References
Agliardi, F., Scuderi, M. M., Fusi, N., & Collettini, C. (2020). Slow-to-fast transition of giant creeping rockslides modulated by undrained loading in basal shear zones. Nature Communications ,11 (1), 1–11. https://doi.org/10.1038/s41467-020-15093-3.
Amatya, P., Kirschbaum, D., Stanley, T., & Tanyas, H. (2021). Landslide mapping using object-based image analysis and open source tools.Engineering Geology , 282 , 106000. https://doi.org/10.1016/j.enggeo.2021.106000.
Baum, R., & Reid, M. (2000). Ground water isolation by low-permeability clays in landslide shear zones. Landslides in Research, Theory and Practice. Thomas Telford, London , 139–144.
Bayer, B., Simoni, A., Mulas, M., Corsini, A., & Schmidt, D. (2018). Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology ,308 , 293–306. https://doi.org/10.1016/j.geomorph.2018.02.020.
Bekaert, D. P., Karim, M., Linick, J. P., Hua, H., Sangha, S., Lucas, M., et al. (2019). Development of open-access Standardized InSAR Displacement Products by the Advanced Rapid Imaging and Analysis (ARIA) Project for Natural Hazards. In AGU Fall Meeting Abstracts (Vol. 2019, pp. G23A-04).
Bekaert, D. P., Handwerger, A. L., Agram, P., & Kirschbaum, D. B. (2020). InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sensing of Environment , 249, 111983. https://doi.org/10.1016/j.rse.2020.111983.
Bennett, G. L., Roering, J. J., Mackey, B. H., Handwerger, A. L., Schmidt, D. A., & Guillod, B. P. (2016). Historic drought puts the brakes on earthflows in Northern California. Geophysical Research Letters , 43 (11), 5725–5731. https://doi.org/10.1002/2016GL068378.
Bennett, G. L., Miller, S. R., Roering, J. J., & Schmidt, D. A. (2016). Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction. Geology , 44 (5), 363–366. https://doi.org/10.1130/G37530.1.
Bhattacharya, P., & Viesca, R. C. (2019). Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science , 364 (6439), 464–468. https://doi.org/10.1126/science.aaw7354.
Bogaard, T. A., & Greco, R. (2016). Landslide hydrology: from hydrology to pore pressure. Wiley Interdisciplinary Reviews: Water ,3 (3), 439–459. https://doi.org/10.1002/wat2.1126.
Booth, A. M., McCarley, J. C., & Nelson, J. (2020). Multi-year, three-dimensional landslide surface deformation from repeat lidar and response to precipitation: Mill Gulch earthflow, California.Landslides , 1–14. https://doi.org/10.1007/s10346-020-01364-z
Bunn, M., Leshchinsky, B., & Olsen, M. J. (2020). Estimates of three-dimensional rupture surface geometry of deep-seated landslides using landslide inventories and high-resolution topographic data.Geomorphology , 367, 107332. https://doi.org/10.1016/j.geomorph.2020.107332.
Buzzanga, B., Bekaert, D. P., Hamlington, B. D., & Sangha, S. S. (2020). Toward sustained monitoring of subsidence at the coast using insar and gps: An application in Hampton roads, Virginia.Geophysical Research Letters , 47 (18), e2020GL090013. https://doi.org/10.1029/2020GL090013.
Calabro, M., Schmidt, D., & Roering, J. (2010). An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. Journal of Geophysical Research: Earth Surface (2003–2012) , 115 (F2). https://doi.org/10.1029/2009JF001314.
Cappa, F., Scuderi, M. M., Collettini, C., Guglielmi, Y., & Avouac, J.-P. (2019). Stabilization of fault slip by fluid injection in the laboratory and in situ. Science Advances , 5 (3), eaau4065. https://doi.org/10.1126/sciadv.aau4065.
Carey, J. M., Massey, C. I., Lyndsell, B., & Petley, D. N. (2019). Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress. Earth Surface Dynamics ,7 (3), 707–722. https://doi.org/10.5194/esurf-7-707-2019.
Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti, A., et al. (2019). Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Scientific Reports , 9 (1), 1–9. https://doi.org/10.1038/s41598-019-50792-y.
Cicoira, A., Beutel, J., Faillettaz, J., & Vieli, A. (2019). Water controls the seasonal rhythm of rock glacier flow. Earth and Planetary Science Letters , 528 , 115844. https://doi.org/10.1016/j.epsl.2019.115844.
Cigna, F., & Tapete, D. (2021). Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment , 253 , 112161. https://doi.org/10.1016/j.rse.2020.112161.
Coe, J. A., Ellis, W. L., Godt, J. W., Savage, W. Z., Savage, J. E., Michael, J., et al. (2003). Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Engineering Geology ,68 (1), 67–101. https://doi.org/10.1016/S0013-7952(02)00199-0.
Cohen-Waeber, J., Bürgmann, R., Chaussard, E., Giannico, C., & Ferretti, A. (2018). Spatiotemporal Patterns of Precipitation-Modulated Landslide Deformation from Independent Component Analysis of InSAR Time Series. Geophysical Research Letters , 45(4), 1878-1887. https://doi.org/10.1002/2017GL075950.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., & Gili, J. A. (2005). Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain).Landslides , 2(2), 83–96. https://doi.org/10.1007/s10346-005- 0049-1
Dehls, J. F., Larsen, Y., Marinkovic, P., Lauknes, T. R., Stødle, D., & Moldestad, D. A. (2019). INSAR. No: A National Insar Deformation Mapping/Monitoring Service In Norway–From Concept To Operations. InIGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 5461–5464). https://doi.org/10.1109/IGARSS.2019.8898614.
Dille, A., Kervyn, F., Handwerger, A. L., d’Oreye, N., Derauw, D., Bibentyo, T. M., et al. (2021). When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sensing of Environment , 258 , 112402. https://doi.org/10.1016/j.rse.2021.112402.
Dong, L., Leung, L. R., Lu, J., & Gao, Y. (2019). Contributions of extreme and non‐extreme precipitation to California precipitation seasonality changes under warming. Geophysical Research Letters ,46 (22), 13470–13478. https://doi.org/10.1029/2019GL084225.
Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science , 54–75.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics , 45 (2). https://doi.org/10.1029/2005RG000183.
Finnegan, N. J., Broudy, K. N., Nereson, A. L., Roering, J. J., Handwerger, A. L., & Bennett, G. (2019). River channel width controls blocking by slow-moving landslides in California’s Franciscan mélange.Earth Surface Dynamics , 7 (3), 879–894. https://doi.org/10.5194/esurf-7-879-2019
Finnegan, N. J., Perkins, J. P., Nereson, A. L., & Handwerger, A. L. (2021). Unsaturated Flow Processes and the Onset of Seasonal Deformation in Slow‐Moving Landslides. Journal of Geophysical Research: Earth Surface , 126 (5), e2020JF005758. https://doi.org/10.1029/2020JF005758
Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews , 162 , 227–252. https://doi.org/10.1016/j.earscirev.2016.08.011.
Hahm, W. J., Rempe, D. M., Dralle, D. N., Dawson, T. E., Lovill, S. M., Bryk, A. B., et al. (2019). Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Water Resources Research ,55 (4), 3028–3055. https://doi.org/10.1029/2018WR023760.
Handwerger, A. L., Roering, J. J., & Schmidt, D. A. (2013). Controls on the seasonal deformation of slow-moving landslides. Earth and Planetary Science Letters , 377 , 239–247. https://doi.org/10.1016/j.epsl.2013.06.047.
Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M., & Bürgmann, R. (2019). A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Scientific Reports ,9 (1), 1569. https://doi.org/10.1038/s41598-018-38300-0.
Handwerger, A. L., Fielding, E. J., Huang, M.-H., Bennett, G. L., Liang, C., & Schulz, W. H. (2019). Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall. Journal of Geophysical Research: Earth Surface , 124 (7), 1782–1797. https://doi.org/10.1029/2019JF005035,
Handwerger, A. L., Booth, A. M., Huang, M. H., & Fielding, E. J. (2021). Inferring the Subsurface Geometry and Strength of Slow‐Moving Landslides Using 3‐D Velocity Measurements From the NASA/JPL UAVSAR.Journal of Geophysical Research: Earth Surface , 126(3), e2020JF005898. https://doi.org/10.1029/2020JF005898.
Hapke, C. J., & Green, K. R. (2006). Coastal landslide material loss rates associated with severe climatic events. Geology ,34 (12), 1077–1080. https://doi.org/10.1130/G22900A.1.
Huang, M.-H., Fielding, E. J., Liang, C., Milillo, P., Bekaert, D., Dreger, D., & Salzer, J. (2017). Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy.Geophysical Research Letters , 44 (3), 1266–1274. https://doi.org/10.1002/2016GL071687.
Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., et al. (2017). The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides , 15(1), 123-133. https://doi.org/10.1007/s10346-017-0915-7.
Iverson, R. M. (2005). Regulation of landslide motion by dilatancy and pore pressure feedback. Journal of Geophysical Research: Earth Surface , 110 (F2). https://doi.org/10.1029/2004JF000268.
Iverson, R. M., & Major, J. J. (1987). Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations. Geological Society of America Bulletin , 99 (4), 579–594. https://doi.org/10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2.
Iverson, R. M., George, D. L., Allstadt, K., Reid, M. E., Collins, B., Vallance, J. W., et al. (2015). Landslide mobility and hazards: Implications of the 2014 Oso disaster. Earth and Planetary Science Letters , 412 , 197–208. https://doi.org/10.1016/j.epsl.2014.12.020.
Jacquemart, M., & Tiampo, K. (2021). Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California. Natural Hazards and Earth System Sciences ,21 (2), 629–642. https://doi.org/10.5194/nhess-21-629-2021.
Jennings, C. W., Gutierrez, C., Bryant, W., Saucedo, G., Wills, C. J., Milind, P., et al. (2010). Geologic Map of California. California Geological Survey, California Department of Conservation. Retrieved from https://cadoc.maps.arcgis.com/apps/mapviewer/index.html?layers=9eba56d981df4f839769ce9a2adc01f4
Jibson, R. W. (2006). The 2005 La Conchita, California, landslide.Landslides , 3 (1), 73–78. https://doi.org/10.1007/s10346-005-0011-2.
Jones, J., Jones, C. E., & Bekaert, D. P. (2021). Value of InSAR for Monitoring Land Subsidence to Support Water Management in the San Joaquin Valley, California. Journal of the American Water Resources Association. 1– 7. https://doi.org/10.1111/1752-1688.12942.
Keefer, D. K., & Johnson, A. M. (1983). Earth flows: morphology, mobilization, and movement. https://doi.org/10.3133/pp1264.
Kelsey, H. M. (1978). Earthflows in Franciscan melange, Van Duzen River basin, California. Geology , 6 (6), 361–364. https://doi.org/10.1130/0091-7613(1978)6<361:EIFMVD>2.0.CO;2.
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E., & Volken, M. (2017). Factors controlling velocity variations at short‐term, seasonal and multiyear time scales, Ritigraben rock glacier, Western Swiss Alps. Permafrost and Periglacial Processes ,28 (4), 675–684. https://doi.org/10.1002/ppp.1953.
Kilburn, C. R., & Petley, D. N. (2003). Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy.Geomorphology , 54 (1), 21–32. https://doi.org/10.1016/S0169-555X(03)00052-7.
Lacroix, P., Dehecq, A., & Taipe, E. (2020). Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming.Nature Geoscience , 13 (1), 56–60. https://doi.org/10.1038/s41561-019-0500-x.
Lacroix, P., Handwerger, A. L., & Bièvre, G. (2020). Life and death of slow-moving landslides. Nature Reviews Earth & Environment , 1–16. https://doi.org/10.1038/s43017-020-0072-8.
Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion controlled by hillslope material. Nature Geoscience , 3(4), 247–251. https://doi.org/10.1038/ngeo776.
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., et al. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing ,12 (15), 2430. https://doi.org/10.3390/rs12152430.
Liu, X., Zhao, C., Zhang, Q., Yin, Y., Lu, Z., Samsonov, S., et al. (2021). Three-dimensional and long-term landslide displacement estimation by fusing C-and L-band SAR observations: A case study in Gongjue County, Tibet, China. Remote Sensing of Environment ,267 , 112745. https://doi.org/10.1016/j.rse.2021.112745.
Lundgren, P., Girona, T., Bato, M. G., Realmuto, V. J., Samsonov, S., Cardona, C., et al. (2020). The dynamics of large silicic systems from satellite remote sensing observations: The intriguing case of Domuyo volcano, Argentina. Scientific Reports , 10 (1), 1–15. https://doi.org/10.1038/s41598-020-67982-8.
Mackey, B. H., & Roering, J. J. (2011). Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. Geological Society of America Bulletin ,123 (7–8), 1560–1576. https://doi.org/10.1130/B30306.1.
Mackey, B. H., Roering, J. J., & McKean, J. (2009). Long-term kinematics and sediment flux of an active earthflow, Eel River, California. Geology , 37 (9), 803–806. https://doi.org/10.1130/G30136A.1.
Malet, J.-P., Maquaire, O., & Calais, E. (2002). The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology , 43 (1), 33–54. https://doi.org/10.1016/S0169-555X(01)00098-8.
Matsuura, S., Asano, S., & Okamoto, T. (2008). Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engineering Geology , 101 (1–2), 49–59. https://doi.org/10.1016/j.enggeo.2008.03.007.
McSaveney, M. J., & Griffiths, G. A. (1987). Drought, rain, and movement of a recurrent earthflow complex in New Zealand.Geology , 15 (7), 643–646. https://doi.org/10.1130/0091-7613(1987)15<643:DRAMOA>2.0.CO;2.
Merriam, R. (1960). Portuguese Bend landslide, Palos Verdes Hills, California. The Journal of Geology , 68 (2), 140–153. https://doi.org/10.1086/626649.
Milillo, P., Sacco, G., Martire, D. D., & Hua, H. (2021). Neural-network pattern recognition experiments toward a full-automatic detection of anomalies in InSAR time-series of surface deformation.Frontiers in Earth Science , 1132. https://doi.org/10.3389/feart.2021.728643.
Minchew, B. M., & Meyer, C. R. (2020). Dilation of subglacial sediment governs incipient surge motion in glaciers with deformable beds.Proc. R. Soc. A. , 476 (2238). https://doi.org/10.1098/rspa.2020.0033.
Moon, T., Joughin, I., Smith, B., Van Den Broeke, M. R., Van De Berg, W. J., Noël, B., & Usher, M. (2014). Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters ,41 (20), 7209–7216. https://doi.org/10.1002/2014GL061836.
Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor.Remote Sensing , 12 (3), 424. https://doi.org/10.3390/rs12030424.
Murphy, C. R., Finnegan, N. J., & Oberle, F. K. J. (2022). Vadose Zone Thickness Limits Pore-fluid Pressure Rise in a Large, Slow-moving Earthflow. e2021JF006415. https://doi.org/10.1029/2021JF006415.
Nereson, A. L., & Finnegan, N. J. (2019). Drivers of earthflow motion revealed by an 80 yr record of displacement from Oak Ridge earthflow, Diablo Range, California, USA. Geological Society of America Bulletin . https://doi.org/10.1130/B32020.1.
Nereson, A. L., Davila Olivera, S., & Finnegan, N. J. (2018). Field and Remote‐Sensing Evidence for Hydro‐mechanical Isolation of a Long‐Lived Earthflow in Central California. Geophysical Research Letters ,45 (18), 9672–9680. https://doi.org/10.1029/2018GL079430.
Persad, G. G., Swain, D. L., Kouba, C., & Ortiz-Partida, J. P. (2020). Inter-model agreement on projected shifts in California hydroclimate characteristics critical to water management. Climatic Change , 162(3), 1493-1513. https://doi.org/10.1007/s10584-020-02882-4.
Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., & Pierce, D. W. (2017). Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Scientific Reports , 7 (1), 1–10. https://doi.org/10.1038/s41598-017-11285-y.
Raspini, F., Bianchini, S., Ciampalini, A., Del Soldato, M., Solari, L., Novali, F., et al. (2018). Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Scientific Reports , 8 (1), 1–11. https://doi.org/10.1038/s41598-018-25369-w.
Riebe, C. S., Hahm, W. J., & Brantley, S. L. (2017). Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surface Processes and Landforms , 42(1), 128–156. https://doi.org/10.1002/esp.4052.
Robeson, S. M. (2015). Revisiting the recent California drought as an extreme value. Geophysical Research Letters , 42 (16), 6771–6779. https://doi.org/10.1002/2015GL064593.
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing environment. In Synthetic Aperture Radar, 2012. EUSAR. 9th European Conference on (pp. 730–733).
Rutter, E., & Green, S. (2011). Quantifying creep behaviour of clay-bearing rocks below the critical stress state for rapid failure: Mam Tor landslide, Derbyshire, England. Journal of the Geological Society , 168 (2), 359–372. https://doi.org/10.1144/0016-76492010-133.
Scheingross, J. S., Minchew, B. M., Mackey, B. H., Simons, M., Lamb, M. P., & Hensley, S. (2013). Fault-zone controls on the spatial distribution of slow-moving landslides. Geological Society of America Bulletin , 125 (3–4), 473–489. https://doi.org/10.1130/B30719.1.
Schulz, W. H., McKenna, J. P., Kibler, J. D., & Biavati, G. (2009). Relations between hydrology and velocity of a continuously moving landslide—evidence of pore-pressure feedback regulating landslide motion? Landslides , 6(3), 181-190. https://doi.org/10.1007/s10346-009-0157-4.
Schulz, W. H., Smith, J. B., Wang, G., Jiang, Y., & Roering, J. J. (2018). Clayey landslide initiation and acceleration strongly modulated by soil swelling. Geophysical Research Letters , 45 (4), 1888–1896. https://doi.org/10.1002/2017GL076807.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar, A., et al. (2021). A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science ,373 (6552), 300–306. https://doi.org/10.1126/science.abh4455.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X., et al. (2020). Monitoring rock glacier kinematics with satellite synthetic aperture radar. Remote Sensing , 12 (3), 559. https://doi.org/10.3390/rs12030559.
Swain, D. L. (2021). A shorter, sharper rainy season amplifies California wildfire risk. Geophysical Research Letters , 48, e2021GL092843. https://doi.org/10.1029/2021GL092843.
Swain, D. L., Tsiang, M., Haugen, M., Singh, D., Charland, A., Rajaratnam, B., & Diffenbaugh, N. S. (2014). The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bulletin of the American Meteorological Society ,95 (9), S3.
Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation volatility in twenty-first-century California.Nature Climate Change , 1. https://doi.org/10.1038/s41558-018-0140-y.
Swirad, Z. M., & Young, A. P. (2021). Automating coastal cliff erosion measurements from large-area LiDAR datasets in California, USA.Geomorphology , 107799. https://doi.org/10.1016/j.geomorph.2021.107799.
Terzaghi, K. (1951). Mechanism of Landslides . Harvard University, Department of Engineering.
Viesca, R. C., & Rice, J. R. (2012). Nucleation of slip‐weakening rupture instability in landslides by localized increase of pore pressure. Journal of Geophysical Research: Solid Earth , 117(B3). https://doi.org/10.1029/2011JB008866.
Wang, S.-Y. S., Yoon, J.-H., Becker, E., & Gillies, R. (2017). California from drought to deluge. Nature Climate Change ,7 (7), 465–468. https://doi.org/10.1038/nclimate3330.
Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E., & Logan, J. (2019). Characterizing the catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM) photogrammetry.Landslides , 1–19. https://doi.org/10.1007/s10346-019-01160-4.
Wills, C. J., Manson, M. W., Brown, K. D., Davenport, C. W., & Domrose, C. J. (2001). Landslides in the Highway 1 Corridor: Geology and Slope Stability along the Big Sur Coast between Point Lobos and San Carpoforo Creek, Monterey and San Luis Obispo Counties, California.California Department of Transportation Project F99TL34 .
Wills, C. J., Roth, N. E., McCrink, T. P., Short, W. R., DeGraff, J., & Shakoor, A. (2017). The California landslide inventory database. InProc. Third North American Symp. on Landslides, Roanoke, VA, Association of Environmental and Engineering Geologists (pp. 666–674).
Xu, Y., Schulz, W. H., Lu, Z., Kim, J., & Baxtrom, K. (2021). Geologic controls of slow-moving landslides near the US West Coast.Landslides , 1–13. https://doi.org/10.1007/s10346-021-01732-3.
Young, A. P. (2015). Recent deep-seated coastal landsliding at San Onofre State Beach, California. Geomorphology , 228 , 200–212. https://doi.org/10.1016/j.geomorph.2014.08.005.
Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction.Computers & Geosciences , 133 , 104331. https://doi.org/10.1016/j.cageo.2019.104331.