References
Aki, K. (1965). A computer program for precise determination of focal
mechanism of local earthquakes by revising focal depths and crust-mantle
structure. Bulletin of the Earthquake Research Institute ,43 , 15–22.
Aki, K. (1967). Scaling law of seismic spectrum. Journal of
Geophysical Research , 72 (4), 1217–1231.https://doi.org/10.1029/JZ072i004p01217
Asano, Y., Saito, T., Ito, Y., Shiomi, K., Hirose, H., Matsumoto, T.,
. . . Sekiguchi, S. (2011). Spatial distribution and focal mechanisms
of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake.Earth, Planets and Space , 63 (7), 669–673.https://doi.org/10.5047/eps.2011.06.016
Bianco, F., Del Pezzo, E., Saccorotti, G., & Ventura, G. (2004). The
role of hydrothermal fluids in triggering the July-August 2000 seismic
swarm at Campi Flegrei, Italy: Evidence from seismological and
mesostructural data. Journal of Volcanology and Geothermal
Research , 133 (1–4), 229–246.
https://doi.org/10.1016/S0377-0273(03)00400-1
Borghi, A., Aoudia, A., Javed, F., & Barzaghi, R. (2016). Precursory
slow-slip loaded the 2009 L’Aquila earthquake sequence.Geophysical Journal International , 205 (2), 776–784.
https://doi.org/10.1093/gji/ggw046
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear
waves from earthquakes. Journal of Geophysical Research ,75 (26), 4997–5009.https://doi.org/10.1029/JB075i026p04997
Cornet, F. H., Helm, J., Poitrenaud, H., & Etchecopar, A. (1997).
Seismic and aseismic slips induced by large-scale fluid injections. In.Pure and Applied Geophysics . Berlin: Springer, 150(3–4),
(563–583).https://doi.org/10.1007/s000240050093
Cox, S. F. (2016). Injection-driven swarm seismicity and permeability
enhancement: Implications for the dynamics of hydrothermal ore systems
in high fluid-flux, overpressured faulting regimes–an invited paper.Economic Geology , 111 (3), 559–587.https://doi.org/10.2113/econgeo.111.3.559
Dahm, T. (1996). Relative moment tensor inversion based on ray theory:
Theory and synthetic tests. Geophysical Journal International ,124 (1), 245–257.https://doi.org/10.1111/j.1365-246X.1996.tb06368.x
Das, S., & Henry, C. (2003). Spatial relation between main earthquake
slip and its aftershock distribution. Reviews of Geophysics ,41 (3).https://doi.org/10.1029/2002RG000119
De Barros, L., Baques, M., Godano, M., Helmstetter, A., Deschamps, A.,
Larroque, C., & Courboulex, F. (2019). Fluid-Induced Swarms and
Coseismic Stress Transfer: A Dual Process Highlighted in the Aftershock
Sequence of the 7 April 2014 Earthquake (Ml 4.8, Ubaye, France).Journal of Geophysical Research: Solid Earth , 124 (4),
3918–3932. https://doi.org/10.1029/2018JB017226
De Barros, L., Cappa, F., Deschamps, A., & Dublanchet, P. (2020).
Imbricated aseismic slip and fluid diffusion drive a seismic swarm in
the Corinth Gulf, Greece. Geophysical Research Letters , 47(9).https://doi.org/10.1029/2020GL087142
Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed
observations of California foreshock sequences: Implications for the
earthquake initiation process. Journal of Geophysical Research:
Solid Earth , 101 (B10), 22371–22392.https://doi.org/10.1029/96JB02269
Ebel, J. E., & Chambers, D. W. (2016). Using the locations of M ≥ 4
earthquakes to delineate the extents of the ruptures of past major
earthquakes. Geophysical Journal International , 207 (2),
862–875.https://doi.org/10.1093/gji/ggw312
Ellsworth, W. L. (2013). Injection-induced earthquakes. Science ,341 (6142), 1225942.https://doi.org/10.1126/science.1225942
Fischer, T., & Horálek, J. (2003). Space-time distribution of
earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland
seismoactive region: Period 1985-2001. Journal of Geodynamics ,35 (1–2), 125–144. https://doi.org/10.1016/S0264-3707(02)00058-3
Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E.
E. (2017). The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for
long-range poroelastic triggering at >40 km from fluid
disposal wells. Earth and Planetary Science Letters , 472 ,
50–61. https://doi.org/10.1016/j.epsl.2017.05.011
Guglielmi, Y., Cappa, F., Avouac, J. P., Henry, P., & Elsworth, D.
(2015). INDUCED SEISMICITY. Seismicity triggered by fluid
injection-induced aseismic slip. Science , 348 (6240),
1224–1226.https://doi.org/10.1126/science.aab0476
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in
California. Bulletin of the Seismological Society of America ,34 (4), 185–188.
Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity
data through statistical earthquake modeling. Journal of
Geophysical Research , 110 (B5), 1–10.https://doi.org/10.1029/2004JB003247
Hasegawa, A. (2017). Role of H2O in generating
subduction zone earthquakes. Monographs on Environment, Earth and
Planets , 5 (1), 1–34.https://doi.org/10.5047/meep.2017.00501.0001
Hasegawa, A., Nakajima, J., Umino, N., & Miura, S. (2005). Deep
structure of the northeastern Japan arc and its implications for crustal
deformation and shallow seismic activity. Tectonophysics ,403 (1–4), 59–75.https://doi.org/10.1016/j.tecto.2005.03.018
Helmstetter, A., & Sornette, D. (2002). Diffusion of epicenters of
earthquake aftershocks, Omori’s law, and generalized continuous-time
random walk models. Physical Review E - Statistical Physics,
Plasmas, Fluids, and Related Interdisciplinary Topics , 66 (6),
24. https://doi.org/10.1103/PhysRevE.66.061104
Horiuchi, S. S., & Iwamori, H. (2016). A consistent model for fluid
distribution, viscosity distribution, and flow-thermal structure in
subduction zone. Journal of Geophysical Research: Solid Earth ,121 (5), 3238–3260. https://doi.org/10.1002/2015JB012384
Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid overpressure
in the mechanics of overthrust faulting [Geological Society of
America bulletin] , 70 (pp. 167–206).https://doi.org/10.1130/0016-7606(1959)70
Imanishi, K., & Ellsworth, W. L. (2006). Source scaling relationships
of microearthquakes at Parkfield, CA, determined using the SAFOD pilot
hole seismic array [Geophysical monograph series] .Geophysical Monograph Series , 81–90.https://doi.org/10.1029/170GM10
Italiano, F., Martinelli, G., & Nuccio, P. M. (2001). Anomalies of
mantle-derived helium during the 1997-1998 seismic swarm of
Umbria-Marche, Italy. Geophysical Research Letters , 28 (5),
839–842. https://doi.org/10.1029/2000GL012059
Iwamori, H. (1998). Transportation of H2O and melting in subduction
zones. Earth and Planetary Science Letters , 160 (1–2),
65–80. https://doi.org/10.1016/S0012-821X(98)00080-6
Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and
estimated stress drop derived from cohesive-zone models of circular
subshear rupture. Geophysical Journal International ,197 (2), 1002–1015. https://doi.org/10.1093/gji/ggu030
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., &
Hirata, N. (2012). Propagation of Slow Slip Leading Up to the 2011 Mw
9.0 Tohoku-Oki Earthquake. Science , 335 (6069), 705–708.
https://doi.org/10.1126/science.1215141
Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a
foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake.Geophysical Research Letters , 41 (15), 5420–5427.
Kato, A., Fukuda, J., Nakagawa, S., & Obara, K. (2016). Foreshock
migration preceding the 2016 MW 7.0 Kumamoto earthquake, Japan.Geophysical Research Letters , 43 (17), 8945–8953.https://doi.org/10.1002/2016GL070079
Kumazawa, T., & Ogata, Y. (2013). Quantitative description of induced
seismic activity before and after the 2011 Tohoku-Oki earthquake by
nonstationary ETAS models. Journal of Geophysical Research: Solid
Earth , 118 (12), 6165–6182.https://doi.org/10.1002/2013JB010259
Kumazawa, T., Ogata, Y., & Tsuruoka, H. (2019). Characteristics of
seismic activity before and after the 2018 M6. 7 Hokkaido Eastern Iburi
earthquake. Earth, Planets and Space , 71 (1), 1–17.
Lay, T., & Kanamori, H. (1981). An asperity model of large earthquake
sequences. In. Maurice Ewing Series . Maurice Ewing Series.
American Geophysical Union, (579–592).https://doi.org/10.1029/ME004p0579
Llenos, A. L., & Michael, A. J. (2013). Modeling earthquake rate
changes in Oklahoma and Arkansas: Possible Signatures of induced
seismicity. Bulletin of the Seismological Society of America ,103 (5), 2850–2861.https://doi.org/10.1785/0120130017
Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by
aseismic creep in the Salton Trough, California. Journal of
Geophysical Research: Solid Earth , 112(B4).https://doi.org/10.1029/2006JB004596
Madariaga, B. Y. R. (1976). Dynamics of an expanding circular fault.Bulletin of the Seismological Society of America , 66 ,
639–666.https://doi.org/10.1111/j.1461-0248.2009.01352.x
Mendoza, C., & Hartzell, S. H. (1988). Aftershock patterns and main
shock faulting. Bulletin of the Seismological Society of America ,78 (4), 1438–1449.
Mogi, K. (1969). Some features of recent seismic activity in and near
Japan (2): Activity before and after Great Earthquakes. Bulletin
of the Earthquake Research Institute , 47 , 395–417.
Mogi, K. (1989). The mechanism of the occurrence of the Matsushiro
earthquake swarm in central Japan and its relation to the 1964 Niigata
earthquake. Tectonophysics, 159(1–2), 109–119.
Nanjo, K. Z., Miyaoka, K., Tamaribuchi, K., Kobayashi, A., & Yoshida,
A. (2018). Related spatio-temporal changes in hypocenters and the b
value in the 2017 Kagoshima Bay swarm activity indicating a rise of hot
fluids. Tectonophysics , 749 , 35–45.https://doi.org/10.1016/j.tecto.2018.10.023
Nur, A., & Booker, J. R. (1972). Aftershocks caused by pore fluid flow?Science , 175 (4024), 885–887.https://doi.org/10.1126/science.175.4024.885
Ogata, Y. (1988). Statistical models for earthquake occurrences and
residual analysis for point processes. Journal of the American
Statistical Association , 83 (401), 9–27.https://doi.org/10.1080/01621459.1988.10478560
Ogata, Y. (1992). Detection of precursory relative quiescence before
great earthquakes through a statistical model. Journal of
Geophysical Research , 97 (B13), 19845–19871.https://doi.org/10.1029/92JB00708
Ogata, Y. (2006). Statistical analysis of seismicity: Updated
version (p. SASeis2006). Institute of Statistical Mathematics.
Okada, T., Matsuzawa, T., Umino, N., Yoshida, K., Hasegawa, A.,
Takahashi, H. et al. (2016). Hypocenter migration and crustal seismic
velocity distribution observed for the inland earthquake swarms induced
by the 2011 Tohoku-Oki earthquake in NE Japan: Implications for crustal
fluid distribution and crustal permeability. In Crustal
Permeability , (307–323).https://doi.org/10.1002/9781119166573.ch24
Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure
diffusion: A possible triggering mechanism for the earthquake swarms
2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research
Letters, 30(20), 10–13. https://doi.org/10.1029/2003GL018110
Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90
library for multitaper spectrum analysis. Computers and
Geosciences , 35 (8), 1701–1710.https://doi.org/10.1016/j.cageo.2008.06.007
Rice, J. R. (1992). Chapter 20 Fault stress states, pore pressure
distributions, and the weakness of the San Andreas fault. In.International Geophysics . Elsevier, 51 .https://doi.org/10.1016/S0074-6142(08)62835-1
Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform
faults. Geophysical Journal International , 178 (3),
1677–1690.https://doi.org/10.1111/j.1365-246X.2009.04214.x
Ross, Z. E., Kanamori, H., & Hauksson, E. (2017b). Anomalously large
complete stress drop during the 2016 Mw5.2 Borrego Springs earthquake
inferred by waveform modeling and near-source aftershock deficit.Geophysical Research Letters , 44 (12), 5994–6001.https://doi.org/10.1002/2017GL073338
Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J. P.,
& Ben-Zion, Y. (2017a). Aftershocks driven by afterslip and fluid
pressure sweeping through a fault-fracture mesh. Geophysical
Research Letters , 44 (16), 8260–8267.https://doi.org/10.1002/2017GL074634
Ross, Z. E., Kanamori, H., Hauksson, E., & Aso, N. (2018). Dissipative
intraplate faulting during the 2016 Mw6.2 Tottori, Japan earthquake.Journal of Geophysical Research: Solid Earth , 123 (2),
1631–1642.https://doi.org/10.1002/2017JB015077
Rossi, G., Zuliani, D., & Fabris, P. (2016). Long-term GNSS
measurements from the northern Adria microplate reveal fault-induced
fluid mobilization. Tectonophysics , 690 , 142–159.https://doi.org/10.1016/j.tecto.2016.04.031
Rossi, G., Fabris, P., & Zuliani, D. (2018). Overpressure and Fluid
Diffusion Causing Non-hydrological Transient GNSS Displacements.Pure and Applied Geophysics , 175 (5), 1869–1888.
https://doi.org/10.1007/s00024-017-1712-x
Ruhl, C. J., Abercrombie, R. E., Smith, K. D., & Zaliapin, I. (2016).
Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake
swarm (Reno, Nevada): Interplay of fluid and faulting. Journal of
Geophysical Research: Solid Earth , 121 (11), 8196–8216.
Saiga, A., Matsumoto, S., Uehira, K., Matsushima, T., & Shimizu, H.
(2010). Velocity structure in the crust beneath the Kyushu area.Earth, Planets and Space , 62 (5), 449–462.https://doi.org/10.5047/eps.2010.02.003
Sato, T., & Hirasawa, T. (1973). Body wave spectra from propagating
shear cracks. Journal of Physics of the Earth , 21 (4),
415–431.https://doi.org/10.4294/jpe1952.21.415
Scholz, C. H. (1998). Earthquakes and friction laws. Nature ,391 (6662), 37–42.https://doi.org/10.1038/34097
Segall, P. (1989). Earthquakes triggered by fluid extraction.Geology , 17 (10), 942–946.
https://doi.org/10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust
permeability from fluid-injection-induced seismic emission at the KTB
site. Geophysical Journal International , 131 (2), F15–F18.https://doi.org/10.1111/j.1365-246X.1997.tb01215.x
Shelly, D. R., Taira, T., Prejean, S. G., Hill, D. P., & Dreger, D. S.
(2015). Fluid-faulting interactions: Fracture-mesh and fault-valve
behavior in the February 2014 Mammoth Mountain, California, earthquake
swarm. Geophysical Research Letters, 42(14), 5803–5812.
https://doi.org/10.1002/2015GL064325
Shelly, D. R., Ellsworth, W. L., & Hill, D. P. (2016). Fluid-faulting
evolution in high definition: Connecting fault structure and
frequency-magnitude variations during the 2014 Long Valley Caldera,
California, earthquake swarm. Journal of Geophysical Research:
Solid Earth , 121 (3), 1776–1795.https://doi.org/10.1002/2015JB012719
Sibson, R. H. (1992). Implications of fault-valve behaviour for rupture
nucleation and recurrence. Tectonophysics , 211 (1–4),
283–293.https://doi.org/10.1016/0040-1951(92)90065-E
Sibson, R. H. (2020). Preparation zones for large crustal earthquakes
consequent on fault-valve action. Earth, Planets and Space ,72 (1), 1–20.
Talwani, P., & Acree, S. (1985). Pore pressure diffusion and the
mechanism of reservoir-induced seismicity. In. Pure and Applied
Geophysics PAGEOPH . Berlin: Springer, 122(6), (947–965).https://doi.org/10.1007/BF00876395
Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability,
ks. Journal of Geophysical Research , 112 (B7), 1–18.https://doi.org/10.1029/2006JB004665
Yoshida, K., Saito, T., Emoto, K., Urata, Y., & Sato, D. (2019b).
Rupture directivity, stress drop, and hypocenter migration of small- and
moderate-sized earthquakes in the Yamagata–Fukushima border swarm
triggered by upward pore-pressure migration after the 2011 Tohoku-Oki
earthquake. Tectonophysics , 769 . PubMed:228184
Terakawa, T., Hashimoto, C., & Matsu’ura, M. (2013). Changes in seismic
activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid
pressure. Earth and Planetary Science Letters , 365 ,
17–24.https://doi.org/10.1016/j.epsl.2013.01.017
Ueno, H., Hatakeyama, S., Aketagawa, T., Funasaki, J., & Hamada, N.
(2002). Improvement of hypocenter determination procedures in the Japan
Meteorological Agency. Quarterly Journal of Seismology ,65 , 123–134.
Utsu, T. (1961). A statistical study on the occurrence of aftershocks.Geophysical Magazine , 30 , 521–605.
Utsu, T., Ogata, Y., S, R., & Matsu’ura. (1995). The centenary of the
Omori formula for a decay law of aftershock activity. Journal of
Physics of the Earth , 43 (1), 1–33.https://doi.org/10.4294/jpe1952.43.1
Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake
bursts across southern California: Exploring the role of pore fluid
pressure fluctuations and aseismic slip as drivers. Journal of
Geophysical Research: Solid Earth , 111 (B5),https://doi.org/10.1029/2005JB004034
Waite, G. P., & Smith, R. B. (2002). Seismic evidence for fluid
migration accompanying subsidence of the Yellowstone caldera.Journal of Geophysical Research: Solid Earth , 107 (B9), ESE
1–ESE 1.https://doi.org/10.1029/2001JB000586
Wada, I., & Behn, M. D. (2015). Focusing of upward fluid migration
beneath volcanic arcs: Effect of mineral grain size variation in the
mantle wedge. Geochemistry, Geophysics, Geosystems ,16 (11), 3905–3923. https://doi.org/10.1002/2015GC005950
Waldhauser, F. (2002). Fault structure and mechanics of the Hayward
Fault, California, from double-difference earthquake locations.Journal of Geophysical Research , 107 (B3), 2054.https://doi.org/10.1029/2000JB000084
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference
earthquake location algorithm: Method and application to the Northern
Hayward fault, California. Bulletin of the Seismological Society
of America , 90 (6), 1353–1368.https://doi.org/10.1785/0120000006
Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic
mapping tools released. Eos, Transactions American Geophysical
Union , 79 (47), 579–579.https://doi.org/10.1029/98EO00426
Wetzler, N., Lay, T., Brodsky, E. E., & Kanamori, H. (2018). Systematic
deficiency of aftershocks in areas of high coseismic slip for large
subduction zone earthquakes. Science Advances , 4 (2),
eaao3225.https://doi.org/10.1126/sciadv.aao3225
Woessner, J., Schorlemmer, D., Wiemer, S., & Mai, P. M. (2006). Spatial
correlation of aftershock locations and on-fault main shock properties.Journal of Geophysical Research , 111 (B8), (B8).https://doi.org/10.1029/2005JB003961
Yabe, S., & Ide, S. (2018). Variations in precursory slip behavior
resulting from frictional heterogeneity. Progress in Earth and
Planetary Science , 5 (1), 43.https://doi.org/10.1186/s40645-018-0201-x
Yoshida, K., & Hasegawa, A. (2018a). Sendai-Okura earthquake swarm
induced by the 2011 Tohoku-Oki earthquake in the stress shadow of NE
Japan: Detailed fault structure and hypocenter migration.Tectonophysics , 733 , 132–147.https://doi.org/10.1016/j.tecto.2017.12.031
Yoshida, K., & Hasegawa, A. (2018b). Hypocenter migration and
seismicity pattern change in the Yamagata–Fukushima Border, NE Japan,
caused by fluid movement and pore pressure variation. Journal of
Geophysical Research: Solid Earth , 123 (6), 5000–5017.https://doi.org/10.1029/2018JB015468
Yoshida, K., Hasegawa, A., & Yoshida, T. (2016a). Temporal variation of
frictional strength in an earthquake swarm in NE Japan caused by fluid
migration. Journal of Geophysical Research: Solid Earth ,121 (8), 5953–5965.https://doi.org/10.1002/2016JB013022
Yoshida, K., Hasegawa, A., & Okada, T. (2016b). Heterogeneous stress
field in the source area of the 2003 M6.4 Northern Miyagi Prefecture, NE
Japan, earthquake. Geophysical Journal International ,206 (1), 408–419.https://doi.org/10.1093/gji/ggw160
Yoshida, K., Hasegawa, A., Yoshida, T., & Matsuzawa, T. (2019a).
Heterogeneities in stress and strength in tohoku and its relationship
with earthquake sequences triggered by the 2011 M9 Tohoku-Oki
earthquake. Pure and Applied Geophysics , 176 (3),
1335–1355.https://doi.org/10.1007/s00024-018-2073-9
Yoshida, K., Uchida, N., Hiarahara, S., Nakayama, T., Matsuzawa, T.,
Okada, T., et al. (2020a). 2019 M6. 7 Yamagata-Oki earthquake in the
stress shadow of 2011 Tohoku-Oki earthquake: Was it caused by the
reduction in fault strength? Tectonophysics, 793, 228609.
Yoshida, K., Taira, T., Matsumoto, Y., Saito, T., Emoto, K., &
Matsuzawa, T. (2020b). Stress release process along an intraplate fault
analogous to the plate boundary: A case study of the 2017 M5. 2
Akita-Daisen earthquake, NE Japan. Journal of Geophysical Research
– Solid Earth , e2020JB019527.
Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., & Yoshida, A.
(2011). Fluid-induced swarm earthquake sequence revealed by precisely
determined hypocenters and focal mechanisms in the 2009 activity at
Hakone volcano, Japan. Journal of Geophysical Research ,116 (B4).https://doi.org/10.1029/2010JB008036
Zhao, D., Yanada, T., Hasegawa, A., Umino, N., & Wei, W. (2012).
Imaging the subducting slabs and mantle upwelling under the Japan
Islands. Geophysical Journal International , 190 (2),
816–828.