References
Aboud SA, Altemimi AB, Al-hiiphy ARS, Yi-chen L, Cacciola F. 2019. A Comprehensive Review on Infrared Heating. Molecules2 :1–20.
Batéjat C, Grassin Q, Manuguerra J-C, Leclercq I. 2021. Heat inactivation of the severe acute respiratory syndrome coronavirus 2.J. Biosaf. Biosecurity 3 :1–3. https://doi.org/10.1016/j.jobb.2020.12.001.
Bazant MZ, Bush JWM. 2021. A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. U. S. A.118 .
Bertrand I, Schijven JF, Sánchez G, Wyn-Jones P, Ottoson J, Morin T, Muscillo M, Verani M, Nasser A, de Roda Husman AM, Myrmel M, Sellwood J, Cook N, Gantzer C. 2012. The impact of temperature on the inactivation of enteric viruses in food and water: A review. J. Appl. Microbiol. 112 :1059–1074.
Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Ferris A, Miller D, Weaver W, Zeitouni NE, Freeburger D, Dabisch P, Wahl V, Hevey MC, Altamura LA. 2021. SARS-CoV-2 is rapidly inactivated at high temperature. Environ. Chem. Lett. 19 :1773–1777. https://doi.org/10.1007/s10311-021-01187-x.
Buonanno M, Welch D, Shuryak I, Brenner DJ. 2020. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses.Sci. Rep. 10 :1–8.
Burton J, Love H, Richards K, Burton C, Summers S, Pitman J, Easterbrook L, Davies K, Spencer P, Killip M, Cane P, Bruce C, Roberts ADG. 2021. The effect of heat-treatment on SARS-CoV-2 viability and detection.J. Virol. Methods 290 :114087. https://doi.org/10.1016/j.jviromet.2021.114087.
Canpolat M, Bozkurt S, Şakalar Ç, Çoban AY, Karaçaylı D, Toker E. 2022. Rapid thermal inactivation of aerosolized SARS-CoV-2. J. Virol. Methods 301 .
Curtius J, Granzin M, Schrod J. 2021. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci. Technol. 55 :586–599. https://doi.org/10.1080/02786826.2021.1877257.
Damit B, Wu CY, Yao M. 2013. Ultra-high temperature infrared disinfection of bioaerosols and relevant mechanisms. J. Aerosol Sci. 65 :88–100. http://dx.doi.org/10.1016/j.jaerosci.2013.07.010.
Darnell MER, Subbarao K, Feinstone SM, Taylor DR. 2004. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 121 :85–91.
Gamble A, Fischer RJ, Morris DH, Yinda CK, Munster VJ, Lloyd-Smith JO. 2021. Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2. Appl. Environ. Microbiol. 87 :1–9.
Grinshpun SA, Adhikari A, Li C, Yermakov M, Reponen L, Johansson E, Trunov M. 2010. Inactivation of aerosolized viruses in continuous air flow with axial heating. Aerosol Sci. Technol.44 :1042–1048.
Guillier L, Martin-Latil S, Chaix E, Thébault A, Pavio N, Poder S Le, Batéjat C, Biot F, Koch L, Schaffner DW, Sana M. 2020. Modeling the inactivation of viruses from the Coronaviridae family in response to temperature and relative humidity in suspensions or on surfaces.Appl. Environ. Microbiol. 86 .
Hessling M, Hoenes K, Lingenfelder C. 2020. Selection of parameters for thermal coronavirus inactivation - a data-based recommendation.GMS Hyg. Infect. Control 15 :Doc16.
Hubert JJ. 1984. Spearman-Karber Method. In: . Bioassay, 2nd Ed.2nd ed. Dubuque, Lowa: Kendall/Hunt Pub. Co., pp. 65–66.
Jarvis MC. 2020. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications. Front. Public Heal. 8 :1–8.
Jiang Y, Zhang H, Wippold JA, Gupta J, Dai J, de Figueiredo P, Leibowitz JL, Han A. 2021. Sub-second heat inactivation of coronavirus using a betacoronavirus model. Biotechnol. Bioeng.118 :2067–2075.
Jung JH, Lee JE, Lee CH, Kim SS, Lee BU. 2009. Treatment of fungal bioaerosols by a high-temperature, short-time process in a continuous-flow system. Appl. Environ. Microbiol.75 :2742–2749.
Ma B, Gundy PM, Gerba CP, Sobsey MD, Linden KG. 2021. UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl∗ Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources. Appl. Environ. Microbiol.87 .
Morawska L, Milton DK. 2020. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis.71 :2311–2313.
Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, Cao J, Dancer S, Floto A, Franchimon F, Haworth C, Hogeling J, Isaxon C, Jimenez JL, Kurnitski J, Li Y, Loomans M, Marks G, Marr LC, Mazzarella L, Melikov AK, Miller S, Milton DK, Nazaroff W, Nielsen P V., Noakes C, Peccia J, Querol X, Sekhar C, Seppänen O, Tanabe S ichi, Tellier R, Tham KW, Wargocki P, Wierzbicka A, Yao M. 2020. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 142 .
Pastorino B, Touret F, Gilles M, Lamballerie X De, Remi N, Émergents V, Inserm IRD, Charrel RN. 2020. Evaluation of heating and chemical protocols for inactivating SARS-CoV-2 Méditerranée Infection ), Marseille , France . Clinical samples collected in COVID-19 patients are commonly manipulated in BSL-2 laboratories for diagnostic purpose . We used the Fre:0–8.
Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, Maclaren G, Brodie D. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 :565–574.
Seifer S, Elbaum M. 2021. Thermal inactivation scaling applied for SARS-CoV-2. Biophys. J. 120 :1054–1059. https://doi.org/10.1016/j.bpj.2020.11.2259.
Storm N, McKay LGA, Downs SN, Johnson RI, Birru D, de Samber M, Willaert W, Cennini G, Griffiths A. 2020. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Sci. Rep.10 :1–5. https://doi.org/10.1038/s41598-020-79600-8.
Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li N, Shen J, Lv Y, Pan L, Ding P, Wang X, Wang Y, Macintyre CR. 2020. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ. Int.144 :1–10.
Wang X, Sun S, Zhang B, Han J. 2021. Solar heating to inactivate thermal-sensitive pathogenic microorganisms in vehicles: application to COVID-19. Environ. Chem. Lett. 19 :1765–1772. https://doi.org/10.1007/s10311-020-01132-4.
Wang Y, Wu X, Wang Y, Li B, Zhou H, Yuan G, Fu Y, Luo Y. 2004. Low stability of nucleocapsid protein in SARS virus. Biochemistry43 :11103–11108.
Yao M, Zhang L, Ma J, Zhou L. 2020. On airborne transmission and control of SARS-Cov-2. Sci. Total Environ. 731 :139178. https://doi.org/10.1016/j.scitotenv.2020.139178.
Yap TF, Liu Z, Shveda RA, Preston DJ. 2020a. A predictive model of the temperature-dependent inactivation of coronaviruses. Appl. Phys. Lett. 117 :1–40.
Yap TF, Liu Z, Shveda RA, Preston DJ. 2020b. A predictive model of the temperature-dependent inactivation of coronaviruses. Appl. Phys. Lett. 117 .
Yu L, Peel GK, Cheema FH, Lawrence WS, Bukreyeva N, Jinks CW, Peel JE, Peterson JW, Paessler S, Hourani M, Ren Z. 2020. Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system. Mater. Today Phys. 15 .