References
  1. Shoemaker and Moisander, 2017 Shoemaker, K. M. & Moisander, P. H. Microbial diversity associated with copepods in the North Atlantic subtropical gyre. FEMS Microbiology Ecology 91, (2015).https://doi.org/10.1093/femsec/fiv064. Assessed on 15-01-2020. Reproduced from NCBI/SRA (PRJNA248671).
  2. Datta, M. S. et al. Inter-individual variability in copepod microbiomes reveals bacterial networks linked to host physiology. ISME J 12, 2103–2113 (20https://doi.org/10.1038/s41396-018-0182-1. Data Assessed on 15-01-2020. Reproduced from NCBI/SRA (PRJNA322089).
  3. Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers 47, 137–158 (2000).
  4. Chen, M., Kim, D., Liu, H. & Kang, C.-K. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. Biogeosciences 15, 2055–2073 (2018).
  5. Tang, K. Copepods as microbial hotspots in the ocean: effects of host feeding activities on attached bacteria. Aquat. Microb. Ecol. 38, 31–40 (2005).
  6. De Corte, D. et al. Linkage between copepods and bacteria in the North Atlantic Ocean. Aquat. Microb. Ecol. 72, 215–225 (2014).
  7. Grossart HP, Dziallas C, Leunert F, Tang KW. Bacteria dispersal by hitchhiking on zooplankton. Proc Natl Acad Sci USA 107: 11959−11964 (2010).
  8. Tang, K., Turk, V. & Grossart, H. Linkage between crustacean zooplankton and aquatic bacteria. Aquat. Microb. Ecol. 61, 261–277 (2010).
  9. De Corte, D. et al. Metagenomic insights into zooplankton-associated bacterial communities. Environ Microbiol 20, 492–505 (2017).
  10. Moisander, P. H. et al. Copepod-Associated Gammaproteobacteria Respire Nitrate in the Open Ocean Surface Layers. Front. Microbiol. 9, (2018).
  11. Cregeen, S.J.J. . Microbiota of dominant Atlantic copepods:Pleuromamma sp. as a host to a betaproteobacterial symbiont. Ph.D., Thesis, University of Southampton, pp-1-183.(2016).
  12. Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 3, (2015).
  13. Tang, K. W., Glud, R. N., Glud, A., Rysgaard, S. & Nielsen, T. G. Copepod guts as biogeochemical hotspots in the sea: Evidence from microelectrode profiling of Calanus spp. Limnol. Oceanogr. 56, 666–672 (2011).
  14. Glud, R. N. et al. Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).
  15. Proctor, L. Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat. Microb. Ecol. 12, 105–113 (1997).
  16. Scavotto, R. E., Dziallas, C., Bentzon-Tilia, M., Riemann, L. & Moisander, P. H. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean. Environ Microbiol 17, 3754–3765 (2015).
  17. Dong, Y., Yang, G.-P. & Tang, K. W. Dietary effects on abundance and carbon utilization ability of DMSP-consuming bacteria associated with the copepod Acartia tonsa Dana. Marine Biology Research 9, 809–814 (2013).
  18. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857 (2019).
  19. Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38, 685–688 (2020).
  20. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857 (2019).
  21. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583 (2016).
  22. Janssen, S. et al. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. mSystems 3, (2018).
  23. Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online 1–15 (2017) doi:10.1002/9781118445112.stat07841.
  24. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6, 610–618 (2011).
  25. Bokulich, N. et al. bokulich-lab/RESCRIPt: 2020.11. (Zenodo, 2020). doi:10.5281/ZENODO.3891931.
  26. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial Ecology in Health & Disease 26, (2015).
  27. Breiman, L. Machine Learning 45, 5–32 (2001).
  28. Friedman, J. H. machine. Ann. Statist. 29, 1189–1232 (2001).
  29. Roguet, A., Eren, A. M., Newton, R. J. & McLellan, S. L. Fecal source identification using random forest. Microbiome 6, (2018).
  30. Dhoble, A. S., Lahiri, P. & Bhalerao, K. D. Machine learning analysis of microbial flow cytometry data from nanoparticles, antibiotics and carbon sources perturbed anaerobic microbiomes. J Biol Eng 12, (2018).
  31. Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
  32. Kruskal, W. H. & Wallis, W. A. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association 47, 583–621 (1952).
  33. Tukey–Kramer Method. in Encyclopedia of Systems Biology 2304–2304 (Springer New York, 2013). doi:10.1007/978-1-4419-9863-7_101575.
  34. Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28, 27–30 (2000).
  35. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Science 28, 1947–1951 (2019).
  36. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Research (2020) doi:10.1093/nar/gkaa970.
  37. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35, 1547–1549 (2018).
  38. Wäge, J. et al. Microcapillary sampling of Baltic Sea copepod gut microbiomes indicates high variability among individuals and the potential for methane production. FEMS Microbiology Ecology 95, (2019).
  39. Ohman, M. D. & Runge, J. A. Sustained fecundity when phytoplankton resources are in short supply: Omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39, 21–36 (1994).
  40. Harris, R. Feeding, growth, and reproduction in the genusCalanus . ICES Journal of Marine Science 57, 1708–1726 (2000).
  41. Saage, A., Vadstein, O. & Sommer, U. Feeding behaviour of adultCentropages hamatus (Copepoda, Calanoida): Functional response and selective feeding experiments. Journal of Sea Research 62, 16–21 (2009).
  42. Chen, M., Liu, H. & Chen, B. Seasonal Variability of Mesozooplankton Feeding Rates on Phytoplankton in Subtropical Coastal and Estuarine Waters. Front. Mar. Sci. 4, (2017).
  43. Dam, H. G. & Lopes, R. M. Omnivory in the calanoid copepodTemora longicornis : feeding, egg production and egg hatching rates. Journal of Experimental Marine Biology and Ecology 292, 119–137 (2003).
  44. Buskey, E.J., Baker, K.S., Smith, R.C. & Swift, E. Photosensitivity of the oceanic copepods Pleuromamma gracilis andPleuromamma xiphias and its relationship to light penetration and daytime depth distribution. Marine Ecology Progress Series. 55:207–216 (1989).
  45. Wilson, S. & Steinberg, D. Autotrophic picoplankton in mesozooplankton guts: evidence of aggregate feeding in the mesopelagic zone and export of small phytoplankton. Mar. Ecol. Prog. Ser. 412, 11–27 (2010).
  46. Hirche, H. J. Overwintering of Calanus finmarchicus andC. helgolandicus . Mar. Ecol. Prog. Ser. 11 , 281–290 (1983).
  47. Tande, K. S. An evaluation of factors affecting vertical distribution among recruits of Calanus finmarchicus in three adjacent high-latitude localities. in Biology of Copepods 115–126 (Springer Netherlands, 1988). doi:10.1007/978-94-009-3103-9_10.
  48. Dorosz, J., Castro-Mejia, J., Hansen, L., Nielsen, D. & Skovgaard, A. Different microbiomes associated with the copepods Acartia tonsa and Temora longicornis from the same marine environment. Aquat. Microb. Ecol. 78, 1–9 (2016).
  49. Heidelberg, J. F., Heidelberg, K. B. & Colwell, R. R. Bacteria of the γ-Subclass Proteobacteria Associated with Zooplankton in Chesapeake Bay. AEM 68, 5498–5507 (2002).
  50. Jayakumar, A. & Ward, B. B. Diversity and distribution of Nitrogen Fixation Genes in the Oxygen Minimum Zones of the World Oceans. (2020) doi:10.5194/bg-2019-445.
  51. Stingl, U., Desiderio, R. A., Cho, J.-C., Vergin, K. L. & Giovannoni, S. J. The SAR92 Clade: an Abundant Coastal Clade of Culturable Marine Bacteria Possessing Proteorhodopsin. AEM 73, 2290–2296 (2007).
  52. Sadaiappan, B. et al. Metagenomic 16S rDNA amplicon data of microbial diversity and its predicted metabolic functions in the Southern Ocean (Antarctic). Data in Brief 28, 104876 (2020).
  53. Yao, M., Henny, C. & Maresca, J. A. Freshwater Bacteria Release Methane as a By-Product of Phosphorus Acquisition. Appl. Environ. Microbiol. 82, 6994–7003 (2016).
  54. Stawiarski, B. et al. Controls on zooplankton methane production in the central Baltic Sea. Biogeosciences 16, 1–16 (2019).
  55. Ditchfield, A. et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets. Aquat. Microb. Ecol. 67, 151–160 (2012).
  56. de Angelis, M. A. & Lee, C. Methane production during zooplankton grazing on marine phytoplankton. Limnol. Oceanogr. 39, 1298–1308 (1994).
  57. Howard, E. C., Sun, S., Biers, E. J. & Moran, M. A. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology 10, 2397–2410 (2008).
  58. Tang, K. W., Visscher, P. T. & Dam, H. G. DMSP-consuming bacteria associated with the calanoid copepod Acartia tonsa (Dana). Journal of Experimental Marine Biology and Ecology 256, 185–198 (2001).
  59. Ploug, H., Kühl, M., Buchholz-Cleven, B. & Jørgensen, B. Anoxic aggregates - an ephemeral phenomenon in the pelagic environment? Aquat. Microb. Ecol. 13, 285–294 (1997).
  60. Tamas, I., Smirnova, A. V., He, Z. & Dunfield, P. F. The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis. ISME J 8, 369–382 (2013).
  61. Rawlings, T. K., Ruiz, G. M. & Colwell, R. R. Association of Vibrio cholerae O1 El Tor and O139 Bengal with the Copepods Acartia tonsa and Eurytemora affinis. AEM 73, 7926–7933 (2007).
  62. Liu, J. et al. Diverse effects of nitric oxide reductase NorV onAeromonas hydrophila virulence-associated traits under aerobic and anaerobic conditions. Vet Res 50, (2019).
  63. Gardette, M., Daniel, J., Loukiadis, E. & Jubelin, G. Role of the Nitric Oxide Reductase NorVW in the Survival and Virulence of Enterohaemorrhagic Escherichia coli during Infection. Pathogens 9, 683 (2020).
  64. Cottrell, M. T., Wood, D. N., Yu, L. & Kirchman, D. L. Selected Chitinase Genes in Cultured and Uncultured Marine Bacteria in the α- and γ-Subclasses of the Proteobacteria. Appl. Environ. Microbiol. 66, 1195–1201 (2000).
  65. Donderski, W., & Trzebiatowska, M. Influence of physical and chemical factors on the activity of chitinases produced by planktonic bacteria isolated from Jeziorak Lake. Polish Journal of Environmental Studies, 9(2), 77–82 (2000).
  66. Subramanian, K. et al. Bioconversion of chitin and concomitant production of chitinase and N-acetylglucosamine by novelAchromobacter xylosoxidans isolated from shrimp waste disposal area. Sci Rep 10, (2020).
  67. Schmidt, K. et al. Zooplankton Gut Passage Mobilizes Lithogenic Iron for Ocean Productivity. Current Biology 26, 2667–2673 (2016).
  68. Hutchins, D. A., Wang, W.-X. & Fisher, N. S. Copepod grazing and the biogeochemical fate of diatom iron. Limnol. Oceanogr. 40, 989–994 (1995).
  69. Doxey, A. C., Kurtz, D. A., Lynch, M. D., Sauder, L. A. & Neufeld, J. D. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J 9, 461–471 (2014).
  70. Skovgaard, A., Castro-Mejia, J. L., Hansen, L. H. & Nielsen, D. S. Host-Specific and pH-Dependent Microbiomes of Copepods in an Extensive Rearing System. PLoS ONE 10, e0132516 (2015).
  71. Shoemaker, K. M. & Moisander, P. H. Microbial diversity associated with copepods in the North Atlantic subtropical gyre. FEMS Microbiology Ecology 91, (2015).
  72. Shelyakin, P. V. et al. Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata (Scleractinia) and Gorgonia ventalina (Alcyonacea). Sci Rep 8, (2018).
Table 1. List of sequence libraries representing the copepods-associated bacteribiome. Out of these, only seven libraries (highlighted in red font) were analysed in this study.
Table 2. Details of the number of Illumina files, sequences extracted, and quality filtered (Phred score <25). RP indicate ’relative proportion’.
Figure 1. Alpha diversity composition and variation a) Shannon index (Richness and diversity accounting for both abundance and evenness of the taxa present); b) Evenness index (Relative evenness of species richness); c) Faith’s Phylogenetic Diversity index (biodiversity incorporating phylogenetic difference between species) corresponding to the CAB within five different copepod genera.
Figure 2. a) Unweighted Unifrac distance matrix (community dissimilarity that incorporates phylogenetic relationships between the features); b) Weighted Unifrac distance matrix (community dissimilarity that incorporates phylogenetic relationships between the features); c) Jaccord distance-based beta-diversity. The CAB of representative copepods are colour coded; d)18S rDNA phylogenetic tree of five copepod genera used in the study.
Figure 3. Top two percentile of the CAB-bacterial genera observed in the copepods obtained via ANCOM.
Figure 4. a) Confusion matrix for the RandomForest Classifier (RFC) model; b) Confusion matrix for the Gradient Boosting Classifier (GBC) model; c) Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC) for the RFC model; d) Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC) for the GBC model; e) Heatmap of the predicted important s-OTUs in the five copepod genera using RFC; f) Heatmap of the predicted important s-OTUs in the five copepod genera using GBC.
Figure 5. PCA plot for overall diversity pattern of potential functional genes observed among the CAB within the five copepod genera.
Figure 6. Overall representation of the potential functional genes of CAB involved in biogeochemical cycles. The circle and the colour represent the copepod genera contained in high proportion for that particular biogeochemical process.