162 

 163 

Figure 4. As in Figure 3a. However, the dashed line is for January – April, and the solid line with 164 
symbols is for the rest of the year, May - December. 165 

In the SPURS-2 region, the fact that the wet season SFV is so much larger than the dry season 166 
may be related to either (1) increased precipitation, and thus imprinted small scale variability, (2) the 167 
migratory presence of the NECC front during the summer and fall [18], (3) seasonally increased 168 
mesoscale variability – or (4) some combination of these. Distinguishing these factors is not easy. One 169 
clue is the fact that there is not much dependence of SFV on scale. If rainfall is ubiquitous during 170 
these months, and it produces small fresh patches throughout the region (a typical example is shown 171 
in Figure 5), and if SFV can be enhanced by even one fresh patch in a given snapshot, then that argues 172 
for the importance of rainfall in determining SFV. In other words, if the scale of rain-induced fresh 173 
patches is smaller than the 20 km we have been studying here and most SSS variance is due to these 174 
patches, then we would see less scale dependence of SFV as is the case at the SPURS-2 site. It is harder 175 
to make such an argument for the NECC front. As footprint size increases it has an increased 176 
probability of encompassing the front, and thus should have a strong dependence on scale.  177 
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Figure 5. 60-minute rain accumulation (mm) from the SPURS-2 cruise on 11-November-2017 at 2300Z. 179 
No color means less than 5 mm. The data are from the SEA-POL radar used during the cruise [25, 26]. 180 
This is a typical configuration of rainfall in the region at this time of year. A bar showing 10 km 181 
distance is also included. The location of this area is shown in [1], Figure 3b. 182 

We can test whether SFV depends on precipitation by plotting SFV against 7-day maximum rain 183 
rate (Figure 6). The scatter plots show a clear relationship between rain rate and SFV even though the 184 
precipitation data used to make these plots are from the SPURS central moorings, and thus may not 185 
be representative of the entire footprint. So, in both regions there is evidence that rainfall plays at 186 
least some role in generating SFV at a range of spatial scales. The larger the scale, the greater the 187 
correlation between SFV and rainfall. Interestingly, the correlations are higher for the SPURS-1 188 
region, where rainfall is much smaller, than for the SPURS-2 region. The results of Figure 3a and 189 
Figure 6a seem contradictory at first glance, but one must remember that the points in Figure 6a only 190 
represent the wet season. 191 
 192 

 
(a) 

 
(b) 

 193 

Figure 6. SPURS SFV vs. maximum rain rate measured at the central mooring when this value exceeds 194 
2 mm/hr. Maximum rain rate was determined over the same weekly time intervals as the SFV. 195 
Correlation values are shown at the top left of each panel. All are significant at the 95% level, except 196 
for SPURS-1 at 20 km which is significant at the 90% level. Left panels: 20 km footprint size. Right 197 
panels: 100 km footprint size. (a) SPURS-1. (b) SPURS-2. Note vertical axes are not consistent between 198 
the panels. 199 
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To understand the spatial variability better, semivariograms were plotted (Figure 7) using the in 200 
situ data from each site from the simple estimator [31] 201 

 202 
𝛾,(𝑣) =

1
2𝑁(𝑣) 12𝑆(𝑥") − 𝑆(𝑥,)4

!

-(.)

 203 

 204 
Where S(xi) is the salinity at point xi and N(n) is the number of pairs of salinity values where the 205 

distance between them is n.  206 
 207 

 
(a) 

 
(b) 

Figure 7. Semivariograms as a function of distance computed from in situ data. (a) SPURS-1. Red 208 
symbols, January – April. Black symbols: Entire year. Blue symbols: May - December. (b) SPURS-2. 209 
Red symbols, February – May. Black symbols: Entire year. Blue symbols: June - January. Note vertical 210 
axes are not consistent between the panels. 211 

The semivariogram shows the scales of variability. This function is closely related to the spatial 212 
covariance as explained by [31]. It is the mean squared difference between values as a function of 213 
spatial separation. The semivariogram value at zero separation, the “nugget” in the parlance of [31], 214 
normally describes a kind of instrumental error. In this case, as these values were computed using 7-215 
day snapshots, the nugget is the variance over a 7-day period. 216 

The semivariograms for SPURS-1 are much as one would expect, with small values at small 217 
separation, increasing to a plateau (the “sill”) at 50 km or so (the “range”). The semivariogram during 218 
the low SFV period is much smaller, but it contains the same dependence on separation distance. 219 

The semivariogram at SPURS-2 is very different. It appears to increase from 0 to 20 km during 220 
the wet season, reaches a plateau, and then becomes very noisy at a distance beyond that. Thus, a 221 
rough estimate of the decorrelation scale is that 20 km. During the dry season (red symbols), though, 222 
it appears that there is almost no dependence of the semivariogram on scale, because of the way the 223 
axes are presented in Figure 7, it does actually increase. Despite this, there is no obvious sill or range 224 
during the dry season. 225 

 226 

3.2. ROMS Results 227 
 228 

Time series of SFV computed from the ROMS (Figure 8) contrast the two regions, and show the 229 
difference between model and the in situ results presented in the previous section. It should be noted 230 
here that the model encompasses a somewhat different time period than the in situ data collection. 231 
For SPURS-1, the model covers January 1, 2012 – December 31, 2012, whereas the field campaign 232 
lasted from September 2012 to September 2013, thus overlapping by 4 months. For SPURS-2, the 233 
model covers February 1, 2017 – January 31, 2018, whereas the field campaign went from August 234 
2016 to November 2017, giving ~9 months of overlap.  235 
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The SPURS-1 model output has similar seasonality as the in situ results (Figures 1 and 4). 236 
Minimum values of SFV are in February-June. The sizes match more or less the ones presented in 237 
Figure 2 for 20 km footprint size, but ROMS shows a larger value of SFV for 100 km footprint size 238 
than in situ, ~0.08 vs. 0.05. At almost no time does the 20 km SFV exceed the 100 km as shown in 239 
Figure 1a. The 100 km time series is smoother than the 20 km one. Thus, the separation of SFV by 240 
scale seen in the in situ data (Figure 4) is also evident in the ROMS results, but to a greater degree.  241 
 242 

 243 

Figure 8. ROMS-evaluated SFV for SPURS-1 (upper) and SPURS-2 (lower). Red (blue) curves are for 244 
100 km (20 km) footprint size. 245 

 246 
For SPURS-2, the results are different. Values of SFV at 20 km fluctuate, but on short time scales 247 

and little seasonality is evident. The 20 km SFV is much smaller (~0.03) than the median in situ value 248 
of Figure 2 (~0.12). At 100 km, the SFV from ROMS (~0.1) is still smaller than the in situ value (~0.13), 249 
but not by as much. Not much seasonality is evident at 100 km either, though SFV is slightly elevated 250 
in July-September. There is some change in the time scales of variability of SFV. The time series of 251 
100 km SFV fluctuates much more rapidly after the beginning of July than before. There is a clear 252 
separation of scale for the SPURS-2 region as there was for SPURS-1. 253 

These results are summarized in Figure 9. Strikingly, the two curves of Figure 9 from the 254 
different SPURS regions are very similar in contrast to Figure 2. Both show a stronger increase of SFV 255 
as a function of spatial scale than is seen in Figure 2. SFV at 100 km is somewhat less for SPURS-1 256 
than SPURS-2, but they are nearly the same at smaller scales. The SPURS-2 region has a smaller 257 
separation as a function of season than SPURS-1 (Figure 9). 258 
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 260 

Figure 9. As in Figure 2, but for ROMS output. 261 

 262 
One of the main differences between the model and the real ocean is the forcing. The ocean is 263 

forced with rainfall that occurs in small, patchy bursts, especially in the SPURS-2 region (Figure 5; 264 
[25, 26, 32, 33]). These bursts create rain puddles on kilometer scales [16]. ROMS is forced with 18 km 265 
NCEP (National Centers for Environmental Prediction) GFS (Global Forecast System) winds and 266 
precipitation [24], and thus lacks the small-scale variability in freshwater forcing which could lead to 267 
large values of SFV. Perhaps this is what causes the relatively small SFV and lack of seasonality in 268 
the SPURS-2 results especially at short spatial scales. SFV in ROMS may be mainly a measure of ocean 269 
variability, not variability imposed externally by patchy rainfall. Thus, the black curve in Figure 8 for 270 
SPURS-1 is similar to the (dashed) one for the dry season in Figure 3a. There is no such similarity for 271 
SPURS-2. The relatively smaller amount of seasonality in ROMS than in the in situ data supports the 272 
role of small rain patches in generating SFV. 273 

 274 

 
(a) 

 
(b) 

Figure 10. a) As in Figure 4, but with SFV computed from the ROMS simulation. b) As in Figure 3b, 275 
but with SFV computed from the ROMS simulation. Light black curves are the same as those 276 
displayed in Figure 8. 277 

 278 

4. Discussion 279 
We have explored SFV in two different regions and found that it varies by scale differently in 280 

each place. We have used two tools to make these conclusions. The first is an in situ dataset of drifters, 281 
shipboard measurements and wavegliders for SPURS-1 and wavegliders only for SPURS-2 [1]. The 282 
second is high-resolution regional simulations. Neither of these tools is perfect. The in situ data are 283 
not comprehensive in areal and temporal coverage and contain a mixture of skin surface and bulk 284 
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mixed layer observations. This may be a bigger issue in the SPURS-2 region because rain events 285 
produce thin low salinity layers there [16, 34, 35]. The model lacks completely realistic forcing. It may 286 
be missing mixed-layer dynamics that are important in determining or hindering the ability of fresh 287 
patches to be incorporated into the bulk mixed layer and in turn affect the statistics of horizontal 288 
variability, again especially in the SPURS-2 region [36]. 289 

Comparison of the two regions is illuminating though. In general, the SPURS-2 region has much 290 
higher SFV than SPURS-1 (Figure 2), as determined from in situ data. (Model results are different – 291 
Figures 9 and 10.) Another result is that SFV in the SPURS-1 region has a stronger scale dependence 292 
than that of SPURS-2, especially in the high SFV season (compare top curves in Figures 3b and 4). 293 
The SPURS-1 SFV has clear plateaus at 60+ km in all seasons (Figures 4 and 7), whereas the scale 294 
dependence in SPURS-2 increases continuously as a function of footprint size (Figures 3b and 7). 295 

The scales of variability are straightforward to compute and interpret for SPURS-1. For SPURS-296 
2, doing this requires a more detailed analysis than has been attempted here. Possibly, SSS variability 297 
is not isotropic in low latitudes and has different scales in the zonal and meridional directions, though 298 
this is not the conclusion of [37]. Research is ongoing into this. 299 

In terms of design of future satellite missions, one can use Figures 2, 3b and 4 to get an idea of 300 
how much SFV to expect for a given footprint. The size of a footprint is determined by the frequency 301 
of radiation being measured, the diameter of the antenna, the height of the satellite above the Earth, 302 
etc., parameters which can be determined in the design phase of a satellite. The numbers displayed 303 
in Figures 2, 3b and 4 can be factored into error budgets for future missions, remembering that error 304 
associated with SFV is just a mismatch of scales between in situ validation measurements and 305 
footprint average values [1]. More importantly, the results presented here give a sense of how much 306 
variability is being captured by a given footprint. If one wanted to capture scales of variability smaller 307 
than the mesoscale, that would mean a smaller than ~50-100 km footprint in mid-latitude and larger 308 
in the tropics [38]. Microwave SSS sensors are more sensitive in the tropics because of the warmer 309 
temperatures [4]. If the large SFV of 0.12-0.16 in the wet season is factored in, the accuracy of the 310 
retrievals may be better than previously thought there. 311 

This study highlights the complexity of SFV, with its spatial and temporal dependence. No area 312 
of the ocean is the same. The two regions we have studied may be thought of as open ocean extremes. 313 
The SPURS-1 region is extreme for high evaporation, high SSS and low precipitation. The SPURS-2 314 
region has heavy and patchy rainfall (Figure 5), strong and seasonally-varying currents and 315 
associated frontal features [21]. Ideally, one would wish to quantify SFV over the entire and less 316 
extreme open ocean in order to better characterize the error structure of satellite-derived SSS. This 317 
would involve many more SPURS-like experiments. Unfortunately, this is not practically possible 318 
and so we are left with guessing at its magnitude. Another possibility would be to use high-resolution 319 
models to make estimates of SFV over the ocean. One of the main purposes of the present work is to 320 
examine the potential for this. Research is ongoing [15], but the results of this present study suggest 321 
caution. The model used here, though it is state-of-the-art, does not appear to get the distinction 322 
between the regions correct – compare Figures 2 and 9. It also does not present the same level of 323 
seasonality in SFV as we see in the in situ data – compare Figures 3b, 4 and 10. 324 

5. Conclusions 325 
From in situ data, it appears that at the SPURS-1 site, SFV is mainly generated by internal ocean 326 

variability since its seasonality is unrelated to that of precipitation in the region. SFV at SPURS-1 is 327 
highly seasonal, being largest in May-December and may be related to seasonality of the energy of 328 
the mesoscale eddy field. Assuming SFV is produced by the eddy field, it is scaled to the typical size 329 
of mesoscale variations, about 50-70 km. 330 

At the SPURS-2 site, SFV is likely mostly produced by rainfall, whose scales are less than 20 km 331 
(Figure 5). It is also highly seasonal, with maximum values during the rainy (wet) season, June-332 
January. At the scales examined, SFV showed little dependence on scale. The semivariograms 333 
examined in Figure 6 suggest that much of that dependence is contained within the shortest (<20 km) 334 
scales. 335 
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SFV is many times larger at the SPURS-2 site than at SPURS-1 (Figures 2, 3b and 4) at all footprint 336 
sizes. This highlights the fact that SFV is highly spatially dependent, and any study of the error 337 
associated with SFV needs to take that into account. There are very few areas in the open ocean that 338 
have been sampled as intensively for SSS as the SPURS regions. In order to get a full understanding 339 
of SFV error we must develop proxies which can stand in for the heavy sampling of the SPURS 340 
regions. We have attempted to do that here by examining two ROMS simulations. The one in the 341 
SPURS-1 region does a reasonable job of depicting the size and spatial dependence of SFV. In the 342 
SPURS-2 region, the simulation is less realistic, likely due to the lack of small-scale rainfall. 343 
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