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Abstract44

Crop models are often used to project future crop yield under climate and global change45

and typically show a broad range of outcomes. To understand differences in modeled re-46

sponses, we analysed modeled crop yield response types using impact response surfaces47

along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and48

nitrogen (N). Crop yield response types help to understand differences in simulated re-49

sponses per driver and their combinations rather than aggregated changes in yields as50

the result of simultaneous changes in various drivers. We find that models’ sensitivities51

to the individual drivers are substantially different and often more different across mod-52

els than across regions. There is some agreement across models with respect to the spa-53

tial patterns of response types but strong differences in the distribution of response types54

across models and their configurations suggests that models need to undergo further scrutiny.55

We suggest establishing standards in model evaluation based on emergent functional-56

ity not only against historical yield observations but also against dedicated experiments57

across different drivers to analyze emergent functional patterns of crop models.58

Plain Language Summary59

Crop models are widely used to compute crop yields under future climate change.60

Yields are determined by many interacting processes. Simulated future crop yields of-61

ten show a broad uncertainty range. We investigate the sensitivity of nine different crop62

models to individual model inputs (carbon dioxide, temperature, water, nitrogen) in a63

very large simulation data set and find that there are substantial differences. We con-64

clude that crop model evaluation needs to include analyses of functional properties to65

avoid that very diverse model responses to drivers are not tracked if interacting processes66

cancel out in the historical evaluation period but not in future scenarios, leading to large67

differences between models.68

1 Introduction69

Crop models are often employed to project crop yields under changing conditions70

such as global warming and associated management change for adaptation (Jägermeyr71

et al., 2021). Multi-model ensembles are promoted to enhance the robustness of projec-72

tions (Asseng et al., 2015; Martre et al., 2015), but questions remain on what causes of-73

ten large differences between projections of individual models (e.g. Müller et al., 2021;74

Wang et al., 2022; Jägermeyr et al., 2021). Global Gridded Crop Models (GGCMs) are75

especially exposed to this question when applied for assessing climate change impacts76

(Jägermeyr et al., 2021; Schleussner et al., 2018), adaptation (Minoli et al., 2019; Zabel77

et al., 2021; Franke et al., 2022a), or environmental impacts of agricultural production78

(W. Liu et al., 2018), because their results are used in downstream analyses, such as in79

integrated assessment (Ruane et al., 2017) or economic modeling for projecting future80

land-use change (Stevanović et al., 2016; Wiebe et al., 2015). Even though global grid-81

ded crop models are often based on detailed field-scale models or have implemented sim-82

ilar modeling principles in other ecosystem models (Müller et al., 2019) and show sim-83

ilar performance in evaluation against historical, national yield statistics (Müller et al.,84

2017; Franke et al., 2020), models are subject to substantial uncertainties from both model85

structure and parametrization (Folberth et al., 2019) as well as from calibration and in-86

put data quality (Ruane et al., 2021). This uncertainty shows most prominently in fu-87

ture projections under high-emission climate change scenarios, where models are exposed88

to driving data far outside the evaluation domain and results show large inter-model dif-89

ferences (Jägermeyr et al., 2021; Rosenzweig et al., 2014; Müller et al., 2021).90

Climatic conditions (D. Liu et al., 2020) and soil properties (Qiao et al., 2022) de-91

termine yield potentials (van Ittersum et al., 2013; Mauser et al., 2009) and the suitabil-92

ity of different technologies, such as cultivars (Couëdel et al., 2021). Areas with similar93
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climate and soil conditions show similar yield responses to variations in weather condi-94

tions, which can be monitored and reported using representative sites (Gommes et al.,95

2016). D. Liu et al. (2020) have identified the most limiting climate variable(s) across96

global crop production areas, finding that temperature has generally a higher impact on97

crop yields than precipitation for maize, rice, soybean, and wheat. Climate change is pro-98

jected to alter climate conditions in many agricultural regions substantially (Franke et99

al., 2022a; Jägermeyr et al., 2021; Ruane et al., 2018). Kummu et al. (2021), for exam-100

ple, find that substantial shares of these areas may be driven out of a climatic envelope101

suitable for agricultural production. Projections of future climate change demonstrate102

high levels of agreement on global mean temperature trajectories for given forcing sce-103

narios, such as the SSP-RCPs (Tebaldi et al., 2021), but are subject to high levels of un-104

certainties when it comes to spatial and seasonal changes in temperatures and especially105

precipitation (e.g. Monerie et al., 2020; Wu et al., 2022; Hawkins & Sutton, 2011). An-106

alyzing the sensitivity of cropping systems to changes in individual climate variables can107

thus help understand their fragility under changing climate.108

Process-based crop models are widely accepted tools to project crop yields under109

changing climatic or management conditions and can help to inform decision making in110

direct or indirect ways. Crop models are employed at field to global scale and a large va-111

riety of crop models exists (e.g., Müller et al., 2017; Asseng et al., 2019). Model inter-112

comparison projects (MIPs), such as the Agricultural Model Intercomparison and Im-113

provement Project AgMIP (Rosenzweig et al., 2013) have shed light on the inter-model114

uncertainty (Rosenzweig et al., 2014; Asseng et al., 2015; Palosuo et al., 2011; Ruane et115

al., 2017), leading to and following up on a call for a general overhaul of crop models (Rötter116

et al., 2011). Model development efforts since have led to various improvements of crop117

models (e.g., Olin et al., 2015b; Maiorano et al., 2017; von Bloh et al., 2018a; Li et al.,118

2017), disagreement between individual crop models remains high (Jägermeyr et al., 2021;119

Müller et al., 2021; Asseng et al., 2019; Kostková et al., 2021).120

Local environmental conditions determine how individual crops are affected by changes121

in individual drivers. However, owing to the multiple interactions of drivers and processes122

in yield formation (Schauberger et al., 2016) and the incomplete implementation of pro-123

cesses in crop models (Boote et al., 2013), models can be expected to differ in crop yield124

projections and sensitivities to individual drivers. Still, regions with severe drought con-125

ditions should show substantial sensitivity to changes in water supply and regions with126

very little nitrogen availability should be sensitive to changes in nitrogen inputs. AgMIP’s127

Global Gridded Crop Model Intercomparison (GGCMI) has set out to intercompare GGCMs128

in order to evaluate model performance, describe model uncertainties, identify inconsis-129

tencies within the ensemble and underlying reasons, and to ultimately improve models130

and modeling capacities (Elliott et al., 2015). The GGCMI Phase 2 experiment provides131

simulation data from a large, structured simulation experiment with regular perturba-132

tions of four different drivers of yield formation (atmospheric carbon dioxide concentra-133

tions (C), temperature (T), water (W), and nitrogen(N)), referred to as CTWN. The CTWN134

experiment is very well suited to study models’ responses to changes in individual or com-135

bined driver dimensions. Modeled yield responses to such regular perturbations in drivers136

can be used to describe crop yield response types, which vary in space (water is a more137

important driver in arid environments than in humid ones) and among models. If there138

were no model uncertainty, crop yield response types would determined by genotype, en-139

vironment and management (G x E x M) characteristics of each farming system and could140

be identified with a single crop model. Under given model uncertainty, crop yield response141

types are, however, a function of the local cropping conditions, but also of model design,142

functionality, and parameterization (Folberth et al., 2019). Consequently, crop yield re-143

sponse types can describe differences in model behavior and spatial disagreement and144

can thus help identifying functional differences between models that can guide further145

model development. Tao et al. (2020) conducted a model intercomparison study with146

eight barley models for two sites and eight different simulation settings, combining off-147

–3–



manuscript submitted to Earth’s Future

sets in air temperature, precipitation, irradiation and atmospheric CO2. They find that148

the models’ disagreement from different sensitivities to changes in temperatures and CO2149

was largest and could identify modeled dynamics of leaf area index as a process that is150

responsible for model divergence with respect to simulated evapotranspriation, above ground151

biomass, and yield. In this study, we are conducting a global analysis of GGCMs sen-152

sitivities to individual drivers of crop yields, deriving classes of model response types that153

allow for intercomparing models and regions, aiming to better understand sources of un-154

certainties in future crop yield projections with crop models.155

2 methods156

2.1 The GGCMI Phase 2 model output data set157

The GGCMI Phase 2 experiment is a structured input sensitivity test (Franke et158

al., 2020) with a modeling protocol that asked for up to 1404 31-year global simulations159

at 0.5 arc-degree spatial resolution to assess models’ sensitivities to changes in atmospheric160

carbon dioxide concentrations (C; 4 levels) temperature (T; 7 absolute offset levels, in-161

cluding zero), water supply (W; 9 relative offset levels, including zero), and nitrogen (N;162

3 levels), the so-called CTWN experiment (see Appendix Table A1) (Franke et al., 2020).163

A fifth dimension in the CTWN Experiment on Adaptation (A) was not considered here,164

i.e. we only used the simulation sets that assumed no change in cultivars. Previous work165

has used emulators trained on the CTWN experiment (Franke et al., 2020) to explore166

the contribution from crop models to overall uncertainty in crop yield projections driven167

by climate change projections (Müller et al., 2021) and to explore the role of adaptation168

to future agricultural production (Zabel et al., 2021) and the latitudinal shifts in bread-169

basket regions (Franke et al., 2022b). We also focused on rainfed growing conditions only,170

ignoring the settings with unlimited irrigation (Winf ). Of the twelve participating mod-171

eling groups, only four supplied all 756 A0 simulation sets (EPIC-TAMU, LPJ-GUESS,172

LPJmL, and pDSSAT), but five additional modeling groups provided sufficient data to173

allow for emulation of their yield responses (CARAIB, GEPIC, JULES, PEPIC, and PROMET)174

and we used the emulators that were build on these simulations (Franke et al., 2020) to175

gap-fill missing simulation sets that were not provided. The remaining models (APSIM-176

UGOE, EPIC-IIASA, and ORCHIDEE-crop) are only shown here in the overview fig-177

ure for completeness, but are not included in the following analyses. The scarcity of sim-178

ulations provided by these modeling teams (33 to 44 of 756, see Table 1) does not allow179

for in-depth analysis and also led to exclusion of these models from the emulator train-180

ing (Franke et al., 2020).181

2.2 Data analysis182

The analysis conducted here aims at understanding differences in models’ sensi-183

tivities of simulated crop yield (y) to the CTWN drivers across crops and regions as well184

as understanding differences among models. We considered current crop-specific crop-185

land extent, making use of the MIRCA2000 cropland data set Portmann et al. (2010).186

To avoid distortions of marginal production areas, we only considered grid cells (0.5° by187

0.5° longitude/latitude, equivalent to 55 km by 55 km at the equator) with at least 200 ha188

of crop cultivation (rainfed and irrigated area). Spring and winter wheat are not sep-189

arated in the MIRCA2000 data so we considered total wheat areas for both. MIRCA2000190

data were also used for data aggregation to the global scale, using the provided crop-specific191

harvested areas as aggregation weights. Globally, there were 21262 grid cells included192

for maize, 9165 for soybean, 11452 for rice, 17032 for spring wheat, and 17032 for win-193

ter wheat. With the sheer amount of data of the GGCMI Phase2 experiment (up to 4368194

global simulations, see Table 1), a visual representation of variations in model response195

is not helpful. We thus structured the analysis to condense the information in a mean-196

ingful way so that different response types can be identified and discussed.197
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Table 1. Number of global simulation sets of crop yield (y) included in the GGCMI Phase

2 archive per model and crop for the simulation set. Some models do not account for nitrogen

dynamics, as indicated in column ‘Nitrogen‘. Not all models provide data for all crops (indicated

by ’–’ in the respective columns), but always supply the same simulation sets across all crops

provided.

Model Maize Soybean Rice Winter

wheat

Spring

wheat

Nitrogen

CARAIB a 252 252 252 252 252 no

EPIC-TAMU b 756 756 756 756 756 yes

JULES c 252 252 252 – 252 no

GEPIC d 430 430 430 430 430 yes

LPJ-GUESS e 756 – – 756 756 yes

LPJmL f 756 756 756 756 756 yes

pDSSAT g 756 756 756 756 756 yes

PEPIC h 149 149 149 149 149 yes

PROMET i 261 261 261 261 261 yes

Totals 4368 3612 3612 4116 4368 7

not included

APSIM-UGOE j 44 44 44 – 44 yes

EPIC-IIASA k 39 39 39 39 39 yes

ORCHIDEE-crop l 33 – 33 33 – yes

a (Dury et al., 2011)
b (Izaurralde et al., 2006)
c (Osborne et al., 2015; K. Williams & Falloon, 2015; K. Williams et al., 2017)
d (J. Liu et al., 2007; Folberth et al., 2012)
e (Lindeskog et al., 2013; Olin et al., 2015a)
f (von Bloh et al., 2018b)
g (Elliott et al., 2014; Jones et al., 2003)
h (W. Liu, Yang, Folberth, et al., 2016; W. Liu, Yang, Liu, et al., 2016)
i (Mauser & Bach, 2015; Hank et al., 2015; Mauser et al., 2009)
j (Keating et al., 2003; Holzworth et al., 2014)
k (Balkovič et al., 2014)
l (Valade et al., 2014)

2.2.1 Impact Response Surfaces198

Impact Response Surfaces (IRSs) have been used to describe crop model behav-199

ior under changes in two driver dimensions (e.g. temperature and precipitation) (e.g.,200

Pirttioja et al., 2015) and Fronzek et al. (2018) have used IRS to identify different model201

response types. Zabel et al. (2021) used IRSs to describe isolines for comparison of adapted202

and non-adapted global production systems. Here, we were interested in regional differ-203

ences and thus constructed IRSs for each grid cell i, GGCM g, crop c, and each paired204

combination of two drivers d1 and d2 of the four CTWN dimensions (i.e. T∼W, T∼N,205

C∼T, W∼N, C∼W, C∼N). IRSs display yield changes (∆yi,g,c) for any grid cell i or ag-206

gregation of grid cells for combination of any two drivers (d1 and d2) in relation to the207

average yield across all cases included in the IRS (ȳd1∗,d2∗,i,g,c) as described by equation208

1, where d1∗ and d2∗ describe the full set of elements in d1 and d2 respectively. We used209
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the average yield (of each respective IRS) rather than the yield at default conditions (yi,g,c,C360,T0,W0,N200)210

as the default conditions were not always directly supplied by all models g.211

∆yd1,d2,i,g,c =
yd1,d2,i,g,c
ȳd1∗,d2∗,i,g,c

∗ 100% (1)

The other two dimensions, not displayed in the IRS are kept at their default setting (C:212

360 ppm, T: 0 °C, W: 0%, N: 200 kg ha−1). The atmospheric CO2 concentration of 360 ppm213

refers to approximately the value of 1995, the middle of the simulation period 1980-2010214

of the GGCMI Phase2 experiment.215

Depending on the global extent of cropland, 9165 (soybean) to 21262 (maize) of216

such IRS sets were constructed per CTWN dimension and crop, which cannot be dis-217

played or interpreted as visuals. For illustrative purposes, Figure 1 shows IRS for the218

T∼W responses of globally aggregated maize yield.219
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Figure 1. Illustrative example of crop model Impact Response Surfaces (IRS), here for maize

and the temperature (T) and water (W) dimensions with atmospheric CO2 (C) at 360 ppm and

fertilizer input (N) at 200 kg ha−1. All crop model simulations provided by the modeling groups

are displayed as colored rectangles in the IRS. Colors indicate relative yield changes compared to

the mean across all data points of the respective IRS. White spaces indicate missing simulation

sets. The simulations for ’W -40%’ and ’T+5’ were not requested per protocol (Franke et al.,

2020).

2.2.2 Dominant response dimensions220

IRSs show the response of projected yields for any two drivers (d1 and d2, e.g. T221

and W ). The classification of IRS as proposed by Fronzek et al. (2018), which distin-222

guishes nine cases of maximum yield location per IRS and the strength of the response223

per dimension, is still too complex for our purposes here, especially if extended from two224

(TW) to four (CTWN) dimensions of drivers. For a simpler metric to describe the char-225

acteristics of IRS, we identified the dominant response dimension, using response ratios226

(RR). Response ratios describe the relationship of the gradients along the two dimen-227

sions, based on minimum and maximum values, i.e. ignoring the shape of these gradi-228

ents (i.e. it does not matter if the minimum (or maximum) is at either end of the row229

or column). In contrast to the illustrative IRSs, the reference yield ȳ cancels out in the230

computation of RRs, so we computed RRs based on actual yields (y) rather than yield231
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changes (∆y). Any distortion that may be introduced by using the IRS’ mean value rather232

than a standard simulation set thus does not affect any quantitative analysis here. In233

order to determine which of the two drivers dominates over the other, we selected the234

data slice from the CTWN cube that spans the full range of the drivers of interest (d1235

and d2) at the default conditions of the other two drivers (e.g. [T−1 .. T+6] vs. [P−50 .. P+30]236

at C360 and N200). Across that selected surface, we computed the range of simulated yields237

(y) for each grid cell i, model g, crop c for each element j1 of d1 across all elements j2238

of d2, computing the average response to those drivers (e.g. RT and RW in Appendix239

Figure S1) by dividing by the number of elements nd1 and nd2. The average response240

of the two drivers d1 and d2 are computed as described in equations 2 and 3 and their241

combination to compute the response ratio RRd1,d2,i,g,c is described in equation 4. RR242

ranges between 0 and 1 and describes the contribution of the first driver to the yield vari-243

ation across both drivers. If these are perfectly balanced, RR is 0.5, if the first driver244

is the only driver of yield change, RR is 1, if it has no effect, RR is zero. All data pro-245

cessing and plotting was done in R, version 4.1.2 (R Core Team, 2021).246

Rd1,i,g,c =
Σnd2

j2=1max(yi,j2,g,c)−min(yi,j2,g,c)

nd2
(2)

247

Rd2,i,g,c =
Σnd1

j1=1max(yi,j1,g,c)−min(yi,j1,g,c)

nd1
(3)

248

RRd1,d2,i,g,c =
Rd1,i,g,c

Rd1,i,g,c +Rd2,i,g,c
(4)

We describe the different RR values with the median value and the skewness of their249

distribution. Skewness was computed with R version 4.1.2 (R Core Team, 2021) with250

the skewness function of the moments R package, version 0.14.1, using equation 5, with251

x for the data and n for the number of data points i in x and x̄ for the mean of x.252

skewness =
1
nΣ

n
i=1(xi − x̄)3[

1
nΣ

n
i=1(xi − x̄)2

](3/2) (5)

Skewness values range between positive and negative infinity and values outside the [-253

0.4, 0.4] interval can be considered skewed, i.e. data are distributed asymmetrically (Doane254

& Seward, 2011).255

2.2.3 Cluster analysis256

RRs take continuous values in the interval [0, 1] and were computed for all six com-257

binations of any two drivers of the CTWN data cube (T∼W, T∼N, C∼T, W∼N, C∼W,258

C∼N). In order to structure RRs into Crop Yield Response Types (Y RTs), we use hi-259

erarchical clustering, separating RR combinations into clusters so that at least 90% of260

the overall variance in the total sample is explained by the separation into clusters. The261

resulting Y RT describe differences across models and environments simultaneously. This262

allows for comparing regions and GGCMs with respect to their sensitivities to changes263

in the CTWN drivers under the full range of global crop growing conditions. In order264

to include all GGCMs with sufficient data provision, independent of their ability to pro-265

vide data on responses to variation in N input (see Table 1), we also conducted the same266

analysis for the CTW data cube with 3 different combinations of any two drivers (T∼W,267

C∼T, C∼W), which we refer to as CTW-Y RT . We used R version 4.1.2 (R Core Team,268

2021) with R-package Rclustercpp.hclust (version 0.2.6) for large datasets with standard269

settings, i.e. using euclidean distances and the ward method. For describing the char-270

acteristics of the individual clusters, we make use of the median and interquartile range271

of each RRs distribution within each cluster.272
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3 Results273

3.1 Distribution of RR274

The GGCMs show different distributions of RR across all crop-specific cropland.275

There are differences in the median values, but also in the shape — and skewness — of276

the distributions. Most RR values per GGCM are not normally distributed but highly277

skewed or bi-modal (see illustrative Figure 2). The differences in median values illustrate278

differences between models, as the distributions always refer to the same spatial sam-279

ple (all grid cells with at least 200ḣa crop-specific harvested area, according to Portmann280

et al. (2010)). Median values range substantially across GGCMs, but also across crops.281
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Figure 2. Distributions of maize Response Ratios for the temperature (T) vs. water (W) do-

mains (RRT,W ) of the nine different GGCMs, showing the importance of T in comparison to W

at default C (360ppm) and N (200 kg ha−1). Values approaching unity indicate higher sensitivity

to T than to W, while values approaching zero indicate higher sensitivity to W than to T (see

equation 4). Green vertical lines show the median value, which is also given in the title of each

panel. Bottom right-hand panel shows the distribution across all GGCMs. Results are shown for

currently cultivated maize cropland.

Maize yield simulations of CARAIB show very little response to changes in water282

supply in comparison to changes in temperature with a median RRT,W value of 0.84,283

which is in line with the vertical stripe pattern seen in the IRS for CARAIB in Figure284

1. JULES maize yield simulations, on the other hand, show the opposite behavior with285

a median RR value of 0.26. Specific regional characteristics can also already be detected286

here. EPIC-TAMU, pDSSAT, and PROMET show a spike in the highest RR bin, in-287

dicating that there is a substantial number of grid cells (about 1000 for EPIC-TAMU,288

¿2500 for pDSSAT, ¿2100 for PROMET), in which changes in water supply have basi-289

cally no effect in comparison to changes in temperature on simulated yields. JULES and290

LPJmL hardly have such maize-growing grid cells where water supply matters little in291

comparison to changes in temperature. Some distributions are highly skewed or show292

bi-modal patterns, which is most prominent in the combined distribution across all nine293

GGCMs. There are too many RR and crop combinations to show all distributions as his-294
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tograms in figures and we thus present results of variation in median and skewness val-295

ues in Tables 2 and 3. Table 2 shows the range of median RR values across GGCMs, crops296

and driver combinations. Median values range between 0.06 (importance of C in com-297

parison to N for maize in GEPIC data) and 1.0 (importance of C in comparison to N298

for soybean in GEPIC data). For all crops analyzed here, many RRs show a very broad299

range across GGCMs with differences between min and max values often well above 0.5300

(Table 2). One exception is RRC,T of the C3 crops (other than spring wheat), where the301

range is only 0.3 or lower. Large differences between GGCM’s RRs are particularly pro-302

nounced for RRW,N and RRT,N for all crops other than the N-fixing leguminous crop303

soybean.304

3.2 Crop yield response types305

Identifying crop yield response types (Y RT ) can help to illustrate the similarities306

and differences between RR combinations across GGCMs and regions. The hierarchi-307

cal clustering combines elements (individual data points (leaves) or clusters) by similar-308

ity and dendrograms illustrate the similarity of these elements (Appendix Figures S2 –309

S11). Three (e.g. soybean, Appendix Figure S14) to six (e.g. winter wheat, Appendix310

Figure S18) clusters were needed to explain at least 90% of the overall variance in the311

global crop-specific simulation sets312

As already suggested by the GGCM-specific distributions of RRs (Figure 2, Ta-313

bles 2, 3), some GGCMs show substantially different Y RTs than others, however, also314

the regional distribution of Y RTs differs between individual GGCMs (see Figures 3 and315

4for maize and Appendix Figures S12 – S19 for the other crops). Since the clusters are316

defined by similarity of RR combinations, the interpretation depends on the RR distri-317

butions within clusters, as displayed in Figure 3 for maize CTW responses (correspond-318

ing to Figure 4). As the C4 crop, maize sees no direct stimulation of photosynthesis through319

elevated atmospheric CO2 concentrations, but only improvements in water-use efficiency.320

Still, some GGCMs display substantial shares of maize growing areas where C is more321

dominant than changes in T and similar to changes in W (cluster#2; Figure 4). Tem-322

perature dominance (cluster#4, as well as clusters #1 and #3, in which T is dominant323

or on par with the other drivers) is particularly important in pDSSAT, GEPIC, PEPIC,324

and LPJmL, even though patterns differ (Figure 4).325

For rice simulations, the distribution of different CTW-Y RTs is more balanced across326

GGCMs (Appendix Figures S12 and S13), with JULES and PROMET showing little pres-327

ence of cluster #4 (T dominance and C dominance over W, Appendix Figure S12) and328

LPJmL with little presence of cluster #2 (W dominance and balanced C vs. T response).329

Spatial patterns show some similarities with respect to cluster #4 (other than in JULES330

and PROMET) in the tropics and cluster #2 (other than LPJmL) in more arid regions331

of Asia, Africa, and south America.332

Soybean CTW data are only clustered in three different CTW-Y RTs (Appendix333

Figures S14 and S15), where JULES and to some lesser extent LPJmL are mostly char-334

acterized by cluster #2 (W dominates and C vs. T is balanced). CARAIB and PROMET335

show larger shares of cluster #3 (dominance of T and of C over W). There is larger agree-336

ment (n = 6) on presence of cluster #2 CTW-Y RT in Europe and parts of North Amer-337

ica and moderate agreement for South America, and parts of Africa.338

CTW-Y RTs for spring wheat are more mixed (Appendix Figures S16 and S17).339

CARAIB, LPJ-GUESS and LPJmL show mostly clusters #1 (W with little importance340

and C vs. T balanced, Appendix Figure S16) and #2 (all balanced), but CARAIB has341

these two in approximately equal shares, while LPJ-GUESS has substantially more #1342

and LPJmL substantially more #2. EPIC-TAMU, GEPIC and JULES are substantially343

more sensitive to W, JULES with mostly #3 (W dominates, C vs. T is balanced), GEPIC344

–9–
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Figure 3. Distribution of RRs within CTW-Y RT clusters. Within each cluster (colored

boxes), three boxplots describe the distribution of RRs for T vs. W (dark grey, left boxplot), C

vs. W (grey, middle boxplot), C vs. T (light grey, right boxplot). Horizontal lines indicate the

median value, boxes extent across the interquartile range (IQR). Whiskers extend to the most

extreme value within 1.5 times the IQR, outliers beyond this threshold are omitted. Colored dots

on top of each cluster box indicate what drivers dominates: red for T dominance, blue for W

dominance, purple for C dominance, and grey for no dominance. We rate drivers as balanced (i.e.

no dominance) if the median RR is between 0.4 and 0.6.
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Figure 4. Spatial distribution of Crop Yield Response Types (Y RTs) for each of the nine

GGCMs for maize, considering the C, T, and W dimensions, but without consideration of the N

dimension, because this was not supplied by all GGCMs. The stacks in the bottom right-hand

corner show the grid cell frequency distribution of the Y RT clusters for each GGCM. The RR

combinations characterizing each cluster are shown in Figure 3 above.

with mostly cluster #4 (C with little importance and T vs. W balanced). Spatial pat-345

terns are also mixed, with little pockets of multi-model agreement across all continents.346
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Also for winter wheat CTW-Y RTs show a mixed picture with 6 distinct clusters347

(Figures S18 and S19). Here, a divide can be seen along the importance of C: only in348

four of the eight GGCMs (EPIC-TAMU, GEPIC, pDSSAT, PEPIC), cluster #6 can be349

found (in which C is of little importance and W dominates T), while cluster #2 (C dom-350

inates and T vs. W is balanced) is basically absent in these GGCMs. Cluster #2 is par-351

ticularly widespread in CARAIB and LPJ-GUESS. Spatial patterns show little consis-352

tency across GGCMs.353

If including the N dimension, the number of GGCMs is reduced to at most seven354

(Table 1), while the number of combinations of any two drivers increases to six. Still,355

the hierarchical clustering finds similar number of clusters with the threshold of 10% of356

overall variance within the clusters. The two models that show very little sensitivity of357

maize yields to water (CARAIB) or very high (JULES) did not provide any data along358

the N dimension, but within the reduced ensemble with N, there are again two models359

that show opposite behavior (Figures 5 and 6): LPJ-GUESS has a very strong response360

of maize yields to N either in combination with strong response to W (clusters #2) or361

with combination with strong response to T (cluster #4), while PROMET has little re-362

sponse to N either with strong sensitivity to W (cluster #1) or T (cluster #5). LPJmL363

and pDSSAT maize yields are dominated by clusters #3 (with balanced responses, but364

T, W, and N all dominate C) and #1 (with mostly water dominance and little impor-365

tance of N). Also GEPIC maize yields show large shares of cluster #3, but in combina-366

tion with cluster #4. PROMET shows very little sensitivity to N also in rice yields (Ap-367

pendix Figure S20 and S21) with almost all pixels being clustered in cluster #1, while368

all other GGCMs show strong importance of N in clusters #3 and #4, except for LPJmL,369

which has basically no occurrence of cluster #3 but of cluster #2 (where dimensions are370

more balanced but T dominates W and N), which is not very predominant in all other371

GGCMs. Spatial patterns of EPIC-TAMU, GEPIC, pDSSAT, and PEPIC rice sensitiv-372

ities show some consistency, including LPJmL for Asia. For soybean, all six GGCMs that373

provided data, see little importance of N (with soybean being an N-fixing leguminous374

crop). PROMET soybean yield simulations are mostly in Y RT cluster #3 (dominance375

of T and C), which is basically absent in GEPIC and LPJmL simulations (Appendix Fig-376

ures S22, S23). These two GGCMs find mostly clusters #2 (everything balanced, un-377

less if compared to N) and #4 (T and C dominance). W and C dominance as in Y RT378

cluster #1 is rare, but there is some cross-GGCM agreement on the regional occurrence379

of this Y RT in SE-Europe and northern USA/Canada. Spring wheat Y RTs are more380

mixed across GGCMs and regions. PROMET shows again little sensitivity to N with381

clusters #4 (W dominates and little importance of N otherwise) and #5 (T and C dom-382

inate). LPJmL also shows large shares of #4, but in combination with #1 (W and N383

dominate) and #2 (N and C dominate). Y RT clusters #1 and #2 are also predominant384

for spring wheat Y RTs of EPIC-TAMU, GEPIC, and PEPIC. For winter wheat Y RTs,385

PROMET yield simulations shows also little sensitivity to N (clusters #3 with W dom-386

inance and #4 with T and C dominance), whereas LPJ-GUESS is most sensitive to N387

(cluster #1 with N dominance and all others balanced). Cluster #3 with W dominance388

is also found to some larger extent in LPJmL simulations, whereas all other GGCMs show389

large shares of cluster #2 with W and N dominance.390

3.3 Emergent functional relationships391

There are also different emergent functional relationships among GGCMs, i.e. changes392

in functional responses that can be observed (emergent) but that we cannot attribute393

to actual model code structure or parameterization. Making use of the median RRs, we394

analyze how these change as a function of the other driver dimensions. Owing to the com-395

plexity of the data set, we constrain this analysis to median RRT,W responses to changes396

in C and N (Figure 7 for spring wheat, Appendix Figures S28 – S31 for the other crops).397
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Figure 5. As Figure 3 but now for the full CTWN set with nitrogen and 6 combinations of

any two drivers (grey shadings of boxplots, ordered from left to right).
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Figure 6. Spatial distribution of Crop Yield Response Types (Y RTs) for each of the seven

GGCMs for maize including all four response dimensions (i.e., C, T, W, N). The stacks in the

bottom right-hand corner show the grid cell frequency distribution of the Y RT clusters for each

GGCM. The RR combinations characterizing each cluster are shown in Figure 5 above.

In some models and crops, the median RRT,W is hardly affected by increasing C398

(e.g. CARAIB, EPIC-TAMU, GEPIC, pDSSAT for spring wheat, Figure 7), whereas there399

are more pronounced changes in the median spring wheat RRT,W with changes in C for400

the other models. Similarly, the median RRT,W changes only little under different lev-401

els of N supply for some GGCMs (e.g. EPIC-TAMU, LPJ-GUESS, LPJmL, pDSSAT,402

PROMET for spring wheat, Figure 7) but more strongly in others. Also the direction403

of change varies across GGCMs. While some show an increasing importance of T vs. W404

with increasing N supply (e.g. EPIC-TAMU, GEPIC, PEPIC for spring wheat, Figure405

7), others see the opposite (decreasing importance of T vs. W with increasing N sup-406

ply) or mixed cases. The combination of changes in C and N can lead to different emer-407

gent functional relationships, too: PEPIC spring wheat simulations show an increasing408

importance of T vs. W with increasing C under high N supply, but a substantially lower409

importance of T vs. W at low N supply and also a decreasing trend with higher C. Sim-410

ilar emergent functional relationships can be observed for the other crops analyzed here,411

but there are also crop-specific differences for some individual models. CARAIB shows412
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always high median RRT,W values with little to no effect from changes in C across all413

five crops. EPIC-TAMU, GEPIC, and PEPIC all show very strong responses in median414

RRT,W to changes in N supply for rice (Appendix Figure S29), but much less so for win-415

ter wheat (Appendix Figure S31). LPJmL and PROMET see increasing median RRT,W416

with C for winter wheat (Appendix Figure S31), but less so for other crops (PROMET417

also increasing values for maize, Appendix Figure S28).418
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Figure 7. Spring wheat median RRT,W values under different levels of atmospheric CO2

(x-axis) and N supply (colors). CARAIB and JULES did not supply data at different levels of

nitrogen supply, their generic N response in shown in grey.

4 Discussion419

We find that the crop models contributing to the GGCMI Phase 2 experiment (Franke420

et al., 2020) show substantial differences in yield responses to drivers along the carbon421

dioxide (C), temperature (T), water (W), and nitrogen (N) dimensions. These differences422

are caused by model structure and mechanisms as well as parameterization (Folberth et423

al., 2019). Because not all GGCMs provided the full set of CTWN simulations (Franke424

et al., 2020) (see Table 1), we used the emulators developed on these simulation sets (Franke425

et al., 2020) to gap-fill missing elements. Even though the emulators show generally good426

skill in reproducing model results, yield responses along the N dimension were partic-427

ularly difficult to emulate with the low number of experiments in that dimension (n =428

3, see Appendix Table A1). Also the number of simulations that needed to be supple-429

mented by emulated responses affects how well ’true’ GGCM responses can be reproduced430

by the emulators. However, PEPIC, which supplied the smallest number of simulations431

of the ensemble considered here (Table 1) is in relatively good agreement with the other432

EPIC-based GGCMs considered here. This mechanism could also be a possible reason433

for the low N sensitivity of PROMET, which had also supplied only a small number of434

simulation sets for different N levels (Franke et al., 2020). The selection of the CTWN435

drivers does not cover the full range of climatic drivers of crop yield change (Schauberger436

et al., 2016) and albeit these are important, further research on additional drivers, such437

as irradiation as included in the study of Tao et al. (2020), would be helpful (Ruane et438

al., 2022).439
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Median RRs show a broad range of values, but some of this is expected. So is the440

role of CO2 fertilization not very strong for maize as a C4 plant or the role of N inputs441

is relatively small for soybean, which can acquire atmospheric N via biological N fixa-442

tion (BNF). The simplified implementation of soybean BNF, such as in LPJmL (von Bloh443

et al., 2018b), where the soybeans receive all N they need at no cost, lead to negligible444

importance of N inputs in comparison to other drivers (Table 2). Also in GEPIC, where445

soybean BNF is computed based on N demand, soil humidity, nitrate content, and a max-446

imum rate (Sharpley & Williams, 1990), no sensitivity to N supply is visible in soybean447

yield simulations. The extreme soybean RR values for driver combinations with N (Ta-448

ble 2) can thus be explained by model design, but also indicate that more complex im-449

plementations should be implemented, as e.g. done in a later LPJ-GUESS version than450

the one used here (Ma et al., 2022). Apart from such general responses of little C im-451

portance for maize yield simulations or little N importance for soybean yield simulations,452

large differences in the sensitivity to different drivers exist between models.453

The skewness of RR distributions is in part determined by the environmental con-454

ditions of the spatial sample, i.e. the actual crop-growing areas, yet model differences455

are also dominant here. In some cases, some models find highly negatively skewed dis-456

tributions, whereas others find highly positive skewed distributions (e.g. -1.42 for CARAIB457

vs. 1.45 for JULES for the distribution of maize RRT,W , or -1.69 for LPJ-GUESS vs.458

1.18 for GEPIC for spring wheat RRC,T ). While we cannot expect normally distributed459

RR values as the cropland sample may not reflect normally distributed growing condi-460

tions, differences in skewness across GGCMs are only attributable to model function-461

ality as they all use the same spatial sample here.462

The clustering of RR values to Y RTs illustrates that differences in response types463

can be larger between GGCMs than between regions. The arbitrary choice of leaving 10%464

of overall variance within clusters led to a small number of clusters (n ¡ 7) that allow for465

qualitative description of their characteristics and interpretability. Even though this thresh-466

old does not follow any formal definition of the optimal number of clusters, we argue that467

it is important to only have a small number of clusters for discussing regional and GGCM-468

specific distributions of Y RTs. The dendrograms (Appendix Figures S2 – S11) show that469

the number of clusters is not very sensitive to smaller variations of the 10% threshold470

but that the number of clusters dramatically increases at thresholds ¡ 5%. Some mod-471

els show consistent behavior across different crops (e.g. PROMET is typically not very472

sensitive to changes in N compared to changes in any other driver and CARAIB is not473

very sensitive to changes in W compared to other drivers). LPJ-GUESS shows greater474

sensitivity to C than other models for spring wheat, but greater sensitivity to N than475

any other model for winter wheat, where CARAIB shows the greatest sensitivity to C.476

PROMET also shows greatest sensitivity to C of winter wheat, but only from the en-477

semble that also supplied data on the N dimension, even though it tends to be rather478

insensitive to N in general. Similarity in spatial patterns of Y RTs across some GGCMs479

and crops suggest that growing environments can be the dominant determinant of model480

sensitivities, as should be expected for perfect models. Differences in spatial patterns can481

stem from smaller differences along cluster borders that result in different clusters and482

suggest significant differences (classification problem) or differences in regional param-483

eterizations, as applied by some GGCMs (Folberth et al., 2019), reflecting how sparsely484

the global diversity in farming systems (e.g., Jarvis et al., 2008) is reflected in crop mod-485

els. Nonetheless, differences in spatial patterns across GGCMs suggest that differences486

in models’ sensitivities to environmental drivers needs further attention from model de-487

velopment and application.488

It can be expected that crop yields show interacting responses to simultaneous changes489

in CTWN drivers. If, e.g., N limitation is lifted, W limitation may show more clearly and490

vice versa. The EPIC model has a maximum function approach and only considers the491

most severe from several stressors in daily biomass gains (J. R. Williams, 1990; Sharp-492
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ley & Williams, 1990) and indeed, the EPIC-based GGCMs (EPIC-TAMU, GEPIC, PEPIC)493

show substantial differences in RRT,W under different N levels, except for soybean (as494

an N-fixing plant) and only to some limited extent for winter wheat. The GGCMs of the495

GGCMI Phase2 ensemble show a range of emergent functional relationships, varying be-496

tween no effect (e.g. pDSSAT for soybean, Appendix Figure S30), layered but flat ef-497

fects (e.g. GEPIC for maize, Appendix Figure S28), increasing (e.g. LPJmL for winter498

wheat, Appendix Figure S31) or decreasing (e.g. LPJ-GUESS for spring wheat, Figure499

7). While it is quite possible that these emergent functional relationships should differ500

between crops, because of their physiological traits (e.g. C3 vs. C4 photosynthesis) and501

where they are grown, there should not be substantial differences in the overall RR level502

or in the direction of change under variations in additional drivers. We here only ana-503

lyze highly aggregated data (global and temporal aggregation), but aggregation typically504

leads to more balanced responses with extremes cancelling out so that even stronger dif-505

ferences can be expected at the more detailed level (individual sites and years).506

As such, crop models need to be evaluated not only with respect to reproduce ob-507

served yield dynamics (e.g., Müller et al., 2017), because final yields are affected by a508

multitude of processes and drivers (Schauberger et al., 2016) and Zhu et al. (2019) showed509

that error compensation in maize simulations can lead to accurate yield estimates. Dif-510

ferent emergent functional relationships have been reported also for model intercompar-511

ison studies at site scale (Tao et al., 2020) and for other crops (e.g., Wang et al., 2022)512

and can originate from model parameterization (e.g. through different calibration meth-513

ods), choice of subroutines (e.g., for potential evapotranspiration (Cammarano et al., 2016;514

Folberth et al., 2019)) or modeller choices (Folberth et al., 2019; Albanito et al., 2022;515

Wang et al., 2022)). Fronzek et al. (2018) attempt to relate process implementation with516

IRS classes, identifying evapotranspiration models, soil water modules, and heat stress517

modules as important determinants of similarity between crop models.518

Data availability for crop model evaluation on aspects other than yields is still a519

strong limitation, especially at large-scale applications. Remote sensing products may520

fill this gap to some extent (e.g., Jin et al., 2018; Jiang et al., 2023; Yue et al., 2023; Cetin521

et al., 2023).522

Testing models for emergent functional properties, as also requested by (Tao et al.,523

2020) could be an alternative approach to model evaluation, which requires knowledge524

on functional relationships and structured model experiments, such as the GGCMI Phase2525

experiment (Franke et al., 2020), even though experimental design targeted to identi-526

fying specific functional relationships should drastically reduce the computation demand527

that was associated with the GGCMI Phase2 experiment. There are some examples of528

testing model for emergent functional properties (e.g., Schauberger et al., 2017), and529

dedicated efforts for model evaluation on aspects other than yield (e.g., Kimball et al.,530

2019, for maize evapotranspiration) but this is typically not integrated into standard531

model evaluation exercises. Schneck et al. (2022) provide an assessment of the emergent532

property water-use efficiency of their land surface model across different precipitation533

and temperature regimes (sampled from a global simulation rather than a stylized ex-534

periment design). The Earth System Modeling community has established standards for535

model evaluation (e.g. ESMValTool v2.0 Eyring et al., 2020), which can provide guid-536

ance from a technical and conceptual perspective. Yet, the climate system is described537

(and evaluated) by many different variables in contrast to the focus on the single end-538

of-season variable yield in crop modeling, limiting the comparability of evaluation stan-539

dards in the two research domains. Horak et al. (2021) suggest a process-based evalu-540

ation of Intermediate Complexity Atmospheric Research Models that is based on styl-541

ized modeling experiments to help models become right for the right reasons. This ap-542

proach is likely easier to transfer to crop modeling and we suggest that the idea of process-543

based model evaluation from targeted simulation experiments is pursued in future crop544

model evaluation efforts. The sensitivity of models to calibration (e.g., Wang et al., 2022)545
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and parameterization (e.g., Wang et al., 2017; Folberth et al., 2019) indicates that model546

evaluation needs to be conducted continuously and cannot be substituted by references547

to model description papers or earlier evaluation efforts. The approach by Brown et al.548

(2018) to identify standard tests and include these into the user interface of the crop model549

APSIM to facilitate better model development is a promising approach. Such easy to550

access standard tests based on specific experiments can guide model development, but551

may be more limited for testing different case-specific model parametrizations. While552

the approach Brown et al. (2018) is model specific, such standard tests can be general-553

ized to crop models in general, as demonstrated by efforts on general model benchmark-554

ing in global vegetation modeling (Kelley et al., 2013). Better efforts in the crop mod-555

eling community for model testing and evaluation are needed.556

5 Conclusions557

The diversity in RR indicates that GGCMs have very different sensitivities to dif-558

ferent climatic drivers and nitrogen supply. This has been discussed in the literature with559

a strong focus on the role of CO2 on yield formation (Toreti et al., 2020), as many stud-560

ies had presented results with and without CO2 fertilization effects (e.g., Rosenzweig561

et al., 2014), bringing attention to this particular effect. We find that changes in tem-562

peratures, water or nitrogen supply yield similar strong differences when it comes to model563

sensitivities. Model evaluation should advance to including emergent functional relation-564

ships that may tell more about model plausibility and skill than only comparison with565

yield data from observations. For this, existing knowledge needs to be collected, tested566

for generalizability, and translated into simple tests that models can be subjected to. Mod-567

elling protocols need to be designed to enable such functionality tests rather than only568

comparisons with yield data. A community effort is needed to bring together knowledge569

collection and formalization, model experiment design and model testing in order to ad-570

vance crop modeling towards reduced uncertainty in crop model applications.571

6 Open Research572

The simulation outputs of GGCMI Phase 2 output variables that we analyze here573

are available on zenodo.org. See Table A2 for data DOIs. Due to data size, the archive574

had to be split in several archives.575
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. . . Moyer, E. J. (2020, September). The GGCMI Phase 2 emulators:651

global gridded crop model responses to changes in CO2, temperature, wa-652

ter, and nitrogen (version 1.0). Geosci. Model Dev., 13 (9), 3995–4018. doi:653

10.5194/gmd-13-3995-2020654

Franke, J. A., Müller, C., Minoli, S., Elliott, J., Folberth, C., Gardner, C., . . .655

Moyer, E. J. (2022a, January). Agricultural breadbaskets shift poleward656

given adaptive farmer behavior under climate change. Global Change Biol.,657

28 (1), 167–181. doi: 10.1111/gcb.15868658

Franke, J. A., Müller, C., Minoli, S., Elliott, J., Folberth, C., Gardner, C., . . .659

Moyer, E. J. (2022b, January). Agricultural breadbaskets shift poleward660

given adaptive farmer behavior under climate change. Global Change Biol.,661

28 (1), 167–181. doi: 10.1111/gcb.15868662

Fronzek, S., Pirttioja, N., Carter, T. R., Bindi, M., Hoffmann, H., Palosuo, T., . . .663

Rötter, R. P. (2018, January). Classifying multi-model wheat yield impact664

response surfaces showing sensitivity to temperature and precipitation change.665

Agric. Syst., 159 , 209–224. doi: 10.1016/j.agsy.2017.08.004666

Gommes, R., Wu, B., Li, Z., & Zeng, H. (2016, February). Design and characteri-667

zation of spatial units for monitoring global impacts of environmental factors668

on major crops and food security. Food Energy Secur., 5 (1), 40–55. doi:669

10.1002/fes3.73670

Hank, T., Bach, H., & Mauser, W. (2015, 04). Using a Remote Sensing-Supported671

Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop672

Growth and Yield: Application for Wheat in Central Europe. Remote Sensing ,673

7 , 3934-3965.674

Hawkins, E., & Sutton, R. (2011, July). The potential to narrow uncertainty in pro-675

jections of regional precipitation change. Clim. Dyn., 37 (1), 407–418. doi: 10676

.1007/s00382-010-0810-6677

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I.,678

McLean, G., . . . Keating, B. A. (2014). APSIM – Evolution towards a new679

generation of agricultural systems simulation. Environmental Modelling and680

Software, 62 , 327 - 350.681

Horak, J., Hofer, M., Gutmann, E., Gohm, A., & Rotach, M. W. (2021, March).682

A process-based evaluation of the Intermediate Complexity Atmospheric Re-683

search Model (ICAR) 1.0.1. Geosci. Model Dev., 14 (3), 1657–1680. doi:684

10.5194/gmd-14-1657-2021685

Izaurralde, R., Williams, J., Mcgill, W., Rosenberg, N., & Quiroga Jakas, M. (2006,686

02). Simulating soil C dynamics with EPIC: Model description and testing687

against long-term data. Ecological Modelling , 192 , 362-384.688
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T. A. M. (2019, December). Global Response Patterns of Major Rainfed Crops768

to Adaptation by Maintaining Current Growing Periods and Irrigation. Earth’s769

Future, 7 (12), 1464–1480. doi: 10.1029/2018EF001130770

Monerie, P.-A., Wainwright, C. M., Sidibe, M., & Akinsanola, A. A. (2020, Septem-771

ber). Model uncertainties in climate change impacts on Sahel precipitation772

in ensembles of CMIP5 and CMIP6 simulations. Climate Dynamics, 55 (5-6),773

1385–1401. Retrieved 2021-01-25, from http://link.springer.com/10.1007/774

s00382-020-05332-0 doi: 10.1007/s00382-020-05332-0775

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P.,776

. . . others (2017). Global gridded crop model evaluation: benchmarking,777

skills, deficiencies and implications. Geoscientific Model Development , 10 (4),778

1403–1422. doi: 10.5194/gmd-10-1403-2017779

Müller, C., Elliott, J., Kelly, D., Arneth, A., Balkovic, J., Ciais, P., . . . others780

(2019). The global gridded crop model intercomparison phase 1 simulation781

dataset. Scientific data, 6 (1), 1–22. doi: 10.1038/s41597-019-0023-8782
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Appendix A Additional tables940

Table A1. GGCMI Phase2̇ experiment levels. Temperature and precipitation values indicate

the perturbations from the historical climatology, atmospheric carbon dioxide (CO2) and nitro-

gen values indicate absolute levels used in the simulations. Simulations with unlimited irrigation

(Winf ) and adapted cultivars (A1) are shown for completeness only, but were not considered in

this analysis. NA: not applicable

Input variable Label Simulated levels Unit

atmospheric CO2 C 360, 510, 660, 810 ppm

Temperature T -1, 0, 1, 2, 3, 4, 6 ◦C

Applied nitrogen N 10, 60, 200 kg ha−1

Table A2. List of DOIs for GGCMI Phase 2 output data sets (Franke et al., 2020). The data

URL can be constructed by replacing ’XX’ in ’https://doi.org/10.5281/zenodo.XX’ with the

values in the table for the data set of interest (e.g. https://doi.org/10.5281/zenodo.2582531

for maize data simulated by APSIM-UGOE). The GGCMI Phase 2 data archive had to be split

in several archives, because data sets were too large for hosting as one data set.

Model Maize Soybean Rice Winter
wheat

Spring
wheat

APSIM-UGOE 2582531 2582535 2582533 2582537 2582539
CARAIB 2582522 2582508 2582504 2582516 2582499
EPIC-IIASA 2582453 2582461 2582457 2582463 2582465
EPIC-TAMU 2582349 2582367 2582352 2582392 2582418
JULES 2582543 2582547 2582545 – 2582551
GEPIC 2582247 2582258 2582251 2582260 2582263
LPJ-GUESS 2581625 – – 2581638 2581640
LPJmL 2581356 2581498 2581436 2581565 2581606
ORCHIDEE-
crop

2582441 – 2582445 2582449 –

pDSSAT 2582111 2582147 2582127 2582163 2582178
PEPIC 2582341 2582433 2582343 2582439 2582455
PROMET 2582467 2582488 2582479 2582490 2582492
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