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Text S1. 
Inclinometer measurements at Two Towers landslide, northern California Coast Ranges  

The Two Towers landslide, located in our field area in the northern California Coast 
Ranges (Figure 1), is a USGS long term monitoring station that has three inclinometers installed 
at “upper”, “middle”, and “lower” sites (Schulz et al., 2018). The inclinometers are arrays of 16 
sensors with a minimum resolution of ~0.3 m installed in PVC placed in the borehole. Nearly all 
deformation at the “upper” borehole occurs between 6.2-6.5 m below the ground surface. The 
deformation at the “lower” borehole occurs between 3.3 to 3.9 m below the ground surface. 
Unfortunately, the sliding surface is located below the bottom of the “middle” borehole.  

Using the borehole data from the Two Towers landslide (Figure S1), we constrain f 
following the formulation derived by Delbridge et al., (2016)  
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where Y is the height of the yield surface, H is the total depth, and n is the flow index equal to 1 
and 3. We calculate four values of f from the two boreholes f1,lower = 0.95, f3,lower=0.94, 
f1,upper=0.98, f3,upper=0.97 resulting in a mean f ~ 0.96. This shows that the northern California 
Coast Range landslides can be approximately represented as blocks sliding on a slope. Therefore, 
for our thickness inversions we set f = 1. Changing f does not impact the spatial pattern of 
thickness from the inversions, but does impact the magnitude as the inverted thickness scales as 
h ~ 1/f (Booth, Lamb, et al., 2013). Setting f = 0.96 will cause a 4% increase in thickness for each 
landslide (Table S3). 
 

Text S2. 
 
Generalized Cross Validation (GCV) 
 

We use GCV to select the appropriate value of the damping parameter for each landslide, 
which is defined as the value of alpha that minimizes the function 

 

,  (S2) 
 
where m is the length of vector h, hα is the inferred thickness for a specific value of α, Tr 
indicates the trace of a matrix, I is the identity matrix, and X# is the pseudo-inverse of X, defined 
as 
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where the superscript T indicates the transpose, and the superscript –1 indicates the inverse of a 
matrix. For our landslide data, g(α) always had an unambiguous minimum, which allowed for 
objective determination of the appropriate α for each landslide.  In contrast, other common 
methods that have been applied to landslide thickness inversions, such as the L-curve criterion 
(Delbridge et al., 2016; Booth et al., 2020), required subjective interpretation for our northern 
California Coast Ranges landslide data. 
 
Uncertainty estimation 
 

Uncertainty on the inferred landslide thickness is a result of two general sources: 
systematic errors (bias) introduced by regularization, nonnegative constraints, and the assumed 
model physics and random errors in the observations (surface velocities and topographic data).  
Quantifying the magnitudes of systematic errors would require independent information on true 
landslide depths, which is not available for the northern California Coast Ranges landslides 
analyzed in this study. For the random errors, we estimate uncertainties on the surface velocity 
data, but do not have a reliable estimate for uncertainty on the topographic data, which is also 
included in the vector of observations, b. Furthermore, horizontal velocity components are 
included in both the matrix X and vector b, while standard methods of uncertainty estimation for 
inverse problems assume errors only in b. A complete assessment of thickness uncertainty for the 
population of landslides analyzed is therefore not feasible, but we nonetheless can make a 
reasonable estimate of the minimum uncertainty on landslide thickness given an estimate of the 
uncertainties on the data in vector b following standard inverse theory.         

First, to estimate the uncertainty on b (which we quantify here as its variance, σb2), we 
calculate the model residuals, r, for the inferred thickness model as  
 

 .  (S4) 
 
Since the residuals by definition quantify the misfit between the predicted and observed data, the 
variance of the residuals (σr2) approximates the variance of b (σb2) (Aster et al., 2013). The 
variance of h (σh2) can then be estimated using  
 

,  (S5) 
 
where diag indicates the vector corresponding to the main diagonal of X# (Kasper et al., 2002).  
This assumes that the covariance of b is σb2I, implying that the uncertainty on b is spatially 
constant, independent, and normally-distributed. In general, uncertainties on b may vary in space 
and be correlated with neighboring pixels, but as long as the covariance matrix is diagonally 
dominant, this still provides a reasonable estimate.   
 We calculated σh for a sample of 7 landslides representing the variety of style, size, and 
shape found in the study population. Uncertainties ranged from ±1 to ±11 m, and the mean value 
of all sampled landslides was ±2.4 m. Uncertainty was generally lowest throughout the center of 
the landslide, and increased near its edges (Figure S3). That was likely an effect of the mask 
applied at the boundary of each landslide to force inferred thickness to be ~0 outside of the active 
landslide. For the 7 sampled landslides, their average thickness uncertainty increased with 
landslide size (Figure S3), ranging from ±1.5 to ±3.8 m from the smallest to largest landslide 
sampled. 
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Supplementary Figures 

 

 

Figure S1. Borehole inclinometer data for the Two Towers landslide, northern California 
Coast Ranges (see location in Figure 1). Thickness corresponds to the depth below the ground 
surface. The two lines show data from the “upper” and “lower” field sites. The landslide has a 
narrow yield zone (shown by yellow box) with plug flow for the majority of the landslide 
thickness. These data show that the northern California Coast Ranges can be approximated as 
blocks sliding on a slope. Data are from Schulz et al., 2018. 
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Figure S2. Example Generalized Cross Validation (GCV) function for landslide thickness 
inversion. This shows the GCV for landslide A2 (see landslide in Figure S3). The appropriate 
value of α (dashed red vertical line) is selected to minimize equation S1. 
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Figure S3. Landslide thickness inversion uncertainty. Maps of (a) Inferred thickness and (b) 
uncertainty on thickness for landslide A2. (c) Histogram of thickness uncertainties. (d) Mean 
standard deviation of inferred landslide thickness (σh) vs. landslide area for the representative 
sample of landslides. Solid red line is a power law fit, and dashed red line is the 95% 
confidence interval.       
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Figure S4. Multiple thickness inversions for the Boulder Creek landslide complex. (a) 
Horizontal velocity map. Black arrows show horizontal velocity vectors. (b) Thickness 
inversion for the entire landslide complex. Note we had to downsample the inversion for the 
full landslide complex to a 20 m pixel grid due to computational limitations. (c) Thickness 
inversion for multiple sub-landslides within the Boulder Creek landslide complex. Here we 
split the landslide complex into 4 smaller landslides. The thickness pattern is similar for both 
inversions. Contours show 5-m thickness. Some of the differences in the magnitude of the 
thickness are explained by the different spatial resolutions used in the inversions (i.e., 10 m 
pixel or 20 m pixel). 
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Figure S5. Thickness inversion for the Boulder Creek landslide complex. Map view shows the 
thickness inversion for the full landslide. Blue lines correspond to channels. Orange lines 
correspond to location of profiles 1-12. Profiles show ground surface (black lines) and slip 
surface (gray lines) elevation. The thickness inversion for this landslide produced patches deep 
and shallow zones in the center of this landslide. Many of these changes in landslide thickness 
result from a deep (15-20) channel network that has incised into the landslide body. The patchy 
thickness inversion results indicate that the slip surface depth is close to the channel depth in 
many places. 
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Figure S6. Landslide thickness inversions and Google Earth imagery for the example 
earthflow. This is the same landslide shown in Figures 2 and 3. (a) Landslide thickness maps. 
Thin yellow lines with labels show 5-meter thickness contours. Red dashed line shows profiles 
plotted in (b, c). Black dot shows latitude and longitude coordinates. Thick blue line shows the 
location of the Eel River. (b) Ground surface and slip surface elevation profiles. (c) Zoom-in of 
landslide headscarp. Black arrows show sliding direction. (d,e) Oblique view of Google Earth 
Imagery showing the well-defined headscarp. The headscarp can be used to trace the sliding 
surface beneath the ground surface (c). The extension of the headscarp slip surface under the 
landslide provides confirmation that the inversion is approximating the slip surface elevation 
correctly. 
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Figure S7. Thickness and elevation profiles for a slow-moving landslide that has filled in a 
pre-existing valley. (a) Oblique view of a Google Earth image showing the slow-moving 
landslide that has filled in the valley. Blue line shows the channel profile on and off the 
landslide. Gray line shows the landslide boundaries with an arrow showing direction of 
motion. Red dashed lines show location of profiles shown in (c-e). (b) Thickness map draped 
over the Google Earth image. Black circle shows latitude and longitude at that location. (c-d) 
Ground surface (black lines) and inverted slip surface (gray lines) profiles across the valley 
filling landslide. Black circle with dot indicates motion out of the page. (e) Ground surface 
profile showing the current incised channel that is downslope of the landslide toe. The 
extension of the valley shown by the inverted slip surface provides confirmation that the 
inversion is approximating the slip surface elevation correctly  
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Table S1.  List of pixel offset tracking pairs. Columns correspond to the pair number, acquisition 
dates of pixel offset tracking pairs, the timespan between images. The same pairs were processed 
for all 4 UAVSAR flight tracks. 
 

Table S2. Parameter values used in computations 

Parameter name and units value Source 

gravity, m/s2 9.8  

dry density of landslide 
material, kg/m3 

1837 Schulz et al. (2018) 

saturated density of landslide 
material, kg/m3 

2143 Schulz et al. (2018) 

density of water, kg/m3 1000  
 

Table S3. Landslide inventory data table.  
 

Table S4.  Volume-area scaling V = cVAγ and Thickness-area scaling h = chAζ 

category  cV, best fit intercept (with 
95% confidence bounds) 

γ, best fit power function 
exponent (with 95% 
confidence bounds) 

inventory 0.1274 (0.0338, 0.4781) 1.324 (1.206, 1.442) 

slumps 0.01901 (3.6900e-4, 0.9813) 1.502 (1.121, 1.883) 

earthflows 0.03491 (5.636e-4, 2.163) 1.453 (1.075, 1.831) 

complexes 0.9381 (0.05546, 8.6720) 1.182 (0.9739, 1.389) 

 ch, best fit intercept (with 
95% confidence bounds)  

ζ, best fit power function 
exponent (with 95% 
confidence bounds) 

inventory 0.1274 (0.03388, 0.4781) 0.3243 (0.2063, 0.4424) 

slumps 0.01901 (3.690e-4, 0.9813) 0.5018 (0.1211, 0.8826) 

earthflows 0.03491 (5.636e-4, 2.163) 0.453 (0.07515, 0.8308) 

complexes 0.6937 (0.05546, 8.672) 0.1817 (-0.02609, 0.3895) 
 


