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Abstract17

Hydrologic variability can present severe financial challenges for organizations that rely18

on water for the provision of services, such as water utilities and hydropower producers.19

While recent decades have seen rapid growth in decision-support innovations aimed at20

helping utilities manage hydrologic uncertainty for multiple objectives, support for man-21

aging the related financial risks remains limited. However, the mathematical similari-22

ties between multi-objective reservoir control and financial risk management suggest that23

the two problems can be approached in a similar manner. This paper demonstrates the24

utility of Evolutionary Multi-Objective Direct Policy Search (EMODPS) for developing25

adaptive financial risk management policies in the context of hydropower production in26

a snow-dominated region. These policies dynamically balance a portfolio, consisting of27

snowpack-based financial hedging contracts, cash reserves, and debt, based on evolving28

system conditions. Performance is quantified based on four conflicting objectives, rep-29

resenting the classic tradeoff between “risk” and “return” in addition to decision-makers’30

unique preferences towards different risk management instruments. The dynamic poli-31

cies identified here significantly outperform static management formulations that are more32

typically employed for financial risk applications in the water resources literature. Ad-33

ditionally, this paper combines visual analytics and information theoretic sensitivity anal-34

ysis to help decision-makers better understand how different candidate policies achieve35

their comparative advantages through differences in how they adapt to real-time infor-36

mation. The methodology developed in this paper should be applicable to any organ-37

ization subject to financial risk stemming from hydrology or other environmental vari-38

ables (e.g., wind speed, insolation), including electric utilities, water utilities, agricultural39

producers, and renewable energy developers.40

Keywords41
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1 Introduction43

Reservoir control and financial risk management share strong similarities. The prin-44

cipal task in each is to reduce the risk of negative impacts from variable inflows (either45

hydrologic flows or cash flows), through the use of a buffer stock (either a reservoir or46

a reserve fund) that is filled in times of abundance and drawn down in times of scarcity47

–2–



manuscript submitted to Water Resources Research

(Figure 1). Other risk management tools may also be used to limit the impact of low-48

flow periods, but at a cost (e.g., water desalination or demand management for stream-49

flow deficits, and borrowing or financial hedging for cash flow deficits). In both cases,50

the manager must make decisions under an array of uncertainties, and may need to nav-51

igate tradeoffs between conflicting objectives (e.g., flood control vs. water supply for reser-52

voir control, risk vs. cost for financial risk management). And in both cases, as systems53

dynamically evolve, managers will have to adapt to new information as it becomes avail-54

able. In other words, reservoir control and financial risk management can be formulated55

as very similar Markov Decision Processes (MDPs) (Bertsekas, 2019; Powell, 2019), whether56

managers attempt to solve this problem explicitly, using programmatic approaches such57

as stochastic dynamic programming, or implicitly, relying on expert specified rules. Ad-58

ditionally, reservoir control and financial risk management are strongly interdependent59

activities for water-reliant organizations in the Food-Energy-Water Nexus, such as hy-60

dropower producers, municipal water utilities, and irrigation districts (Cai, Wallington,61

Shafiee-Jood, & Marston, 2018; D’Odorico et al., 2018; Scanlon et al., 2017). Such or-62

ganizations rely on water for the provision of services, and as a result, their revenues and/or63

costs can be highly dependent on hydrologic inflows (Blomfield & Plummer, 2014; Lar-64

son, Freedman, Passinsky, Grubb, & Adriaens, 2012). This suggests that an understand-65

ing of complex water resource system dynamics can be used to better characterize and66

adaptively manage financial risks borne by water-reliant organizations.67

Figure 1. A simple reservoir model and a simple cash flow model share the same underlying

decision structure.
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Water resource systems researchers have developed a broad range of strategies for68

dynamically managing reservoir operations in the face of uncertain hydrometeorology69

and demands (see reviews by Castelletti, Pianosi, and Soncini-Sessa (2008); Labadie (2004);70

Macian-Sorribes and Pulido-Velazquez (2019); Yeh (1985)), but Stochastic Dynamic Pro-71

gramming (SDP) and its many derivatives have been the most popular. The problem72

is formulated as an MDP in which a decision-maker (DM) must make sequential deci-73

sions based on the stochastically evolving state of the system. Each action affects the74

immediate cost/reward as well as the future state of the system. In SDP, this recursion75

is used to find optimal operating rules, in the form of a discrete policy table, using the76

Bellman Equation (Bellman, 1957). However, despite its widespread use, SDP suffers from77

a number of limitations that reduce its applicability to large, complex, multi-objective78

problems where operations are evaluated using stochastic simulations (see discussion in79

Giuliani, Castelletti, Pianosi, Mason, and Reed (2016)).80

A variety of approximation methods have been developed to overcome these chal-81

lenges, such as approximate dynamic programming, reinforcement learning, and model82

predictive control (Bertsekas, 2019). Direct Policy Search (DPS) (Rosenstein & Barto,83

2001), or parameterization-simulation-optimization (Koutsoyiannis & Economou, 2003),84

has become increasingly popular in the field of water resources systems analysis (Macian-85

Sorribes & Pulido-Velazquez, 2019). DPS is an approximation in policy space (Powell,86

2019), wherein the optimal operating policy is assumed to lie in the space of a certain87

parametric family of functions, and the policy parameters are optimized rather than the88

decisions themselves (i.e., optimizing state-aware adaptive rule systems instead of spe-89

cific actions). This drastically reduces the “curse of dimensionality” that limits the tractabil-90

ity of large SDP problems. Additionally, DPS allows for “model-free” representation of91

stochastic inputs, meaning that observational data, synthetically generated data, and92

process-based simulation model output can all be used in lieu of explicit probability dis-93

tributions (Desreumaux, Côté, & Leconte, 2018; Giuliani, Quinn, Herman, Castelletti,94

& Reed, 2018). A simulation-based approach to optimization also allows for flexible con-95

struction of mixed multi-objective formulations (Giuliani et al., 2016; Kasprzyk, Reed,96

& Hadka, 2016; Quinn, Reed, & Keller, 2017). In Evolutionary Multi-Objective Direct97

Policy Search (EMODPS) (Giuliani, Herman, Castelletti, & Reed, 2014), the policies are98

parameterized with a non-linear approximating network and optimized using a multi-99

objective evolutionary algorithm (MOEA). EMODPS has been deployed to solve com-100
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plex reservoir operations problems (multiple reservoirs; multiple, mixed objectives; and101

model-free information) that would be untenable using a traditional SDP approach (Denaro,102

Anghileri, Giuliani, & Castelletti, 2017; Giuliani, Pianosi, & Castelletti, 2015; Quinn et103

al., 2018; Zatarain Salazar, Reed, Quinn, Giuliani, & Castelletti, 2017).104

To complement algorithmic search strategies, water resources researchers have de-105

veloped an assortment of computational tools to help DMs better understand their op-106

tions. This is especially important in multi-objective contexts, where optimization re-107

sults in a multitude of solutions representing the optimal tradeoffs between conflicting108

objectives (the Pareto set), rather than a single “best” policy. As the dimensionality of109

the Pareto set grows, it becomes increasingly difficult to conceptualize. High-dimensional110

visualization, solution brushing, and other visual analytic techniques can help DMs to111

better understand the complex tradeoffs in their system and choose the solution that best112

suits their needs (Herman, Zeff, Reed, & Characklis, 2014; Huskova, Matrosov, Harou,113

Kasprzyk, & Lambert, 2016; Kollat & Reed, 2007). These tools can also help DMs to114

refine their conceptualization of the problem at hand through iterative problem refor-115

mulation (Castelletti & Soncini-Sessa, 2006; Giuliani, Herman, et al., 2014; Kasprzyk,116

Reed, Characklis, & Kirsch, 2012). Visual analytics are especially powerful when com-117

bined with global sensitivity analyses that probe the impacts of key uncertainties on sys-118

tem performance (Iooss & Lemâıtre, 2015; Pianosi et al., 2016; Saltelli, Tarantola, & Cam-119

polongo, 2000). These tools can be used to “open the black box” of non-linear approx-120

imating networks and help DMs to better understand how the optimal operating poli-121

cies adapt to changing conditions (Quinn, Reed, Giuliani, & Castelletti, 2019). In this122

way, visual analytics and sensitivity analysis can help to build trust between water re-123

sources modelers and real-world stakeholders (Basdekas, 2014; Brown et al., 2015), a cru-124

cial element in the production of actionable knowledge (Caniglia et al., 2020; Cash et125

al., 2003).126

Water-reliant organizations such as water utilities and hydropower producers rely127

on water for the provision of services, so that water or power sales may be significantly128

diminished during a drought (Hughes et al., 2014; Larson et al., 2012). This can result129

in severe cash flow deficits that leave an organization at risk of defaulting on its obliga-130

tions (e.g., debt service, operations and maintenance) (Ceres, 2017; Hughes & Leurig,131

2013; Leurig, 2010). Water utilities and hydropower-reliant power utilities are therefore132

vulnerable to significant financial disruption during drought, and hydrologic financial risk133
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can have an outsized impact on the long-term viability of the utility; indeed, credit rat-134

ing agencies have noted that the ability to manage the financial impacts of drought is135

an important factor in determining a utility’s creditworthiness (Chapman & Breeding,136

2014; Moody’s Investors Service, 2011, 2019). Financial risk management tools, such as137

reserve funds, financial hedging contracts, and lines of credit, can reduce the variabil-138

ity in net cash flows. This, in turn, can reduce an organization’s likelihood of bankruptcy,139

improve its credit rating, and reduce its future borrowing costs (Bank & Wiesner, 2010;140

Pérez-González & Yun, 2013), in addition to helping risk-averse staff feel more comfort-141

able (Bodnar, Giambona, Graham, & Harvey, 2019; Krause & Tse, 2016).142

Despite the critical role of financial risk management in water resources, decision143

support for practitioners in this area has remained limited. There is a long history of con-144

sidering financial objectives such as expected revenues and costs in water resources sys-145

tems analysis (e.g., see references in Labadie (2004); Macian-Sorribes and Pulido-Velazquez146

(2019); Yeh (1985)). However, fewer studies have explicitly accounted for variability in147

costs and revenues, or the financial risk management actions that an organization can148

take to combat this variability. Those that do have tended to propose static, non-adaptive149

management strategies. For example, the literature on using hydrology-based index con-150

tracts to hedge exposure to drought has generally assumed that the same hedging con-151

tract is purchased each year, not allowing for risk management to be adjusted over time152

as conditions change; applications include hydropower (Foster, Kern, & Characklis, 2015;153

Hamilton, Characklis, & Reed, 2020; Meyer, Characklis, Brown, & Moody, 2016), wa-154

ter supply (Brown & Carriquiry, 2007; Maestro, Barnett, Coble, Garrido, & Bielza, 2016;155

Zeff & Characklis, 2013), and agriculture (Denaro, Castelletti, Giuliani, & Characklis,156

2020; Mortensen & Block, 2018; Turvey, 2001). Modeling of financial reserves is not com-157

mon in the water resources literature, and the limited examples tend to assume that the158

utility will contribute either a fixed amount or a fixed fraction of revenues to the reserve159

fund each year (Rehan, Knight, Unger, & Haas, 2013; Rehan, Unger, Knight, & Haas,160

2015; Zeff, Kasprzyk, Herman, Reed, & Characklis, 2014).161

However, financial researchers have demonstrated that adaptive, state-aware ac-162

tion is crucial to financial risk management (Bolton, Chen, & Wang, 2011; Disatnik, Duchin,163

& Schmidt, 2014; Froot, Scharfstein, & Stein, 1993; Rampini, Sufi, & Viswanathan, 2014).164

Just as a reservoir operator should consider current reservoir levels and expected future165

inflows when making release decisions, so should a financial risk manager consider the166
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utility’s current bank account balance and projected future revenues and costs when de-167

ciding whether to withdraw money from the bank, or whether to hedge its drought ex-168

posure using index contracts. A variety of optimization methods have been applied to169

financial problems such as investment portfolio selection (Markowitz, 1952; Mulvey, 2001;170

Pardalos, Sandström, & Zopounidis, 1994), asset-liability management (Kouwenberg &171

Zenios, 2008; Sodhi, 2005), and cash flow management (Baumol, 1952; da Costa Moraes,172

Nagano, & Sobreiro, 2015; Miller & Orr, 1966). As in water resources systems analysis,173

some researchers in finance have moved towards multi-objective formulations (Salas-Molina,174

Pla-Santamaria, & Rodriguez-Aguilar, 2018; Spronk, Steuer, & Zopounidis, 2005; Zo-175

pounidis, Galariotis, Doumpos, Sarri, & Andriosopoulos, 2015), model-free information176

(Sun, Fang, Wu, Lai, & Xu, 2011), heuristic solution methods (da Costa Moraes & Nagano,177

2013; Ponsich, Jaimes, & Coello Coello, 2013; Tapia & Coello Coello, 2007), and visual178

analytics (Flood, Lemieux, Varga, & William Wong, 2016; Savikhin, Lam, Fisher, & Ebert,179

2011), in order to provide more meaningful decision support for practitioners in the fi-180

nancial sector (Steuer, Qi, & Hirschberger, 2007; Zopounidis, Doumpos, & Niklis, 2018).181

However, decision support remains limited for actors outside of the financial sector, such182

as water and power utilities, who nevertheless face significant financial risks.183

This paper bridges the gap between reservoir control and financial risk manage-184

ment to show how computational tools developed for the former can be adapted to the185

latter in coupled water resource systems. This research builds on prior work by the au-186

thors dealing with drought-related financial risk management by a hydropower producer187

in a snow-dominated region. First, Hamilton et al. (2020) developed a hydro-financial188

simulation model that abstracts the hydroclimatology, hydropower generation, cash flows,189

and financial risk management of the Power Enterprise of the San Francisco Public Util-190

ities Commission (SFPUC). The authors used this model to evaluate different static fi-191

nancial risk management portfolios within a Monte Carlo framework and search for op-192

timal portfolios using an MOEA. In related work, Gupta, Hamilton, Reed, and Charack-193

lis (2020) introduced an adaptive EMODPS formulation of a simplified financial risk man-194

agement problem, which was used to diagnostically benchmark if modern MOEAs are195

capable of addressing this new class of problem. The present study builds on these prior196

works by contributing the most detailed and actionable representation to date of how197

EMODPS can be used to craft operating policies that adapt to changing conditions over198

time when managing drought-related financial risk. The advantages of dynamic decision-199
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making are demonstrated relative to a simplified static operating policy akin to those200

commonly applied to financial risk management in the water resources literature. This201

paper also demonstrates the value of higher-dimensional problem framings that explic-202

itly account for DM preferences with respect to the use of different management tools.203

Lastly, a framework is contributed for combining a posteriori visual analytics with in-204

formation theoretic sensitivity analysis (ITSA) in order to help DMs better understand205

how complex, non-linear operating policies achieve their goals by adapting to real-time206

information when making decisions.207

2 Study context208

2.1 Study area209

San Francisco Public Utilities Commission (SFPUC) owns and operates three reser-210

voirs (Hetch Hetchy Reservoir, Cherry Lake, and Lake Eleanor) in the upper Tuolumne211

River basin in the Sierra Nevada mountains (Figure S1 in Supporting Information (SI)).212

These reservoirs deliver drinking water to much of the San Francisco Bay area, and en213

route, the water also provides hydroelectric power. SFPUC uses this hydropower to sell214

retail electricity at fixed rates to San Francisco International Airport, municipal build-215

ings in San Francisco, and a number of other retail customer classes within the Bay area.216

Irrigation districts along the Tuolumne River also have the right to buy surplus hydropower,217

when available, at a fixed rate. When hydropower production is in excess of retail and218

irrigation district demands, it is sold at floating market rates into the Western Systems219

Power Pool (hereafter “wholesale market”). On the other hand, when hydropower is in-220

sufficient to meet the demand from retail customers, SFPUC is obligated to purchase221

the remainder on the wholesale market (San Francisco Public Utilities Commission, 2016).222

2.2 Hydro-financial simulation model223

The hydro-financial simulation model from Hamilton et al. (2020) consists of three224

types of variables which are updated at an annual time step: stochastic drivers, actions,225

and model states (Figure 2). The stochastic drivers are derived from a million-year syn-226

thetic dataset that links monthly snow water equivalent depth (SWE), hydropower gen-227

eration, wholesale power price, and hydropower net revenue, and is found to closely match228
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the historical record, while providing a wider sampling of possible outcomes than can229

be found in the limited historical data (Hamilton et al., 2020).230

Three annual quantities are derived from this monthly synthetic dataset and used231

as stochastic drivers for the present study. Firstly, the SWE index (εS , in inches) is a232

weighted average of February and April SWE observations. The inflows to SFPUC’s reser-233

voirs are dominated by the seasonal dynamics of snow accumulation and melt, so SWE234

measurements taken upstream of the reservoirs in the late winter/early spring can be235

used to predict the magnitude of streamflows when the snow melts in the late spring/early236

summer. Subsequently, the weighted average SWE index is highly correlated with an-237

nual hydropower production and can be used to design index contracts used for finan-238

cial hedging (see below). The second stochastic driver is hydropower net revenue (εR,239

in $M), defined as the total annual cash flow resulting from retail and wholesale hydropower240

sales, minus wholesale power purchases, minus the annual “fixed costs” (debt service pay-241

ments, operations and maintenance, salaries, etc.) that must be paid each year. Lastly,242

the power price index (εP , in $/MWh) takes advantage of autocorrelation in the whole-243

sale power market to predict (using linear regression) whether wholesale power prices244

over the coming water year will be favorable or unfavorable for the utility’s net hydropower245

revenues. This index thus provides valuable information for making decisions regarding246

financial risk, and is used as one of the inputs to the dynamic control policies (Section247

3.1.2). For more details on the monthly synthetic records and the calculation of εS and248

εR, see Hamilton et al. (2020). For more details on the calculation of εP , see SI Section249

S1.250

Absent any financial risk management, the utility will experience years in which251

costs outweigh revenues (i.e., net revenue is negative). This situation can be extremely252

disruptive because the utility risks defaulting on its obligations (e.g., debt service or op-253

erations and maintenance). The utility has three financial risk management tools which254

can be used to avoid such negative outcomes. Firstly, They can purchase a snowpack-255

based hedging contract called a capped Contract for Differences (CFD). The CFD (SI256

Figure S2) provides payouts to the utility in low-SWE years (below 24.7 inches), when257

it expects to have low hydropower and thus low revenue, in return for the utility mak-258

ing payments in high-SWE years (above 24.7 inches), when the utility expects to have259

abundant hydropower and surplus revenue. The negative correlation between hydropower260

revenue and CFD payout has been found to significantly reduce the volatility of the com-261
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Figure 2. Annual sequence of operations in hydro-financial simulation model (moving from

top left to bottom right). Solid (dashed) arrows represent the information flows from the current

(previous) time step.

bined cash flow, suggesting its value as a financial risk management tool (Hamilton et262

al., 2020). The second risk management tool is a reserve fund, into which the utility can263

deposit surplus cash flows. This allows them to withdraw from the fund when hydropower264

revenues are insufficient to pay their bills. Lastly, the utility has a letter of credit with265

a bank, under which they can borrow money (i.e., issue short-term debt). The debt is266

paid back each year (with interest), and is assumed to take up the slack in situations where267

the other two tools fail to generate sufficient cash flows to avoid defaulting on the util-268

ity’s obligations. Note that the short-term debt considered in this model is distinct from269

longer-term debt service obligations related to past bond offerings, typically associated270

with infrastructure investments, and which are assumed to be part of the “fixed costs”271

above.272

Figure 2 shows how these financial operations are abstracted in the hydro-financial273

simulation model (See Table 1 for a list of variable names, symbols, units, and constants).274

The sequence of operations occurs at the end of each water year, September 30, based275

on the stochastic outcomes that occur over the course of that water year, εt. Two state-276

aware “actions” each year are governed by the control policy (to be described in Section277
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3.1): the amount of cash withdrawn from/deposited to the reserve fund (uWt , in $M, where278

uWt > 0 represents a withdrawal and uWt < 0 represents a deposit), and the hedging279

contract slope (uHt , in $M/inch of SWE). All other variables (“model states”) are au-280

tomatically updated according to the following rules:281

xC1
t = εRt − rDxDt−1 (1)282

xC2
t = xC1

t + uHt−1h
(
εSt
)

(2)283

xFt = rFxFt−1 − uWt (3)284

xC3
t = xC2

t + uWt (4)285

xDt = max(−xC3
t , 0) (5)286

xC4
t = xC3

t + xDt (6)287

where xC1
t , xC2

t , and xC3
t are intermediate cash flows and xC4

t is the final cash flow in288

year t; xDt and xFt are the short-term debt and reserve fund balance at the end of time289

step t; rD and rF are the annual real interest rates on debt and reserves; and h
(
εSt
)

is290

the CFD payout function (SI Figure S2). This function converts the stochastic SWE in-291

dex value from the current year into a number of inches of SWE for which the utility will292

receive compensation (if h
(
εSt
)
> 0) or owe payment (if h

(
εSt
)
< 0). To get the util-293

ity’s total payout received (or payment due), this output is multiplied by the CFD slope,294

uHt−1, as chosen by the control policy at the end of the previous year (Section 3.1). The295

reader is referred to Hamilton et al. (2020) for more details on construction of the CFD.296

A full realization of the hydro-financial simulation model requires iterating this se-297

quence for T = 20 years, subject to a randomly sampled (T+1)-year sequence of stochas-298

tic drivers. The multi-year simulation accounts for the path-dependent dynamics of the299

reserve fund and debt, as well as the autocorrelation within the stochastic power prices.300

The reserve fund and debt are assumed to be zero at t = 0 (although in practice these301

values could be reset based on circumstance). The hedging contract policy in year 0 (the302

slope to be used for the payout in year 1) is calculated using xF0 , xD0 , and εP0 .303

3 Methods304

3.1 Control formulations305

Within the hydro-financial simulation model, there are two important decisions that306

must be made each year: the hedging contract slope and the withdrawal from/deposit307
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Table 1. Variables and constants for hydro-financial simulation model.

Variable Symbol Value Units

Power price index εPt - $/MWh

SWE index εSt - inches

Annual net revenue εRt - $M

Cash flow 1 xC1
t - $M

Cash flow 2 xC2
t - $M

Withdrawal uWt - $M

Reserve fund balance xFt - $M

Cash flow 3 xC3
t - $M

Debt xDt - $M

Cash flow 4 xC4
t - $M

Hedge contract slope uHt - $M/inch

Mean net revenue before risk management R̄ 10.99 $M

Real discount rate rA 0.9615 -

Real interest rate on fund rF 0.9825 -

Real interest rate on debt rD 1.0100 -

Time horizon T 20 years

Debt sustainability constraint ε 0.05 $M

Normalization for power price index kP 350 $/MWh

Normalization for hedge contract slope kH 4 $M/inch

Normalization for revenues & cash flows kR 250 $M

Normalization for fund & debt kF 150 $M

to the reserve fund. A control policy refers to a structured set of rules for making these308

two decisions each year. This study introduces two types of control: static (or open-loop)309

policies, which perform the same actions with each time step (Section 3.1.1), and dynamic310

(or closed-loop) policies, which adapt to changing conditions over time (Section 3.1.2).311

Dynamic policies are considered state-aware because the decisions at each time step are312

conditioned on the current state of the model. Under both static and dynamic formu-313

lations, a policy is defined by a parameter vector which governs its operations. Multi-314
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objective evolutionary optimization (Section 3.3) will be used to search for parameter315

vectors that perform well across four important objectives (Section 3.2).316

3.1.1 Static policies317

The static control formulation (adapted from Hamilton et al. (2020)) is given by:318

θstat = [uH , xFmax] (7)319

where θstat is the policy parameter vector and uH and xFmax are the two parameters to320

be optimized. uH is the CFD slope, which is held fixed across all years in the simula-321

tion, while xFmax is the maximum allowable reserve fund. Given xFmax, the reserve fund322

operates according to the following simple rules: If the intermediate cash flow is nega-323

tive (xC2
t < 0), cash is withdrawn from the reserve fund to make up the deficit if pos-324

sible. If xC2
t > 0, the surplus is deposited into the fund, up until the fund has reached325

xFmax. This policy is referred to as “static” because the CFD slope does not react to chang-326

ing conditions (i.e., it is not state-aware). Although the withdrawal policy is quasi-state-327

aware via cash-balance constraints (money can neither be created nor destroyed), it is328

not truly dynamic in a meaningful sense (e.g., it cannot condition its reserve fund tar-329

get on power price projections). Note that in Figure 2, the static formulation does not330

include the three input arrows into uHt , and only includes the two input arrows into uWt331

that relate to the cash balance constraints (xC2
t and xFt−1).332

3.1.2 Dynamic policies using Direct Policy Search (DPS)333

The dynamic control formulation conditions the decision at each time step on the334

information available at that time. For a decision uDt , with D ∈ {W,H} representing335

the withdrawal and hedging decisions, respectively:336

uDt = PD(IDt′ |θ
D
dyn) (8)337

where PD is the mathematical form of the policy for decision D (e.g., discrete policy ta-338

ble for SDP), θDdyn is the vector of parameters to be optimized for the policy, and IDt′339

is the information upon which the decision is conditioned. This information can be any340

subset of the model states, actions, and stochastic drivers. The subscript t′ on each el-341

ement represents either the current (t) or previous (t− 1) time step, based on the se-342

quential nature of decisions (see Figure 2).343
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In DPS, P is assumed to be a family of parametric functions (Rosenstein & Barto,344

2001). This approximation drastically reduces the number of decision variables in the345

search relative to SDP (Bertsekas, 2019; Powell, 2019). Many parametric function fam-346

ilies are available (e.g., piecewise linear, polynomial, artificial neural network), but ra-347

dial basis functions (RBFs) have been shown to be efficient universal approximators for348

DPS (Giuliani, Mason, Castelletti, Pianosi, & Soncini-Sessa, 2014). In this work, a sum349

of RBFs is paired with a constant shift parameter, along with an outer function that per-350

forms operations such as normalization and constraints. Equation 8 can be rewritten as:351

uDt = φD

(
aD +

M∑
m=1

wDmϕm

(
IDt′
))

(9)352

where φD is the outer function, aD ∈ [−1, 1] is a constant shift, and wDm is the weight353

given to the mth out of M total RBFs, ϕm. The weights must be chosen such that
∑M
m=1 w

D
m =354

1, and wDm ≥ 0 for all m. The RBF is defined355

ϕm(IDt′ ) = exp

− L∑
l=1

([
IDt′
]
l
− cl,m

)2
(bl,m)

2

 (10)356

where
[
IDt′
]
l

is the lth out of L informational inputs, and cl,m ∈ [−1, 1] and bl,m ∈ (0, 1]357

are the center and radius, respectively, of the mth RBF in the direction of the lth in-358

put. The M RBFs are shared by the two decisions in the control policy.359

The information vector for each decision includes the combination of state variables360

and external drivers that might be useful for making the decision:361

IWt′ =
[
rF x̃Ft−1, rDx̃Dt−1, ε̃Pt , x̃C2

t

]
(11)362

IHt′ =
[
x̃Ft , x̃Dt , ε̃Pt

]
(12)363

where all tildes represent values that have been normalized to lie between 0 and 1, us-364

ing the normalization constants in Table 1. Both decisions utilize information about the365

reserve fund balance and debt, but uD uses last year’s balance plus accumulated inter-366

est, while uW uses the updated value from the present year (Figure 2). Both decisions367

also use the current power price index. Finally, the cash flow prior to withdrawal/deposit,368

xC2
t , is used for uW but not uD. Because the M RBFs are shared across the two deci-369

sions, L = max(LW , LH) = 4.370

The outer functions φW and φH (Equation 9) each consist of multiple nested func-371

tions performing specific operations. The more straightforward φH consists of a normal-372

ization function, φHN , and a constraint function, φHC . Let zt be the argument to φH ,373
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the action prescribed by the constant shift and sum of radial basis functions in Equa-374

tion 9 when H is substituted for D. This equation can be decomposed as375

uHt = φH(zt) = φHC
(
φHN (zt)

)
(13)376

φHN scales the hedging contract slope to the proper scale, [0, kH ] ($M/inch), where377

kH is the hedging contract normalization constant in Table 1.378

z′t = φHN (zt) = kH max(min(zt, 1), 0) (14)379

φHC constrains the contract slope to be greater than or equal to a constant thresh-380

old, kHdH , where the threshold parameter dH ∈ [0, 1] is included in the policy param-381

eter vector to be optimized, along with aH , wH , c, and b.382

uHt = φHC(z′t) =


z′t, if z′t ≥ kHdH

0, otherwise

(15)383

The outer function for the withdrawal decision, φW , consists of four nested oper-384

ations. Let zt now be the sum of the constant shift and RBFs in Equation 9 when W385

is substituted for D. Then:386

uWt = φW (zt) = φWCO
(
φWCI

(
φWW

(
φWN (zt)

)))
(16)387

where φWCO, φWCI , φWW , and φWN are the outer constraint, inner constraint, with-388

drawal transformation, and normalization functions. First, when designing the withdrawal389

policy, it was discovered that the EMODPS search produces better results when zt is de-390

fined as the prescribed post-withdrawal cash flow rather than the withdrawal itself. For391

this reason, the normalization function, φWN , transforms zt to the scale of [−kR, kR] ($M),392

where kR is the normalization constant for all revenues and cash flows in Table 1.393

z′t = φWN (zt) = kR max(min (2zt − 1, 1) ,−1) (17)394

The withdrawal transformation function, φWN , transforms z′t from a cash flow into395

a withdrawal/deposit using the relationship between incoming and outgoing cash flow:396

z′′t = φWW (z′t) = z′t − xC2
t (18)397
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The inner constraint function, φWCI , ensures that the withdrawal/deposit is con-398

sistent with cash-balance equations:399

z′′′t = φWCI(z′′t ) =


min

(
z′′t , rFxFt−1

)
, if z′′t >= 0

max
(
z′′t , −max

(
xC2
t , 0

))
, otherwise

(19)400

The first condition ensures that a withdrawal (z′′t > 0) cannot be larger than the bal-401

ance in the reserve fund. The second case dictates that a deposit (z′′t < 0) is only al-402

lowed when the available cash flow xC2
t is positive, and that the deposit cannot be larger403

in magnitude than this cash flow.404

Lastly, the outer constraint, φWCO, ensures that the reserve fund balance (after405

withdrawal/deposit) cannot be larger than a constant threshold, kF dW , where kF ($M)406

is the normalization constant used for the reserve fund and debt in Table 1, and dW ∈407

[0, 1] is another decision variable to be optimized.408

uWt = φWCO(z′′′t ) =


rFxFt−1 − kF dW , if

(
rFxFt−1 − z′′′t

)
> kF dW

z′′′t , otherwise

(20)409

This threshold sets the maximum allowable reserve fund size, equivalent to xFmax in the410

static formulation.411

Equations 8-20 constitute the full dynamic control policy. The parameter vector412

to be optimized for each decision D ∈ {W,H} is413

θDdyn = [aD, dD, wD, c, b] (21)414

where wD =
[
wD0 , ..., w

D
M

]
, c = [c0,0, ..., cL,M ], and b = [b0,0, ..., bL,M ]. The total pa-415

rameter vector to be optimized, θdyn, is the set of unique parameters,416

θdyn = [aW , aH , dW , dH , wW , wH , c, b] (22)417

3.2 Objective formulations418

This study uses “noisy” objective formulations to account for the uncertainty of419

outcomes under the stochastic drivers. Each candidate policy is assessed using a Monte420

Carlo (MC) ensemble of N realizations, each representing one possible trajectory of the421

hydro-financial system under a T -year sample of the stochastic drivers. To convert an422

ensemble of time series into a scalar objective thus requires both a time aggregation step423
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(e.g., the maximum of debt over a T -year realization) and a noise filtering step (e.g., the424

95th percentile over N realizations in the ensemble). Four objectives are considered.425

First is the expected annualized cash flow, Jcash, a measure of “average” cash flows.426

A high value represents a low-cost risk management policy, so Jcash should be maximized.427

Jcash
(
xC4
t∈(1,...,T ), x

F
T , x

D
T

)
= Eε

[
ANNt

(
xC4
t∈(1,...,T ), x

F
T , x

D
T

)]
(23)428

where xC4
t is the final cash flow for year t; xFT and xDT are the reserve fund balance and429

debt at the end of the simulation; Eε is the expectation over the stochastic drivers (ap-430

proximated by the mean of N MC samples); and ANNt is the annualization operator:431

ANNt

(
xC4
t∈(1,...,T ), x

F
T , x

D
T

)
=

1∑T
t=1(rA)t

(
T∑
t=1

(
(rA)txC4

t

)
+ (rA)T+1

(
rFxFT − rDxDT

))
(24)432

where where rA is the real discount rate and rF and rD are the real interest rates on re-433

serves and debt (Table 1). ANNt sums the net present value (NPV) of all discounted434

cash flows over T years, plus the NPV of the reserve fund and debt in year T , and di-435

vides this sum by a normalization factor. The normalized value represents the constant436

cash flow, or annuity, that is equivalent in terms of NPV to the variable cash flow. On437

the whole, annualization allows for a fair comparison, accounting for the time value of438

money, between cash flow time series resulting from different management strategies.439

The second objective, Jdebt, is the 95th percentile of maximum debt. This is a mea-440

sure of the short-term debt load that would be needed to meet fixed costs in an extremely441

bad year (or sequence of years). This is used as a proxy for “risk”, and a DM would want442

to minimize this quantity in order to avoid compromising the utility’s credit rating, in-443

creasing future borrowing costs, and/or risking bankruptcy.444

Jdebt
(
xDt∈(1,...,T )

)
= Q95ε

[
max

t∈(1,...,T )

[
xDt
]]

(25)445

where the max operator takes the maximum debt over a T -year realization, and the Q95446

operator takes the 95th percentile over the MC ensemble.447

The third objective, Jhedge, is the expected hedging frequency, to be minimized.448

Jhedge
(
uHt∈(0,...,T−1)

)
= Eε

[
max

t∈(0,...,T−1)

[
1uH

t >0

]]
(26)449

where the indicator function 1uH
t >0 returns a 1 if the hedging contract slope is non-zero,450

and a 0 otherwise. Jhedge represents the likelihood that the utility will enter into at least451
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one hedging contract over the course of 20 years. Note that each hedging contract does452

have an annual cost, a “loading” applied by the contract seller that makes the expected453

payout of h (SI Figure S2) negative (Hamilton et al., 2020). However, this cost is already454

accounted for by Jcash, and does not need to be double-counted. Jhedge, rather, relates455

to the significant extra costs (in time, personnel, and/or money) of having to set up the456

first hedging contract within a realization, assuming that this start-up cost will be sig-457

nificantly diminished in subsequent contract purchases.458

The last objective is the expected maximum reserve fund balance, Jfund:459

Jfund
(
xFt∈(1,...,T )

)
= Eε

[
max

t∈(1,...,T )

[
xFt
]]

(27)460

This objective represents the expected value of the largest reserve fund used in a T -year461

realization, and should be minimized. This objective would be important if a utility is462

worried that rate-payers or regulators would be critical of large liquid reserves.463

Finally, a “debt sustainability” constraint ensures that feasible policies do not al-464

low debt to grow unchecked over time (on average), which would likely lead to a credit465

downgrade in practice:466

Eε
[
xDT − xDT−1

]
< ε (28)467

where ε is a small constant (Table 1). This “noisy” constraint is calculated from the en-468

tire MC ensemble; there is no constraint on debt use in individual extreme realizations.469

3.3 Multi-objective evolutionary optimization of control policies470

As described in Sections 1 and 3.1.2, DPS has a number of advantages relative to471

traditional methods such as SDP, especially when combined with non-linear approximat-472

ing networks such as RBFs. However, RBF parameterization can result in a highly non-473

linear and non-convex search space that is difficult to traverse with gradient-based meth-474

ods, especially when combined with noisy multi-objective formulations (Giuliani & Castel-475

letti, 2016; Giuliani, Mason, et al., 2014; Giuliani et al., 2018). These problems are bet-476

ter handled by MOEAs, which use evolution-inspired strategies (e.g., selection, mating,477

mutation) to iteratively improve a population of solutions competing on multiple objec-478

tives (Coello Coello, Lamont, & Van Veldhuizen, 2007). Population-based methods can479

approximate the entire Pareto set in a single run, rather than rerunning many single-480

objective optimizations, making them quite efficient on many-objective problems. Ad-481
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ditionally, these heuristic approaches require no information on the topology of a prob-482

lem and are well-adapted to the types of nonlinear, non-convex, high-dimensional, and483

stochastic problems that are common in both water resources (Maier et al., 2014; Nick-484

low et al., 2010; Reed, Hadka, Herman, Kasprzyk, & Kollat, 2013) and finance (Ponsich485

et al., 2013; Tapia & Coello Coello, 2007).486

This study employs the Borg Multiobjective Evolutionary Algorithm (MOEA) (Hadka487

& Reed, 2013), which has been particularly successful across a range of difficult prob-488

lems in water resources (Gupta et al., 2020; Hadka & Reed, 2012; Reed et al., 2013; Zatarain Salazar,489

Reed, Herman, Giuliani, & Castelletti, 2016) and engineering design (Singh et al., 2020;490

Woodruff, Reed, & Simpson, 2013). The Borg MOEA includes novel components such491

as adaptive search operator selection, adaptive population sizing, stagnation detection492

via epsilon-progress, and epsilon-dominance archiving. Its self-adaptive nature makes the493

Borg MOEA highly controllable (Hadka & Reed, 2013; Reed et al., 2013), and the master-494

worker parallel variant used in this study is scalable on high-performance computing in-495

frastructure (Giuliani et al., 2018; Zatarain Salazar et al., 2017).496

3.4 Information theoretic sensitivity analysis497

A sensitivity analysis (SA) is an evaluation of the effects of a model’s input fac-498

tors on its output factors, and a wide range of methods are available to suit different pur-499

poses. According to the taxonomy of SA introduced by Pianosi et al. (2016), the method500

that follows would be considered a quantitative, global, “all-at-a-time” SA, based on sim-501

ulation model output. This SA is used to explore how different policies adapt their ac-502

tions to changing conditions; more specifically, it will probe the sensitivity of the pre-503

scribed hedging and withdrawal decisions (Equation 8) to changing informational inputs504

(Equations 11-12). This type of analysis can help to “open the black box” of control poli-505

cies, helping DMs better understand how different policies respond to changing infor-506

mation (Quinn et al., 2019).507

However, commonly-used variance-based methods, which decompose the variance508

of an output variable into contributions from covariance with different input variables,509

are inappropriate in the proposed context. First, the policies described by Equations 9-510

20 are highly non-linear and discontinuous, so that variance and covariance are inappro-511

priate measures of variability and relationship. Secondly, most variance decomposition512
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methods assume independence between the input variables, and can lead to misleading513

results when this independence is violated (Borgonovo, 2007; Borgonovo, Castaings, &514

Tarantola, 2011). This is especially problematic in the current context because most Pareto-515

optimal solutions will impose the following relationship between the reserve fund and debt:516

if one is large, the other is usually zero. For these reasons, moment-independent global517

SA methods, such as entropy-based SA (Auder & Iooss, 2009; Krzykacz-Hausmann, 2001),518

are preferred. Hejazi, Cai, and Ruddell (2008) use ITSA to study the impact of hydro-519

logic information on historical release decisions made by reservoir operators under dif-520

ferent conditions. A similar approach is adopted here to study how different policies along521

the Pareto front use model state information to make decisions.522

Shannon entropy (Shannon, 1948) quantifies how much information is needed, on523

average, to describe a random variable. Consider uD, D ∈ {W,H}, the two policy-prescribed524

actions. uD is a function of the information vector, ID, which varies stochastically through525

time and across MC realizations. As such, both the information vector and the prescribed526

action can be considered random variables, ID and UD. The entropy of the action is:527

H(UD) = −
∑

uD∈υD
p(uD) log2 p(u

D) (29)528

where p(uD) is the probability mass function (PMF) after discretizing the outcome to529

a discrete domain, υD. The entropy (in bits when written with a base-2 logarithm) can530

be thought of as a moment-free measure of uncertainty, or dispersion, in the probabil-531

ity distribution of a random variable. A variable whose outcome is known determinis-532

tically has zero entropy, while a uniformly distributed variable is the most uncertain and533

has the largest possible entropy. Although a continuous variant of entropy based on Kullback-534

Leibler divergence can also be used for SA (Auder & Iooss, 2009; Liu, Chen, & Sudjianto,535

2006; Pappenberger, Beven, Ratto, & Matgen, 2008), the discrete version is more straight-536

forward when the random variable’s distribution is unknown.537

The mutual information between two random variables measures the average re-538

duction in the entropy of one variable when the other variable’s outcome is known:539

MI(IDi , U
D) = H(UD)−H(UD|IDi ) (30)540

= −
∑

IDi ∈ιDi

∑
uD∈υD

p(IDi , uD) log2

p(IDi , uD)

p(IDi )p(uD)
(31)541

where IDi is the random variable for the ith informational input (e.g., reserve fund bal-542

ance or power price index), H(UD|IDi ) is the entropy of the action conditional on the in-543
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put, p(IDi ) is the PMF for the input on the discrete domain ιDi , and p(IDi , uD) is the544

joint PMF on the discrete domain ιDi ×υD. This mutual information is a measure how545

much information the outcome of one random variable contains about the outcome of546

the other: how much does knowledge of a particular informational input reduce the un-547

certainty in the prescribed action?548

Finally, the ITSA index is defined by dividing the mutual information by the en-549

tropy of the prescribed action:550

ηDi =
MI(IDi , U

D)

H(UD)
(32)551

where ηDi is the sensitivity index for the ith input for decision D. This index varies be-552

tween 0 and 1; ηDi = 0 implies that IDi and uD are independent random variables, while553

ηDi = 1 implies perfect dependence (knowledge of IDi gives us perfect knowledge of uD).554

4 Computational experiments555

4.1 Problem formulations556

This study considers both the static and dynamic control formulations, each of which557

has its own parameter vector to be optimized. The static parameter vector (θstat, Equa-558

tion 7) has two elements to be optimized. The dynamic parameter vector, (θdyn, Equa-559

tion 22) has 4 + 2M + 2ML elements, where L = 4 is the number of informational in-560

puts, and M is the number of RBFs in the policy. With M = 2 RBFs (see next sec-561

tion), θdyn contains 24 elements to be optimized.562

For each control formulation, both two-objective and four-objective problems are563

considered. The two-objective problem can be written:564

θ∗ = arg min
θ

[
−Jcash(θ), Jdebt(θ)

]
(33)565

while the four-objective problem can be written:566

θ∗ = arg min
θ

[
−Jcash(θ), Jdebt(θ), Jhedge(θ), Jfund(θ)

]
(34)567

For both problems, the feasible solution space is restricted to solutions satisfying the sus-568

tainable debt constraint (Equation 28). The two-objective problem is the same as that569

used by Hamilton et al. (2020), allowing for a direct comparison, while the four-objective570

problem provides more nuanced insight into risk management tradeoffs.571
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4.2 MOEA parameters572

An ensemble of N = 50, 000 realizations is run for each function evaluation, bal-573

ancing computational demand against the need to minimize sampling error in the noisy574

objective/constraint evaluations (see discussions in Kasprzyk et al. (2012); Quinn, Reed,575

Giuliani, and Castelletti (2017); Zatarain Salazar et al. (2017)). In order to select the576

appropriate number of RBFs, the dynamic 4-objective formulation is repeated with 1,577

2, 3, 4, 8, and 12 RBFs. Due to the inherent stochasticity of evolutionary algorithms,578

each optimization is repeated with 10 different random seeds. Each seed is run for 150,000579

function evaluations (candidate policy trials). Final populations are assessed in terms580

of hypervolume, additive epsilon indicator, and generational distance (SI Figure S3), three581

common metrics for assessing convergence, consistency, and diversity of multi-objective582

solution sets (Coello Coello et al., 2007; Hadka & Reed, 2012; Reed et al., 2013). Results583

are found to be relatively insensitive to the number of RBFs used in the dynamic con-584

trol policies, but M = 2 RBFs is chosen due to their robust performance across seeds.585

Next, 20 additional seeds are run for the dynamic 4-objective formulation with M =586

2, and 30 seeds each are also run for the dynamic 2-objective, static 2-objective, and static587

4-objective formulations. The best known Pareto approximate set for each formulation588

is the set of non-dominated solutions from across the 30 seeds. After using the same 50,000-589

member ensemble of 20-year simulations for all formulations/seeds in the initial optimiza-590

tion, each solution in the final Pareto approximate set for each formulation is rerun on591

a separate 50,000-member ensemble, for which results are reported. Important param-592

eter values for the optimization can be found in SI Table S1; all other Borg MOEA pa-593

rameters besides those listed are set to the default values (Hadka & Reed, 2013; Reed594

et al., 2013).595

4.3 Information theoretic sensitivity analysis parameters596

ITSA indices for each specific operating policy are calculated using a 50,000-member597

ensemble of 20-year simulations, yielding 1,000,000 realizations of IDi and uD. Each com-598

ponent is discretized into 50 bins in order to calculate the marginal and joint probabil-599

ity mass functions (Equations 29, 31). This process is repeated for each control policy600

in the Pareto set, yielding separate ITSA indices for each.601
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5 Results and discussion602

5.1 Static vs. dynamic financial risk management603

Figure 3 shows the resulting Pareto approximate sets from the 2-objective optimiza-604

tion problem (Equation 33), under both static and dynamic control formulations. Each605

point represents a different financial risk management policy. The ideal performance, de-606

noted by a black star, would be achieved with a cash flow objective (Jcash) of $10.99M607

(the average net revenue in the absence of any financial risk management) and a debt608

objective (Jdebt) of zero. However, this is not possible due to the strong tradeoff between609

“risk” and “return” that is standard in financial risk applications: in order to achieve610

higher expected cash flows, the utility must forego costly risk management actions and611

therefore risk more extreme debt burdens in less favorable realizations. As discussed in612

Section 3.2, large short-term debt in our model can be viewed as a proxy for larger fi-613

nancial disruptions such as credit rating downgrades or bankruptcy in practice. DMs will614

have to balance this tradeoff when selecting a particular policy for the utility to use, based615

on risk aversion, access to credit, and other organizational factors.616

Figure 3. Comparison of 2-objective Pareto approximate sets under static and dynamic con-

trol formulations. The best compromise policy from each formulation is outlined in black and

described in Table 2.
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However, DMs can drastically reduce the risk management tradeoff by using adap-617

tive operating rules that respond to changing conditions. The Pareto approximate set618

from the dynamic EMODPS control formulation is found to dominate the Pareto approx-619

imate set from the static formulation, suggesting that one can improve on both the cash620

flow and debt objectives simultaneously. For example, consider the two example poli-621

cies outlined in black in Figure 3 and listed in rows 1-2 in Table 2. These are chosen as622

the “best compromise” policies near the centers of their respective Pareto approximate623

sets (as selected using the TOPSIS method with equal weights on each objective (Be-624

hzadian, Khanmohammadi Otaghsara, Yazdani, & Ignatius, 2012; Roszkowska, 2011)).625

The dynamic policy is found to reduce Jdebt by $2.83M, or 25.1%, relative to the static626

policy. At the same time, it increases Jcash by $0.23M, representing a 36.1% reduction627

in risk management cost relative to the “ideal” Jcash value of $10.99M. This dual im-628

provement highlights the value of dynamic financial risk management: the utility can629

improve on both objectives simultaneously without requiring any investment in its in-630

frastructure or changes to its physical operations. All that is required is to switch to a631

more flexible and efficient financial risk management policy.632

Table 2. Six example policies referenced in the results, along with their four-objective perfor-

mance and their information theoretic sensitivity indices related to the hedging action.

Row Figure Jcash Jdebt Jhedge Jfund Fund Debt Power

($M/yr) ($M) (unitless) ($M) Sensitivity Sensitivity Sensitivity

1 3 red 10.37 11.25 1.00 16.11 – – –

2 3 blue 10.59 8.42 1.00 19.31 0.74 0.11 0.12

3 7 10.75 15.90 0.77 12.01 0.36 0.72 0.01

4 8a 10.20 3.22 1.00 24.55 0.93 0.12 0.00

5 8b 10.71 15.72 0.40 16.83 0.44 0.96 0.01

6 8c 9.84 8.96 1.00 1.53 0.02 0.03 0.72

The dynamic formulation allows the utility to take different sequences of actions633

under different stochastic realizations, using parameterized control rules that allow for634

the actions taken at any particular time to be better tailored to the current state of the635

system. To elucidate the differences between static and dynamic financial risk manage-636
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ment, the two best compromise policies are simulated under two different 20-year real-637

izations from the synthetic record: an unusually wet period and an unusually dry pe-638

riod (Figure 4). Differences in SWE (4a) lead to drastic differences in hydropower gen-639

eration (4b) and net revenues (4d) under the two realizations, and the dry scenario ex-640

periences lengthy periods of drought-related cash flow deficits. The two scenarios also641

yield very different responses in terms of the hedging policy (4e & 4i), reserve fund bal-642

ance (4f & 4j), debt (4g & 4k), and final cash flow (4h & 4l). In the wet scenario, the643

reserve funds fill up quickly and stay nearly full. Neither policy requires any significant644

debt, and final cash flows are generally positive and rather large. In the dry scenario,645

the reserve funds fluctuate up and down, including two periods in which they reach zero.646

During these periods, significant debt is required to overcome further cash flow deficits.647

The final cash flows are close to zero throughout the dry simulation, as both policies strug-648

gle to fill their reserve funds.649

With respect to the hedging contract, the static policy uses the same contract each650

year in both the wet and dry scenarios, with a payout slope of $0.32M/inch. The dynamic651

policy, on the other hand, adjusts its contract slope from year to year. In the wet sce-652

nario, it opts not to hedge at all after year 0, while in the dry scenario, it fluctuates be-653

tween $0 and $0.85M/inch. Comparing the hedging slope dynamics to the other model654

state variables suggests that this policy opts to hedge only when the reserve fund bal-655

ance is low and/or when debt is non-zero. This strategy allows the dynamic policy to656

achieve higher cash flows than the static policy in wet scenarios (Sub-Figure 4h), by fore-657

going the cost of hedging contracts when the utility already has sufficient protection from658

a large reserve fund. On the other hand, when the reserve is empty and/or there is out-659

standing debt (presumably after a very dry year or sequence of years), the utility pur-660

chases large hedging contracts in order to increase its financial risk coverage and thus661

reduce the risk of extreme debt levels (Sub-Figure 4k). This adaptivity allows the dy-662

namic policy to improve on both the cash flow objective and the debt objective simul-663

taneously, compared to the static policy. As will be seen in Section 5.3, there are a mul-664

tiplicity of ways that utilities can adapt to changing conditions to meet their goals.665

5.2 Many-objective decision-making666

As discussed in Section 3.2, a DM choosing a financial risk management policy may667

actually consider other factors beyond risk (Jdebt) and return (Jcash). For example, the668

–25–



manuscript submitted to Water Resources Research

Figure 4. Trajectories for hydro-financial simulation model, over both wet and dry 20-year

realizations, for the example static and dynamic policies shown in Figure 3 and rows 1-2 of Table

2. Sub-Figures show the SWE index (a), hydropower generation (b), power price (c), net hy-

dropower revenue (d), hedging slope action (e & i), fund balance (f & j), debt (g & k), and final

annual cash flow (h & l). Middle column (e-h) shares its y-axis with the right-hand column (i-l).

utility might also worry about the size of the reserve fund needed to enact a particular669

policy (Jfund), or the likelihood of needing to enact a complicated hedging program (Jhedge).670

Such DMs are likely to find that none of the solutions found under the 2-objective prob-671

lem (Figure 3) can meet their needs. The 2-objective problem cannot adequately rep-672

resent the tradeoffs that a utility manager must weigh when making these decisions be-673

cause it does not account for DM preferences with respect to the use of different risk man-674

agement tools. For this reason, Jhedge and Jfund can be explicitly included in the op-675

timization using the 4-objective problem (Equation 34).676
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Figure 5. Comparison of 4-objective Pareto approximate sets under static and dynamic

control formulations.

Both the static and dynamic formulations produce much larger Pareto approximate677

sets in this higher-dimensional problem (Figure 5), representing the more complex set678

of tradeoffs across the four objectives. The dynamic Pareto approximate set is found to679

generally outperform the static Pareto approximate set, especially in terms of the over-680

all diversity of solutions. For the static formulation, where the hedging contract slope681

is fixed, Jhedge must be equal to 1 or 0. The dynamic formulation, on the other hand,682

is able to find policies with Jhedge spanning the entire range from 0 to 1. Note that Jhedge683

is defined as the fraction of 20-year realizations that contain any hedging, not the frac-684

tion of years which hedge (see Equation 26). Thus, intermediate values between 0 and685

1 represent solutions that are unlikely to hedge in any given year, but maintain the op-686

tion to do so under particularly problematic circumstances. This valuable optionality687

is only possible with a dynamic control strategy. Additionally, the dynamic solution set688

occupies a much larger region within the ridge where Jhedge = 1. These policies out-689

perform the nearest static policies with respect to Jcash and Jdebt, but may require the690

use of larger reserve funds. Because the dynamic control method produces a much more691

complete and continuous Pareto approximate set, it allows DMs to find control policies692

that more precisely match their preferences.693

A major benefit of solving the larger-dimensional problem is that the solution set694

will already contain all of the tradeoffs for all possible lower-dimensional problems (di695
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Pierro, Khu, & Savić, 2007). In the present context, the 4-objective Pareto front will in-696

clude within it the Pareto fronts for the four 3-objective problems, six 2-objective prob-697

lems, and four 1-objective problems that are embedded within the 4-objective problem698

(Figure 6). In Sub-Figure 6a, the blue triangles show the subset of the 4-objective Pareto699

approximate set that is non-dominated with respect to the original two objectives, Jcash700

and Jdebt. When compared to the original 2-objective solutions (Figure 3), the 4-objective701

policies are very similar with respect to the first two objectives. However, they can achieve702

improvements with respect to the two new objectives (see SI Figure 4). In other words,703

it is possible to improve Jfund and/or Jhedge with no penalty in Jcash or Jdebt, but they704

must be included in the optimization explicitly to realize this benefit.705

Figure 6. Visualization of Pareto approximate sets for different sub-problems. Colored points

represent solutions that are non-dominated with respect to a particular sub-problem; for exam-

ple, orange points in sub-figure (a) represent solutions that are non-dominated with respect to

Jdebt and Jhedge. Light grey points in all sub-figures represent solutions from the 4-objective

problem that are not captured in the lower-dimensional problems.
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More broadly, the lower-dimensional sub-problems tend to produce Pareto approx-706

imate sets that are near the extreme boundaries of the larger-dimensional problem. Sub-707

Figure 6a includes four sub-problems for which the Pareto approximate set consists of708

a single solution (Jcash-Jhedge, Jcash-Jfund, Jhedge-Jfund, Jcash-Jhedge-Jfund). Each709

of these sub-problems excludes debt, leading to a single optimal policy that performs es-710

sentially no risk management. This is consistent with prior work finding that conflicts711

in higher-dimensional problems can remain hidden in lower-dimensional sub-problems712

(Woodruff et al., 2013). Sub-Figure 6a also shows results for the Jcash-Jdebt, Jdebt-Jhedge,713

and Jdebt-Jfund sub-problems. Each subset of solutions is concentrated along an outer714

border of the larger Pareto front, where performance of the two explicitly-considered ob-715

jectives is optimized at the expense of the other two objectives. The same pattern is ev-716

ident in the 3-objective sub-problems of Sub-Figures 6b (Jcash-Jdebt-Jhedge), 6c (Jcash-717

Jdebt-Jfund), and 6d (Jdebt-Jhedge-Jfund). These solution sets are larger, but still oc-718

cupy extremal regions of the overall Pareto front. Thus, by choosing to optimize a 2- or719

3-objective sub-problem, DMs may unwittingly produce an incomplete and biased Pareto720

approximate set.721

The larger-dimensional problem leads to a fuller set of alternatives that better rep-722

resents the tradeoffs associated with DM preferences for different financial risk manage-723

ment tools. However, it is a non-trivial task to select a single operating policy from among724

the large Pareto approximate set. Interactive visualization approaches can help with this725

task. One example is to allow DMs to apply a posteriori performance criteria and “brush726

away” solutions that fail to meet these constraints (Kollat & Reed, 2007; Zeff et al., 2014).727

The strictness of the constraints can be iteratively increased until DMs are relatively ag-728

nostic about the tradeoffs across the feasible solution set. For example, consider a util-729

ity whose financial team (perhaps in consultation with its regulatory commission) de-730

velops the following criteria: if R̄ = $10.99 million is the mean annual net hydropower731

revenue in the absence of any risk management, then (1) the risk management policy should732

not reduce expected annualized cash flows by more than 2.5% (Jcash ≥ 0.975R̄); (2)733

the utility should rarely be forced to borrow more than 150% of mean net revenue to cover734

cash flow deficits (Jdebt ≤ 1.5R̄); and (3) the utility should not maintain reserves larger735

150% of mean net revenue (Jfund ≤ 1.5R̄). These constraints drastically reduce the736

set of feasible solutions (Figure 7). At this point, a quantitative method such as TOP-737

SIS (Behzadian et al., 2012; Roszkowska, 2011) can be used to select one of the remain-738
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ing policies for the utility to use (e.g., the policy outlined in Figure 7 and listed in row739

3 of Table 2).740

Figure 7. Set of feasible solutions after filtering for stakeholder-determined a posteriori con-

straints. The best compromise policy from the feasible set is outlined in black and described in

row 3 of Table 2

While these constraints could, in theory, be applied a priori and used to reduce741

the number of objectives in the optimization, it is very difficult in practice for DMs to742

effectively set the constraint values without first understanding the topology of the trade-743

off surface (Kasprzyk et al., 2016; Spronk et al., 2005). This confirms the value of the744

EMODPS approach, which is scalable to extremely large problems on modern high-performance745

computing infrastructure (Giuliani et al., 2018; Zatarain Salazar et al., 2016), suggest-746

ing that the formulation used here could be expanded to include additional objectives747

such as customer rates, social equity, and environmental quality.748

5.3 Value of state information for control749

As demonstrated above, the EMODPS method can be used to develop control poli-750

cies that perform well across a range of stakeholder preferences. However, DMs may be751

unwilling to adopt a complex, non-linear control policy if its operating rules remain opaque;752

it may be necessary to “open the black box” for users if they are to apply such tools in753

practice (Castelvecchi, 2016; Quinn et al., 2019). Each policy represents a map from a754

vector of inputs (e.g., reserve fund balance) to its outputs (e.g., the hedging contract slope).755

ITSA (Section 3.4) can help DMs to better understand how different policies respond756
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to changing model state information. Figure 8 shows the hedging policy sensitivity in-757

dices for each solution in the Pareto approximate set, representing the degree to which758

each policy adjusts its annual hedging decision based on each of the three inputs: the759

reserve fund balance (ηHF , Sub-Figure 8a), the debt (ηHD , 8b), and the power price index760

(ηHP , 8c). Each index is a measure of the importance of a particular input variable for761

controlling a state-aware policy; η = 1 implies that the policy is entirely controlled by762

the input, while η = 0 means that the input has no impact on the policy. Interestingly,763

Figure 8 shows that each input has a different “region of specialization” in objective space.764

The reserve fund balance is the most important input for policies along the top of the765

ridge where Jhedge = 1. These are policies that achieve a relatively low levels of debt766

and high levels of cash flow, in return for frequent hedging and a relatively large reserve767

fund. The debt information, on the other hand, is critical for policies occupying the swath768

of objective space with Jhedge between 0 and 1. The power price index is less informa-769

tive, but it does provide value for policies requiring minimal reserve funds and debt, along770

the bottom edge of the Pareto front.771

In order to better understand how these policies utilize the information that is avail-772

able to them, it is helpful to visualize the policies themselves. To that end, one high-sensitivity773

policy is chosen for each input (as outlined in Figure 8, and listed in rows 4-6 of Table774

2). Each policy is used to simulate 20 random trajectories of length 20 years, for a to-775

tal of 400 annual decisions. These decisions are visualized in state-action space using parallel-776

coordinate plots (Figure 9). The first three vertical axes represent the three hedging pol-777

icy inputs: reserve fund balance, debt, and power price index. The policy output, the778

hedging contract slope, is represented by the fourth vertical axis as well as the colorbar779

in order to aid interpretation. Each of the colored lines connecting the four axes repre-780

sents one of the 400 simulated decisions. These visualizations, in combination with the781

sensitivity indices, can be useful in understanding how each policy operates. For exam-782

ple, the policy in Sub-Figure 9a appears to hedge selectively, when the reserve fund bal-783

ance has fallen below a certain threshold. Above the threshold, no hedging contract is784

purchased, and below the threshold, the hedging slope increases as the fund balance falls.785

The policy in Sub-Figure 9b has a similar strategy, but structured around debt; hedg-786

ing is zero below some threshold, and increases with debt above the threshold. Lastly,787

the bottom policy always utilizes hedging contracts, the magnitude of which tend to be788
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Figure 8. Information theoretic sensitivity indices, relative to hedging contract slope deci-

sion, for the reserve fund balance (a), debt (b), and power price index (c). One high-sensitivity

solution for each input is outlined in black and described in rows 4-6 of Table 2
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inversely proportional to the power price index. Each of these patterns is consistent with789

the sensitivity indices in Figure 8 and Table 2.790

These plots can be used to build intuition about how the different risk management791

policies achieve their competitive advantages. For example, compare the fund-sensitive792

policy (a) to the debt-sensitive policy (b). The former maintains a relatively large re-793

serve fund for its risk management needs, and uses hedging contracts as a substitute to794

maintain its risk protection when the reserve fund is inadequate. This is qualitatively795

similar behavior to the example policy simulated in Section 5.1 (Figure 4). The debt-796

sensitive policy, on the other hand, keeps a much smaller reserve fund, which results in797

more frequent cash flow shortfalls and debt during dry years. In order to reduce the like-798

lihood of extreme debt spirals during longer droughts, this policy begins to use hedging799

contracts when it has significant debt, and ceases hedging once it has paid off this debt.800

The result is that the debt-sensitive policy is significantly more risky than the fund-sensitive801

policy, but in return, it is less costly and requires less frequent hedging and a smaller re-802

serve fund. The power-sensitive policy (c) takes a more consistent approach, purchas-803

ing similar hedging contracts each year. This makes it the most expensive contract of804

the three due to the cost of these contracts. However, the risk coverage from hedging al-805

lows it to maintain a very small reserve fund and still avoid substantial debt. This pol-806

icy does adjust its hedging contract in response to projected wholesale power prices us-807

ing the power price index. If the index is high, then the utility expects that its net rev-808

enue per unit of hydropower will be higher than average, and vice versa when the index809

is low. By purchasing hedging contracts in inverse proportion to this index, the utility810

can dampen the overall variability of its combined cash flow (hydropower net revenue811

plus the net payout from the hedging contract), and thus reduce its financial risk.812

ITSA and policy visualization plots for the withdrawal/deposit decision can be found813

in SI Figures S5-S6. However, withdrawals and deposits are found to be much less sen-814

sitive to model state information than hedging, suggesting that the gains from dynamic815

financial risk management in this study largely accrue from dynamic hedging rather than816

dynamic reserve fund management. In future problems with a larger number of candi-817

date actions, an iterative scheme for selecting the most sensitive decisions to control dy-818

namically would be beneficial. One final takeaway from Figures 8 and 9 is that the most819

important model states to include in a state-aware control policy can vary widely across820

the Pareto approximate set. This implies that the most important input(s) cannot be821
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Figure 9. Hedging control policy visualization for three chosen policies in Figure 8 and rows

4-6 of Table 2. Policies (a), (b), and (c) are highly sensitive to the reserve fund, debt, and power

price index information, respectively. The first three vertical axes represent the three inputs,

while the fourth axis and the colorbar represent the hedging action. Each line connecting the four

axes represents one state-action combination experienced within a simulation.
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known a priori without accounting for DM preferences. This is consistent with both an-822

alytical (Graham & Georgakakos, 2010; Tejada-Guibert, Johnson, & Stedinger, 1995)823

and empirical (Hejazi et al., 2008) studies in the reservoir control literature, which have824

found that the objective(s) of the operator can affect which hydrologic factors are deemed825

most informative. However, computational constraints often require that the total set826

of potentially informative data be culled to a small subset of the most important vari-827

ables. The results of this study confirm the importance of accounting for the multi-dimensional828

nature of information value during this process (Denaro et al., 2017; Giuliani et al., 2015).829

A limitation of this study is the implicit assumption of stationarity embedded in830

the hydro-financial simulation model adopted from Hamilton et al. (2020). Despite this831

fact, Figure 4 suggests that the EMODPS-derived policies trained on a stationary MC832

ensemble can perform relatively well across a wide range of potential outcomes, many833

of which are extreme compared to historical data. Additionally, the present study con-834

cerns purely financial decisions on relatively short time scales, for which interannual cli-835

mate variability is expected to overwhelm longer-term non-stationarity (Lehner et al.,836

2020). The reader is referred to Hamilton et al. (2020) for further discussion of these is-837

sues. Nonetheless, future studies should consider a broader analysis of the impacts of chang-838

ing climate, markets, etc., on the robustness of adaptive financial risk management strate-839

gies for hydropower production. This would be especially important if the framework840

proposed here were to be combined with dynamic infrastructure investments (Haasnoot,841

Kwakkel, Walker, & ter Maat, 2013; Kwakkel, Haasnoot, & Walker, 2015; Zeff, Herman,842

Reed, & Characklis, 2016). For large, irreversible decisions such as infrastructure devel-843

opment, medium- to long-term uncertainties become increasingly important (Doss-Gollin,844

Farnham, Steinschneider, & Lall, 2019). Future work should focus on integrating addi-845

tional sources of information regarding climate, power markets, etc. Statistical learning846

approaches can be used to update decision-making based on evolving beliefs about the847

non-stationary hydro-financial system (Fletcher, Lickley, & Strzepek, 2019; Fletcher et848

al., 2017; Herman, Quinn, Steinschneider, Giuliani, & Fletcher, 2020). Additionally, sce-849

nario discovery approaches can be used to search for financial risk management strate-850

gies that perform satisfactorily across a wide range of (perhaps deeply) uncertain fac-851

tors (Bryant & Lempert, 2010; Herman, Reed, Zeff, & Characklis, 2015; Kasprzyk, Nataraj,852

Reed, & Lempert, 2013; Lempert, 2002; Quinn, Hadjimichael, Reed, & Steinschneider,853

2020).854
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6 Conclusions855

A substantial body of literature has emerged around optimal control of water reser-856

voir systems in the face of hydrologic uncertainty (Macian-Sorribes & Pulido-Velazquez,857

2019). Evolutionary multi-objective direct policy search (EMODPS) has emerged as an858

especially powerful tool for overcoming the simultaneous curses of dimensionality, mod-859

eling, and multiple objectives that are characteristic of problems in the field (Giuliani860

et al., 2016, 2018). This paper demonstrates that the same properties of EMODPS that861

make it ideal for optimal reservoir control problems also make it well suited for the com-862

plex, multi-objective financial risk management problems faced by water-reliant organ-863

izations as a result of hydrologic variability. The methodology is applied in the context864

of the hydrologic financial risk faced by the Power Enterprise of the San Francisco Pub-865

lic Utilities Commission (SFPUC), an electricity producer relying primarily on hydropower866

from a snow-dominated watershed. EMODPS is used to develop control policies that dy-867

namically balance financial hedging, cash reserves, and debt, based on changing condi-868

tions within the model. Performance is quantified based on four conflicting objectives:869

expected annualized cash flow, 95th percentile maximum debt, expected hedging frequency,870

and expected maximum reserve fund balance. The first two objectives represent the clas-871

sic return vs. risk tradeoff in finance, while the second two objectives represent a decision-872

maker’s preferences for using one risk management instrument over another based on an873

organization’s individual circumstances. By utilizing real-time model state information874

when making decisions, the dynamic policies produced by EMODPS are found to sig-875

nificantly outperform policies produced under a more static control formulation akin to876

those commonly used for financial risk management in the water resources literature. A877

posteriori visual analytics and information theoretic sensitivity analysis can be used to878

help decision-makers better understand how the complex, non-linear operating policies879

adapt to real-time information when making decisions. The methodology developed in880

this paper should help stakeholders to better understand the dynamic relationships be-881

tween hydrology, decision-making, and financial outcomes, and facilitate more knowl-882

edgeable and effective management of hydrologic financial risks. This work is applica-883

ble to other electric utilities that rely on hydropower, as well as other stakeholders for884

whom environmental variability poses a significant financial risk, such as water utilities,885

agricultural producers, and renewable energy developers.886
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