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Wastewater catchment area data are essential for wastewater treatment ca-
pacity planning and have recently become critical for operationalising waste-
water-based epidemiology (WBE) for COVID-19. Owing to the privatised
nature of the water industry in the United Kingdom, the required catch-
ment area datasets are not readily available to researchers. Here, we present
a consolidated dataset of 7,537 catchment areas from ten sewerage service
providers in the Great Britain, covering more than 96% of the population
of England and Wales. We develop a geospatial method for estimating the
population resident within each catchment from small area population esti-
mates generated by the Office for National Statistics. The method is more
widely applicable to matching electronic health records to wastewater infras-
tructure. Population estimates are highly predictive of population equivalent
treatment loads reported under the European Urban Wastewater Treatment
Directive. We highlight challenges associated with using geospatial data for
wastewater-based epidemiology.

1 Introduction

Geospatial data on the extent of wastewater catchment areas are essential for wastewater-
based epidemiology (WBE): information relating to the population resident in the catch-
ment needs to be related to signals extracted from samples taken from the corresponding
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Code to reproduce the analysis is available at https://github.com/tillahoffmann/wastewater-
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1

https://github.com/tillahoffmann/wastewater-catchment-areas
https://github.com/tillahoffmann/wastewater-catchment-areas


wastewater treatment plant (WWTP) [6]. WBE has garnered recent attention because
it can be used to monitor community transmission of SARS-CoV-2 relatively inexpen-
sively as compared to mass testing [23], although with significant uncertainties [1, 29].
Evaluating the utility of wastewater-based monitoring of SARS-CoV-2 requires clinical
data (such as case numbers, hospital admissions, or prevalence estimates [25]) aggregated
to catchment areas for comparison. Beyond SARS-CoV-2, wastewater-based monitoring
has the potential to provide further indicators of public health (such as dietary mark-
ers [10, 7], use of pharmaceuticals [27, 17, 30, 31], and other communicable diseases [2]).
WBE has proven useful in estimating public exposure to food toxicants [26], lifestyle
chemicals [4] and other hazardous chemicals [18, 14]. Diverse methods for estimating
the population size served by individual WWTPs have been developed, including the
use of biochemical markers [5] and mobile phone data [3]. But population estimation
remains a challenging problem. Therefore, irrespective of the particular application,
catchment area data are required to relate the signal to other data (such as prescribing
data or the census [28]).

Due to the privatisation of the water sector in England in 1989, catchment area data
are held by different companies and are not available in a singular coherent form. This
lack of data hampers research efforts and poses challenges for open and reproducible
research. To fill this data gap, we obtained catchment area data from sewerage service
providers in the United Kingdom under the Environmental Information Regulations
2004 which provide a statutory right to access environmental information [12]. We con-
solidated the data, removed duplicate catchments, annotated conflicting information,
and matched wastewater catchments to the respective treatment plant and associated
metadata. The metadata include population equivalent treatment load (measured by bi-
ological oxygen demand), as reported under the Urban Wastewater Treatment Directive
of the Council of the European Union [9]. We demonstrate the utility of wastewa-
ter catchment area data by estimating the population resident within each catchment
based on small-area population estimates produced by the Office for National Statis-
tics (ONS) [20], the official body generating and publishing population statistics in the
United Kingdom. These estimates are highly predictive of the population equivalent load
of treatment works, indicating that geospatial approaches are a useful tool for connecting
wastewater-based signals with external datasets.

2 Methods

2.1 Data and data preparation

2.1.1 Wastewater catchment area data

We submitted Environmental Information Requests to the twelve major sewerage service
providers in the United Kingdom, and ten providers supplied catchment area data,
as shown in table 1. An overview of the catchments is shown in fig. 1 (a). Thames
Water, United Utilities, and Wessex Water respectively provided 4,167, 1,292, and 402
subcatchments, i.e. a breakdown of the catchment area serviced by a single treatment
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Catchments Area

(km2)

Matched
UWWTPs

Population
estimateCompany Provided Retained

Anglian 1,149 1,140 4,207 317 6.9m
Northern Ireland . . . . . . . . . . . . . . . . . . data not provided . . . . . . . . . . . . . . . . . .
Northumbrian 322 320 1,304 66 2.7m
Scottish 1,877 1877 1,974 198 —
Severn Trent 1,016 1,014 2,485 260 9.3m
Southern 383 379 1,402 139 4.8m
Southwest . . . . . . . . . . . . . . . . . . data not provided . . . . . . . . . . . . . . . . . .
Thames 353 349 2,652 156 14.6m
United Utilities 569 567 1,935 147 7.2m
Welsh 866 864 1,172 126 3.4m
Wessex 385 385 2,139 117 2.9m
Yorkshire 617 617 1,693 151 5.1m

Total 7,537 7,512 20,962 1,677 56.8m

Table 1: Overview of data provided by different sewerage service providers in the United
Kingdom under Environmental Information Requests and 2016 population esti-
mates (see section 2.2 for details). The number of Urban Wastewater Treatment
Plants (UWWTPs) is smaller than the number of catchments because data are
only reported for treatment plants with a BOD population equivalent of more
than 2,000. Areas covered and geospatial population estimates may not add up
to the total due to rounding.
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plant into smaller areas. Data were aggregated by considering the spatial union of all
subcatchments that drain to the same treatment plant. Severn Trent Water provided
catchment area data for 1,016 of their own treatment plants as well as 58 catchments
of partner companies; we removed the latter from the dataset to avoid duplication.
Southwest Water did not provide catchment area data because they do not consider the
geospatial extent of wastewater catchment areas environmental information; Northern
Ireland Water did not provide catchment area data because “the information requested
is currently considered sensitive”.

To assess the integrity of the dataset, we manually reviewed 87 pairs of intersecting
catchments from different providers. We removed 25 catchments that were supplied in
duplicate, as shown in fig. 1 (b). For some pairs, it was not possible to uniquely determine
which of the overlapping catchments services a given area, as shown in fig. 1 (c). We
thus annotated both catchments for future reference, resulting in 52 catchments with
annotations1.

2.1.2 Urban Wastewater Treatment Directive regulatory data

Under article 17 of the Urban Wastewater Treatment Directive (UWWTD) adopted in
1991, members states are obliged to report details on urban wastewater treatment plants
every two years [8]. Reporting standards were formalised in 2014 [9], and data need to
be provided for treatment plants exceeding a population equivalent of 2,000. Article 2
defines a population equivalent (p.e.) as “organic biodegradable load having a five-day
biochemical oxygen demand (BOD5) of 60 g of oxygen per day” [8]. We henceforth refer
to population equivalents reported under the UWWTD as BOD p.e. These data include
both the actual load entering and the treatment capacity of each treatment plant (both
measured as BOD p.e.) from 2006 to 2016 together with the GPS coordinates of the
treatment plant [13]. The number of records per year varies between 1,852 and 1,908
over the reporting period; the dataset includes a total of 1,990 unique treatment plants.

To match the UWWTD treatment plants to the catchment areas described in sec-
tion 2.1.1, we removed 133 treatment works that were labelled as “inactive” in their lat-
est report because catchment data were obtained in 2021, leaving 1,857 unique treatment
plants. We also ignored 170 treatment plants located in the service area of Southwest
Water, Northern Ireland, and Gibraltar because corresponding catchment area data are
not available, leaving 1,687 unique treatment plants. We evaluated the distance between
all pairs of catchment areas and the most recently reported location of treatment plants.
We automatically matched 1,492 treatment plants to catchments if the distance between
them was less than 100 metres and there were no other treatment plants within 100
metres of the same catchment. We also matched 95 treatment plants to catchments that
were less than 2,500 metres apart and whose names matched exactly after removing spe-
cial characters, whitespace, and common acronyms (such as “WWTW” or “STP”). In
total, 1,587 treatment plants were matched automatically, leaving 100 unmatched treat-
ment plants which we reviewed manually to match them to catchments. After manual

1The number of removed and annotated catchments do not add up to the number of pairs because a
single catchment may overlap with multiple segments from other providers.

4



(a)

(b)

(c)

Anglian Water
Northumbrian Water
Scottish Water
Severn Trent Water
Southern Water

Thames Water
United Utilities
Welsh Water
Wessex Water
Yorkshire Water

Figure 1: A consolidated dataset covers 7,537 catchment areas from ten sewerage service
providers, as shown in panel (a). Catchment area data supplied by different
providers may conflict when different catchments cover the same geographical
area. Panel (b) shows an example of Market Overton catchments being sup-
plied in duplicate by different providers. Market Overton is serviced by Severn
Trent Water, and the version provided by Anglian Water has been removed
from the consolidated dataset. Panel (c) shows an example of two conflicting
catchments, East Hyde (Thames Water) and Chalton (Anglian Water), that
cannot easily be resolved, resulting in annotations in the consolidated dataset.
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review, 11 treatment plants could not be matched to a catchment. The median distance
between matched treatment plants and catchments is zero, and the 99th percentile is 537
metres.

2.1.3 Census boundaries and small area population estimates

We obtained geospatial boundaries of lower-layer super output areas (LSOAs) for the
2011 census from the ONS [19]. These 34,753 areas cover England and Wales and are
used as statistical reporting units. For each LSOA, we obtained population estimates for
the period between 2001 and 2017 [20]. These small-area population estimates (SAPEs)
are mid-year estimates of the typical resident population and do not account for transient
populations, such as commuters or holiday makers [21]. Census data are used to generate
SAPEs in census years, and, for intercensal years, they are generated by “rolling forward”
the resident population based on changes in the number of people registered with general
practitioners in the area [21]. See Park [21] for detailed methodology for SAPEs and
Park [22] for a discussion on the quality of SAPEs.

2.2 Geospatial population estimates

We considered the spatial overlap between catchment areas and LSOAs to generate
geospatial population estimates (GPEs) for each catchment area. In particular, let ci be
the extent of catchment i and lj be the extent of LSOA j; we use |x| to denote the area
of an entity x. The overlap of a catchment i and LSOA j is

aij = ci ∩ lj ,

where we have used set notation to denote the intersection. For each pair, we assign a
proportion |aij | / |Aj | of the population nj of LSOA j to catchment i, where

Aj =
⋃
i

aij

is the subset of LSOA j serviced by any catchment area. In contrast to Tscharke,
O’Brien, Ort, Grant, Gerber, Bade, Thai, Thomas, and Mueller [28], we used the area
serviced in the denominator (as opposed to the total area of the LSOA) because LSOAs
are census reporting areas that cover the United Kingdom and may extend into unser-
viced areas, such as green spaces. For example, fig. 2 shows LSOA E01003817 in south
west London that partially covers Richmond Park. The entire population is resident
near the boundary of the LSOA, and the majority of the area of the LSOA is unin-
habited. Using the total area of the LSOA in the denominator would underestimate
the population contribution to both the Mogden and Hogsmill treatment works in west
London, servicing approximately two million and 400 thousand people, respectively. The
population estimate mi for catchment area i is thus

mi =
∑
j

|aij |
|Aj |

nj .
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Crossness
Hogsmill
Mogden

Figure 2: Different normalisation options can yield substantially different population es-
timates. Three different catchment areas in south west London are shown as
solid shapes; the large central white region is Richmond Park which is not
serviced by any catchment area. LSOA boundaries are shown as grey lines,
and LSOA E01003817 is shown as a shaded region with black boundary. As-
signing population estimates to a catchment based on the proportion of the
total area that overlaps with the catchment would underestimate the serviced
population. We instead normalise by the area covered by any catchment which
guarantees that every person is accounted for in population estimates.
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This method can also be used to connect electronic health records, such as COVID-19
case data or prescribing data, with wastewater infrastructure data.

3 Results

Geospatial population estimates are highly predictive of population equivalent loads re-
ported under the UWWTD, as shown in fig. 3 (a). The Pearson correlation on the
log-scale is 0.977 with a p-value < 10−6. Surprisingly, geospatial population estimates
and BOD p.e. are not only correlated, but their dependence closely follows the identity
relation despite geospatial population estimates only accounting for domestic contribu-
tions. Unless substantial wastewater volumes are treated in private treatment plants,
this suggests that treatment plants in the United Kingdom have little residual capacity,
consistent with repeated discharge of untreated wastewater into the natural environment
during adverse weather events [15].

Outliers highlight limitations of geospatial approaches to population estimation that
would also affect wastewater-based epidemiology. For example, the Haggerston sewage
treatment plant in Northumberland has a BOD p.e. load of over 2,000, but the GPE
is almost an order of magnitude smaller because the treatment plant services a holiday
park with large transient population that is not captured by the census. In contrast,
the geospatial population estimate for the Billericay treatment plant in Essex is larger
than the reported BOD p.e. load. This is a result of part of the wastewater being redi-
rected to the nearby Shenfield and Hutton treatment plant to alleviate pressure on the
Billericay treatment plant caused by recent housing developments [24]. The Rotherwas
treatment plant in Hereford has a BOD p.e. load more than 30 times larger than the
estimated population, in part due to industrial influent from the Bulmers cider factory
and pumping from the nearby Eign treatment plant [16]. But discrepancies between
geospatial population estimates and BOD p.e. load can also be the consequence of data
quality issues, as illustrated by the Chalton treatment plant: as shown in fig. 1 (c), the
Chalton catchment (Anglian Water) overlaps substantially with the East Hyde catch-
ment (Thames Water), and it is not possible to determine which treatment work services
the population.

To summarise the relationship between BOD p.e. load and geospatial population
estimates, we calculated the median absolute error (MAE) across treatment plants on
the log10 scale, i.e.

MAE = mediani

∣∣∣∣log10

(
mi

pi

)∣∣∣∣ ,
where pi is the BOD p.e. load reported under the UWWTD. As shown in fig. 3 (b), the
MAE decreases over time. This is expected as the wastewater catchment area data were
obtained in 2021 and may thus not reflect wastewater infrastructure from more than a
decade ago well. The reduction may also be the result of improvements in reporting
which was formalised in 2014 [9]. Irrespectively, the MAE between 0.046 and 0.051 is
small across the entire period from 2006 to 2016 (corresponding to relative errors of
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Figure 3: Geospatial population estimates (GPEs) are highly predictive of BOD popula-
tion equivalent (p.e.) treatment load. Panel (a) shows a scatter of GPEs based
on 2016 mid-year population estimates against treatment load from UWWTD
data in 2016. Four outliers are highlighted with additional context in the main
text. Panel (b) shows the median absolute log10 error between geospatial pop-
ulation estimates and BOD p.e. load over time. Error bars correspond to the
bootstrapped interquartile range.
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approximately 11%) despite geospatial population estimates and BOD p.e. load being
conceptually different quantities.

4 Discussion

We have presented a consolidated dataset of 7,537 wastewater catchment areas with wide
applicability for wastewater-based epidemiology and water research in Great Britain. To
demonstrate the utility of the dataset, we used small-area population estimates from
the Office for National Statistics to estimate the number of people resident within each
catchment and compared the results with population equivalent treatment loads reported
under the Urban Wastewater Treatment Directive. Geospatial population estimates
(GPEs) are highly predictive but also highlight limitations of geospatial approaches:
first, GPEs based on census data cannot capture transient populations, such as holiday
parks as illustrated by the treatment plant in Haggerston. Second, GPEs are affected
by uncertainties pertaining to small area population estimates (especially for intercensal
years) as well as the mapping of census reporting areas (such as LSOAs) to catchment
areas. Third, understanding pumping between treatment plants to alternative sites
(such as from Billericay to Shenfield and Hutton) requires additional data, such as
network information and pumping stations which are not currently available. Fourth,
private sewage treatment works and septic tanks, which are more common in rural
areas, are not accurately captured by this dataset: wastewater may be tankered to
different treatment works or treated on site. Data on private sewage treatment works
are not readily available because most of them do not need to be registered with the
Environment Agency [11]. Finally, agricultural and industrial discharges as well as
tankered waste can give rise to large treatment loads that are not reflected in population
estimates (such as influent from the Bulmers factory at Rotherwas). In short, wastewater
treatment infrastructure is a complex system whose idiosyncracies cannot be captured
solely by geospatial data. Despite these challenges, we believe the data and methods
presented here can support water research in general and wastewater-based epidemiology
in particular.

Acknowledgements

We thank Anglian Water, Northumbrian Water, Scottish Water, Severn Trent Water,
Southern Water, United Utilities, Welsh Water, Wessex Water, and Yorkshire Water for
providing catchment area data in response to requests under the Environmental Infor-
mation Regulations 2004. This research is part of the Data and Connectivity National
Core Study, led by Health Data Research UK in partnership with the Office for National
Statistics and funded by UK Research and Innovation (grant ref MC PC 20029).

10



References

[1] W. Ahmed et al. “Minimizing Errors in RT-PCR Detection and Quantification
of SARS-CoV-2 RNA for Wastewater Surveillance”. In: Sci. Total Environ. 805
(2022), p. 149877. doi: 10.1016/j.scitotenv.2021.149877.

[2] H. Asghar, O. M. Diop, G. Weldegebriel, F. Malik, S. Shetty, L. El Bassioni, A. O.
Akande, E. Al Maamoun, S. Zaidi, A. J. Adeniji, C. C. Burns, J. Deshpande, M. S.
Oberste, and S. A. Lowther. “Environmental Surveillance for Polioviruses in the
Global Polio Eradication Initiative”. In: J. Infect. Dis. 210 (Nov. 2014), S294–
S303. doi: 10.1093/infdis/jiu384.

[3] J. A. Baz-Lomba, F. Di Ruscio, A. Amador, M. Reid, and K. V. Thomas. “Assess-
ing Alternative Population Size Proxies in a Wastewater Catchment Area Using
Mobile Device Data”. In: Environ. Sci. Technol. 53.4 (2019), pp. 1994–2001. doi:
10.1021/acs.est.8b05389.

[4] J. A. Baz-Lomba et al. “Comparison of pharmaceutical, illicit drug, alcohol, nico-
tine and caffeine levels in wastewater with sale, seizure and consumption data for
8 European cities”. In: BMC Public Health 16.1 (2016), p. 1035. doi: 10.1186/
s12889-016-3686-5.

[5] F. Been, L. Rossi, C. Ort, S. Rudaz, O. Delémont, and P. Esseiva. “Population
Normalization with Ammonium in Wastewater-Based Epidemiology: application
to Illicit Drug Monitoring”. In: Environ. Sci. Technol. 48.14 (2014), pp. 8162–8169.
doi: 10.1021/es5008388.

[6] P. M. Choi, B. J. Tscharke, E. Donner, J. W. O’Brien, S. C. Grant, S. L. Kaser-
zon, R. Mackie, E. O’Malley, N. D. Crosbie, K. V. Thomas, and J. F. Mueller.
“Wastewater-based epidemiology biomarkers: past, present and future”. In: Trends
Anal. Chem. 105 (2018), pp. 453–469. doi: 10.1016/j.trac.2018.06.004.

[7] P. M. Choi, B. Tscharke, S. Samanipour, W. D. Hall, C. E. Gartner, J. F. Mueller,
K. V. Thomas, and J. W. O’Brien. “Social, demographic, and economic correlates
of food and chemical consumption measured by wastewater-based epidemiology”.
In: Proc. Natl. Acad. Sci. U.S.A 116.43 (2019), pp. 21864–21873.

[8] Council of the European Union. “91/271/EEC”. In: Offic. J. Eur. Communities
135 (1991), pp. 40–52.

[9] Council of the European Union. “91/271/EEC”. In: Offic. J. Eur. Communities
197 (2014), pp. 77–86.

[10] A. J. Cross, J. M. Major, and R. Sinha. “Urinary Biomarkers of Meat Consump-
tion”. In: Cancer Epidemiol. Biomark. Prev. 20.6 (2011), pp. 1107–1111. doi:
10.1158/1055-9965.EPI-11-0048.

11

https://doi.org/10.1016/j.scitotenv.2021.149877
https://doi.org/10.1093/infdis/jiu384
https://doi.org/10.1021/acs.est.8b05389
https://doi.org/10.1186/s12889-016-3686-5
https://doi.org/10.1186/s12889-016-3686-5
https://doi.org/10.1021/es5008388
https://doi.org/10.1016/j.trac.2018.06.004
https://doi.org/10.1158/1055-9965.EPI-11-0048


[11] Department for Environment, Food, and Rural Affairs and Environment Agency.
Reform of the regulatory system to control small sewage discharges from septic
tanks and small sewage treatment plants in England. 2014. url: https://www.
gov.uk/government/publications/small-sewage-discharges-in-england-

general-binding-rules.

[12] Environmental Information Regulations. 2004. url: https://www.legislation.
gov.uk/uksi/2004/3391/contents/made.

[13] European Environment Agency. Waterbase: Urban Wastewater Treatment Direc-
tive Reported Data. 2020.
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