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Abstract15

The thickness-weighted average (TWA) framework, which treats the residual-mean flow16

as the prognostic variable, provides a clear theoretical understanding of the eddy feed-17

back onto the residual-mean flow. The averaging operator involved in the TWA frame-18

work, although in theory being an ensemble mean, in practice has often been approx-19

imated by a temporal mean, which conflates the temporal variability with the eddies.20

Here, we analyze an ensemble of North Atlantic simulations at mesoscale permitting res-21

olution (1/12◦). We therefore recognize means and eddies in terms of ensemble means22

and fluctuations about those means, in keeping with the TWA formalism proposed by23

Young (2012). Eddy-mean flow feedbacks are encapsulated in the Eliassen-Palm (E-P)24

flux tensor and its divergence indicates that the eddies contribute to the zonal meander-25

ing of the Gulf Stream and its deceleration in the meridional direction. We also show26

that the eddy Ertel potential vorticity (PV) flux can be parametrized as an isopycnic27

local-gradient flux of the residual-mean Ertel PV via an anisotropic eddy diffusivity ten-28

sor. As the E-P flux divergence and eddy Ertel PV flux are directly related to one an-29

other, this provides a new pathway forward for a unified mesoscale eddy closure scheme.30

Plain Language Summary31

We have greatly benefited from global climate simulations in gaining insight into32

what the climate would look like in an ever warming future. Due to computational con-33

straints, however, the oceanic component of such simulations have been poorly constrained;34

the storm systems in the ocean, often referred to as eddies, have the spatial scales of roughly35

several tens of kilometers and simulating the currents associated with eddies accurately36

on a global scale, which is on the order of thousands of kilometers, has remained chal-37

lenging. Although relatively small in scale compared to the global Earth, eddies have been38

known to modulate the climate by transporting heat from the equator to the poles. By39

running a regional simulation of the North Atlantic Ocean and taking advantage of re-40

cent theoretical developments, we provide a new pathway in improving the representa-41

tion of these eddies and as such, improving global ocean and climate simulations.42

1 Introduction43

Eddy-mean flow interaction has been a key framework in understanding jet forma-44

tion in geophysical flows such as in the atmosphere and ocean (e.g. Vallis, 2017, Chap-45

ters 12 and 15). A prominent example of such a jet in the North Atlantic ocean is the46
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Gulf Stream. Previous studies have shown how eddies fluxing buoyancy and momentum47

back into the mean flow energize the Gulf Stream (Lévy et al., 2010; Waterman & Lilly,48

2015; Chassignet & Xu, 2017; Aluie et al., 2018). Basin-scale simulations, however, of-49

ten lack sufficient spatial resolution to accurately resolve the eddies and hence, result in50

underestimating the eddy fluxes of momentum and tracers (Capet et al., 2008; Arbic et51

al., 2013; Kjellsson & Zanna, 2017; Balwada et al., 2018; Uchida et al., 2019; Schubert52

et al., 2020). Due to computational constraints, we will continue to rely on models which53

only partially resolve the mesoscale, a scale roughly on the order of O(20-200 km) at which54

the ocean currents are most energetic (Stammer, 1997; Xu & Fu, 2011, 2012; Ajayi et55

al., 2020), for global ocean and climate simulations. As a result, there has been an on-56

going effort to develop energy-backscattering eddy parametrizations which incorporate57

the dynamical effects of eddy momentum fluxes due to otherwise unresolved mesoscale58

turbulence (e.g. Kitsios et al., 2013; Zanna et al., 2017; Berloff, 2018; Bachman et al.,59

2018; Bachman, 2019; Jansen et al., 2019; Perezhogin, 2019; Zanna & Bolton, 2020; Ju-60

ricke et al., 2020).61

There has been less emphasis, however, on quantifying the spatial and temporal62

characteristics of the eddy buoyancy and momentum fluxes themselves, which the parametriza-63

tions are deemed to represent. The focus of this study is, therefore, to examine the dy-64

namical effects of mesoscale turbulence on the mean flow in realistic, partially air-sea cou-65

pled, eddying ensemble runs of the North Atlantic. The thickness-weighted average (TWA)66

framework developed by de Szoeke and Bennett (1993), McDougall and McIntosh (2001),67

Young (2012), J. R. Maddison and Marshall (2013) and Aoki (2014) treats the residual-68

mean velocity as a prognostic variable and allows for a straightforward theoretical un-69

derstanding of the eddy feedback onto the (residual) mean flow; the TWA framework70

has been fruitful in examining eddy-mean flow interaction in idealized modelling stud-71

ies (e.g. D. P. Marshall et al., 2012; Cessi & Wolfe, 2013; Ringler et al., 2017; Bire & Wolfe,72

2018). Here, we extend these studies to a realistic simulation of the North Atlantic.73

To our knowledge, Aiki and Richards (2008), Aoki et al. (2016) and Zhao and Mar-74

shall (2020) are the only studies that diagnose the TWA framework in realistic ocean sim-75

ulations. Aiki and Richards (2008), however, recompute the hydrostatic pressure using76

potential density for their off-line diagnosis in defining their buoyancy coordinate, which77

can result in significant discrepancies from the pressure field used in their on-line cal-78

culation and consequently errors in the diagnosed geostrophic shear. Although Aoki et79
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al. (2016) negate this complication between the buoyancy coordinate and mean pressure80

field by analyzing their outputs in geopotential coordinates, they compute the eddy com-81

ponent of the pressure term (F+ in their paper) using potential density, resulting in er-82

rors in the interfacial form stress (viz. this violates equation (9) described below for φ′83

and m′). The usage of geopotential coordinates also limits the eddy terms to second-order84

accuracy. Lastly, all three studies assume ergodicity. The ergodic assumption of treat-85

ing a temporal mean equivalent to an ensemble mean, although a pragmatic one, pre-86

vents examining the temporal evolution of the residual mean fields and conflates tem-87

poral variability with the eddies, which can have leading-order consequences in quan-88

tifying the energy cycle. By adjusting the temporal mean from monthly to annual, Aiki89

and Richards (2008, cf. Table 2 in their paper) show that the amount of kinetic and po-90

tential energy stored in the mean and eddy reservoirs can change by up to a factor of91

four. Eddy-mean flow interaction in the TWA framework, hence, warrants further in-92

vestigation, and we believe our study is the first to strictly implement an ensemble mean93

in this context.94

When discussing eddy versus mean flow, one of the ambiguities lies in how the two95

are decomposed (Bachman et al., 2015). As noted above, often, the eddies are defined96

from a practical standpoint as the deviation from a temporally and/or spatially coarse-97

grained field regardless of the coordinate system (e.g. Aiki & Richards, 2008; Lévy et98

al., 2012; Sasaki et al., 2014; Griffies et al., 2015; Aoki et al., 2016; Uchida et al., 2017;99

Zhao & Marshall, 2020), which leaves open the question of how the filtering affects the100

decomposition. Due to the ensemble averaging nature of the TWA framework, we are101

uniquely able to define the two; the mean flow (ensemble mean) is the oceanic response102

to the surface boundary state and lateral bounday conditions, and the eddy (fluctuations103

about the ensemble mean) is the field due to intrinsic variability of mesoscale turbulence104

(Sérazin et al., 2017; Leroux et al., 2018).105

The paper is organized as follows: We describe the model configuration in section 2106

and briefly provide an overview of the TWA framework in section 3. The results are given107

in section 4. In particular, we highlight in section 4.2 how the Eliassen-Palm (E-P) flux108

divergence is related to the Ertel potential vorticity (PV) and that it can be parametrized109

via a local-gradient flux closure. Discussion and conclusions are given in section 5.110
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2 Model description111

We use the model outputs from the realistic runs described in Jamet et al. (2019b)112

and Jamet et al. (2020), which are 24 air-sea partially coupled ensemble members of the113

North Atlantic ocean at mesoscale permitting resolution (1/12◦) using the hydrostatic114

configuration of the Massachusetts Institute of Technology general circulation model (MITgcm;115

J. Marshall et al., 1997). We have 46 vertical levels increasing from 6 m near the sur-116

face to 250 m at depth. Harmonic, biharmonic horizontal and vertical viscosity values117

of Ah2 = 20 m2 s−1, Ah4 = 1010 m4 s−1 and Av = 10−5 m2 s−1 were used respec-118

tively. For completeness, we provide a brief summary of the configuration below.119

Figure 1 shows the bathymetry of the modelled domain extending from 20◦S to 55◦N.120

In order to save computational time and memory allocation, the North Atlantic basin121

was configured to zonally wrap around periodically. Open boundary conditions are ap-122

plied at the north and south boundaries of our domain and Strait of Gibraltar, such that123

oceanic velocities (u) and tracers (θ, s) are restored with a 36 minutes relaxation time124

scale toward a state derived by an ocean-only global Nucleus for European Modelling125

of the Ocean (NEMO) simulation (Molines et al., 2014, ORCA12.L46-MJM88 run in their126

paper, hereon referred to as ORCA12). The open boundary conditions are prescribed127

every five days from the ORCA12 run and linearly interpolated in between. A sponge128

layer is further applied to two adjacent grid points from the open boundaries where model129

variables are restored toward boundary conditions with a one-day relaxation time scale.130

In total, relaxation is applied along three grid points from the boundaries with it being131

the strongest at the boundary. Although relatively short, no adverse effects were appar-132

ent upon inspection in response to these relaxation time scales; e.g. changes in the open133

boundary conditions were seen to induce a physically consistent Atlantic Meridional Over-134

turning Circulation response inside the domain (Jamet et al., 2020).135

The 24-member ensemble was constructed as follows: 24 oceanic states separated136

by 48 hours each were taken during an initial month-long integration beginning Decem-137

ber 8, 1962, upon which 24 simulations were run using these as the initial conditions un-138

der a yearly repeating atmospheric and boundary condition of 1963. At the surface, the139

ocean is partially coupled to an atmospheric boundary layer model (CheapAML; Derem-140

ble et al., 2013). In CheapAML, atmospheric surface temperature and relative humid-141

ity respond to ocean surface structures by exchanges of heat and humidity computed ac-142

cording to the Coupled Ocean–Atmosphere Response Experiment (COARE3; Fairall et143
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Figure 1. Bathymetry of the modelled domain. The domain was configured to wrap around

zonally in order to save computation and memory allocation when generating the ensemble. The

hatches indicate the northern and southern regions excluded from our analysis.

al., 2003) flux formula, but are strongly restored toward prescribed values over land; there144

are no zonally propagating signals of climate teleconnection. The prescribed atmospheric145

state is taken from the Drakkar forcing set and boundary forcing from the ORCA12 run146

(details are given in Jamet et al., 2019a). After a year of integration from the 24 states,147

the last time step from each simulation was taken as the initial condition for the 24 en-148

semble members; each spun-up initial oceanic state is physically consistent with the at-149

mospheric and boundary conditions of January 1, 1963 (details are given in Jamet et al.,150

2020). The 24 ensemble members are then integrated forward in time for 50 years (1963-151

2012), and exposed to the same realistic forcing across all ensemble members. (Note that152

the boundary forcings are no longer cyclic after the spin-up phase.) During this inter-153

val, the oceanic state and the atmospheric boundary layer temperature and humidity evolve154

in time. In the following, we interpret the ensemble mean as the ocean response to the155

atmospheric state prescribed within the atmospheric boundary layer as well as the oceanic156

conditions imposed at the open boundaries of the regional domain, while the ensemble157

spread is attributed to intrinsic ocean dynamics that develop at mesoscale-permitting158

resolution (Sérazin et al., 2017; Leroux et al., 2018; Jamet et al., 2019b).159

The model outputs were only saved as five-day averages. From a probabilistic per-160

spective, the five-day averaging results in more Gaussian-like eddy statistics (based on161

the central-limit theorem). From a dynamical point of view, this does not allow us to162
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close the residual-mean and eddy budgets (cf. G. Stanley, 2018, Section 4.4). Neverthe-163

less, we believe the ensemble dimension of our dataset provides an unique opportunity164

to examine the TWA eddy-mean flow interaction and its implication on mesoscale clo-165

sure schemes. In the context of eddy parametrizations, which we discuss in section 4.2,166

some temporal averaging is appropriate in order to filter out temporal scales shorter than167

the mesoscale eddies themselves. In the following analysis, we exclude the northern and168

southern extent of 5◦ and from our analysis and use the last five years of output (2008-169

2012) to avoid effects from the open boundary conditions and sponge layer (Figure 1),170

and to maximize the intrinsic variability amongst the ensemble members respectively.171

3 Theory and implementation of thickness-weighted averaging172

The ocean is a stratified fluid, and the circulation and advection of tracers tend to173

align themselves along the stratified density surfaces. Hence, a natural way to under-174

stand the circulation is to consider the variables in a buoyancy framework and the residual-175

mean flow rather than the Eulerian mean flow. We leave the detailed derivation of the176

TWA framework to Young (2012) and here, only provide a brief summary; the primi-177

tive equations in geopotential coordinates are first transformed to buoyancy coordinates178

upon which a thickness weighting and ensemble averaging along constant buoyancy sur-179

faces are applied to obtain the TWA governing equations. Following the notation by Young180

(2012) and Ringler et al. (2017), the TWA horizontal momentum equations in the buoy-181

ancy coordinate system (t̃, x̃, ỹ, b̃) are:182

ût̃ + ûûx̃ + v̂ûỹ + $̂ûb̃ − fv̂ +mx̃ = −e1 · (∇̃ ·E) + X̂ (1)183

184

v̂t̃ + ûv̂x̃ + v̂v̂ỹ + $̂v̂b̃ + fû+mỹ = −e2 · (∇̃ ·E) + Ŷ (2)185

where (·) and (̂·) def
= σ−1σ(·) are the ensemble averaged and TWA variables respectively186

where σ(= ζb̃) is the thickness and ζ the depth of an iso-surface of buoyancy. The sub-187

scripts denote partial derivatives. The Montgomery potential is m = φ − b̃ζ where φ188

is the dynamically active part of hydrostatic pressure. The vectors e1 = i + ζ x̃k and189

e2 = j+ζ ỹk form the basis vectors spanning the buoyancy horizontal space where i, j190

and k are the Cartesian geopotential unit vectors, and E is the E-P flux tensor described191

in detail in Section 4.1. Although each ensemble member has an individual basis (e1, e2),192

the E-P flux divergence yields no cross terms upon averaging as the TWA operator com-193

mutes with the divergence of E (for mathematical details, see Section 3.4 in J. R. Mad-194
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dison & Marshall, 2013); this allows for the tensor expression in equations (1) and (2).195

X and Y are the viscous and forcing terms.196

One subtle yet important point involves the buoyancy coordinate (b̃) for a realis-197

tic, non-linear equation of state (EOS) for density (Jackett & Mcdougall, 1995). The anal-198

ysis in Young (2012) implicitly assumes a linear EOS. With a realistic EOS the verti-199

cal coordinate can no longer “naively” be defined by potential density for example, and200

is the subject of some debate (e.g. Montgomery, 1937; Jackett & McDougall, 1997; Mc-201

Dougall & Jackett, 2005; de Szoeke & Springer, 2009; Klocker et al., 2009; Tailleux, 2016;202

Lang et al., 2020). We argue for the use of in-situ density anomaly (δ
def
= ρ−ρ

∼
(ζ) where203

ρ is the in-situ density and ρ
∼

is a function of only depth; Montgomery, 1937) for prac-204

tical reasons provided below in order to remove the effect of compressibility; other choices205

can be made (G. J. Stanley, 2019b, 2019a). The formulation of in-situ density anomaly206

is analogous to where ρ
∼
→ d

dz

∫
ρ0dz and the anomaly reduces to δ = ρ− ρ0 for a lin-207

ear EOS where ρ0 = 999.8 kg m−3 is the Boussinesq reference density prescribed in MIT-208

gcm. The buoyancy can then be defined as:209

b
∼

= − g

ρ0
δ

def
= b̃ (3)210

where b̃ denotes the vertical coordinate. The question becomes how to choose ρ
∼

(ζ) so211

that monotonicity is maintained (b̃ζ > 0). The vertical derivative of the in-situ den-212

sity anomaly can be decomposed as:213

δζ = ρζ −
d

dζ
ρ
∼

= ρΦ
dΦ

dζ
− d

dζ
ρ
∼

=
−ρ0g

c2s
− d

dζ
ρ
∼
, (4)214

where Φ = −gζ is the dynamically non-active part of hydrostatic pressure and cs is the215

sound speed. For simplicity, we can write d
dζ ρ∼

def
= −ρ0gC−2

s where Cs = Cs(ζ) is a func-216

tion of only depth, which yields:217

b̃ζ = − g

ρ0
δζ = g2 C2

s − c2s
c2sC2

s

. (5)218

Denoting Cs = cs + ∆ where c−1
s ∆ � 1, the right-hand side (RHS) of equation (5)219

becomes:220

g2 (cs + ∆)2 − c2s
c2sC2

s

≈ g2

C2
s

[(
1 +

2∆

cs

)
− 1
]

=
2g2∆

csC2
s

∼ O(10−6). (6)221

Hence, so long as Cs & cs, monotonicity is assured while removing a large portion of222

compressibility, i.e. the iso-surfaces of b̃ become close to neutral surfaces. In practice,223

we chose Cs to take the value of maximum sound speed at each depth over the entire en-224
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semble. The buoyancy equation using the in-situ density anomaly becomes:225

Db̃

Dt
= b̃θ θ̇ + b̃sṡ+ b̃ζ

Dζ

Dt
(7)226

= B + wg2 C2
s − c2s
c2sC2

s

, (8)227

228

where B def
= b̃θ θ̇+ b̃sṡ, and θ̇ and ṡ are the net diabatic contributions on potential tem-229

perature and practical salinity respectively, which we approximate by diagnosing off-line230

the sum of harmonic and bihamonic diffusion below the mixed layer using the five-day231

averaged outputs of θ and s. The RHS of (8) can be summarized as the dia-surface ve-232

locity $
def
= B + wg2 C2s−c

2
s

c2sC2s
. A further requirement of the TWA framework is that the233

pressure anomaly defined by such buoyancy coordinate transforms into a body force in234

the buoyancy coordinate:235

∇hφ
∼

(b̃) = ∇̃hm. (9)236

Using the in-situ buoyancy anomaly, the pressure anomaly becomes:237

φ
∼

=

∫
b̃ dζ, (10)238

while the pressure anomaly for a Boussinesq hydrostatic fluid is:239

φ =

∫
− g

ρ0
(ρ− ρ0) dζ. (11)240

Since ρ
∼

is only a function of depth, the horizontal gradient of the two remain identical241

(∇hφ
∼

= ∇hφ) and equation (9) holds. (We note that equation (9) does not hold for pres-242

sure anomaly defined by potential density when the EOS is non-linear, and is non-trivial243

for other density variables such as neutral and orthobaric densities.) The use of in-situ244

density anomaly to define the buoyancy coordinate maintains the desirable properties245

of a unique, statically stable vertical coordinate and a simple hydrostatic balance (σ =246

ζb̃ = −mb̃b̃) while removing more than 99% of the effect of compressibility basin wide247

at each depth as Cs is global variable (
g2(c−2

s −C
−2
s )

g2c−2
s

≈ 2cs∆
C2s
∼ O(10−2)). For a non-linear248

EOS, a material conservation of potential vorticity (PV) and non-acceleration conditions249

do not exist (cf. Vallis, 2017, Chapter 4). Discussion regarding the energetics are given250

in Appendix A.251

The raw simulation outputs were in geopotential coordinates so we first remapped252

all of the variables in equations (1) and (2) onto 60 buoyancy levels spread across the253

range of b̃ ∈ (−0.2826,−0.2060) m s−2 (with the mathematical formulation of δ = δ0+254

Aδ
tanh (τ)

tanh (τmax) where δ0 = 21 kg m−3, Aδ = 7.8 kg m−3, and τ ∈ [0, 2) in order to ac-255
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count for the abyssal weak stratification):256

(u, b
∼
,∇hφ

∼
, θ, s,$)(t, x, y, z) 7−→ (u, ζ, ∇̃hm, θ, s,$)(t̃, x̃, ỹ, b̃) (12)257

using the fastjmd95 Python package to compute the in-situ density and its partial deriva-258

tives (Abernathey, 2020), and the xlayers Python package (Jones, 2019; Jones et al.,259

2020) which implements the MITgcm layers package off-line and allows for coordinate260

remapping consistent with the finite-volume discretization. The horizontal velocity vec-261

tor is u = ui+vj = ue1 +ve2. For the horizontal pressure anomaly gradient, we have262

invoked the identity:263

∇hφ
∼

(z) 7−→ ∇hφ
∼

(b̃) = ∇̃hm (13)264

where the subscript (·)h represents the horizontal gradient and ∇̃h = (∂x̃, ∂ỹ) and we265

re-computed the pressure anomaly using the five-day averaged outputs.266

4 Results267

We start by showing the time series of domain-averaged horizontal kinetic energy268

(KE) and potential temperature (Figure 2a). Figure 2a shows the simulation has a promi-269

nent seasonal cycle with a slight cooling trend. In Figure 2, we also show the (residual)270

mean fields on January 3, 2008, the first day of the five years of output we analyze. The271

depth of the buoyancy level shown in Figure 2c is below the ensemble-mean mixed-layer272

depth (MLD; Figure 2b) basin wide where diabatic effects are small. We focus on this273

buoyancy level for the remainder of this study as it is below the MLD and the iso-surface274

of buoyancy does not outcrop but is shallow enough to capture the imprint of the Gulf275

Stream and eddies; the iso-surface shoals drastically across the latitude of 38◦N where276

the separated Gulf Stream is situated (Figure 2d). The ensemble-mean MLD was com-277

puted as the depth at which the potential density computed from ensemble-mean tem-278

perature and salinity fields increased by 0.03 kg m−3 from the density at 10 m depth (MLD
def
=279

MLD(θ, s); de Boyer Montégut et al., 2004). The mean KE field (K# def
= |û|2/2; Fig-280

ure 2d) shows the characteristic features of the Gulf Stream, North Brazil Current and281

equatorial undercurrent. The mean Rossby number (Ro# def
= f−1(v̂x̃ − ûỹ)) shown in282

Figure 2e is smaller than unity except for near the equator where the Coriolis param-283

eter becomes small, indicating that over most of the North Atlantic basin, the mean flow284

in the interior is balanced. The kinematics of discretizing the gradients in buoyancy co-285

ordinates are given in Appendix B. We now move on to examine the eddy feedback onto286

the mean flow.287
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a

d

b c

e

Figure 2. Time series of the domain-averaged KE (black) and potential temperature (red) for

the 24 ensemble members between 10◦S-50◦N. The thick lines show the ensemble mean and the

thin lines each ensemble member a. b,c The ensemble-mean MLD on January 3, 2008 and depth

of the iso-surface of buoyancy b̃ = −0.260 m s−2. d,e The residual-mean kinetic energy (K#) and

Rossby number (Ro#) on the same buoyancy surface.
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4.1 The Eliassen-Palm flux tensor288

The E-P flux tensor (E) in the TWA framework (eqns. (1) and (2)) is:289

E =


û′′u′′ + 1

2σ ζ
′2 û′′v′′ 0

v̂′′u′′ v̂′′v′′ + 1
2σ ζ
′2 0

$̂′′u′′ + 1
σ ζ
′m′x̃ $̂′′v′′ + 1

σ ζ
′m′ỹ 0

 (14)290

where (·)′′ = (·) − (̂·) and (·)′ = (·) − (·) are the residual of instantaneous snapshot291

outputs from the thickness-weighted and ensemble averages respectively (J. R. Maddi-292

son & Marshall, 2013; Aoki, 2014; Ringler et al., 2017). The two are related via the (eddy-293

induced) quasi-Stokes velocity (Greatbatch, 1998; McDougall & McIntosh, 2001):294

u′′ = u− σu

σ
= u + u′ − (σ + σ′)(u + u′)

σ
(15)295

= u′ +
σ′u′

σ
. (16)296

297

We show each term in equation (14) in Figure 3. The Reynolds stress term û′′v′′ is as-298

sociated with barotropic processes (Figure 3a; Vallis, 2017, Chapter 15). The eddy mo-299

mentum flux terms |̂u′′|2 in Figure 3c,d are seen to exchange momentum between ed-300

dies and the mean flow, i.e. to accelerate or decelerate the Gulf Stream. The interfacial301

form stress (ζ ′∇̃hm′; Figure 3e,f) associated with baroclinic instability is “deceivingly”302

orders of magnitude smaller than the other terms. It is important to keep in mind, how-303

ever, that it is the divergence of the E-P flux and not the flux itself that goes into the304

momentum equations, and the horizontal (∇̃h) and vertical gradient (∂b̃) differ by roughly305

O(106). The contribution from the adiabatic and compressibility effects (i.e. the terms306

with $) were smaller than the interfacial form stress by another order of magnitude or307

more in the subtropics (not shown).308

Writing out the E-P flux divergence in eqns. (1) and (2) gives:309

−e1 · (∇̃ ·E) = −σ−1
([
σ(û′′u′′ +

1

2σ
ζ ′2)
]
x̃

+
[
σv̂′′u′′

]
ỹ

+
[
σ($̂′′u′′ +

1

σ
ζ ′m′x̃)

]
b̃

)
(17)310

= −σ−1
(

[σu′′u′′ + ζ ′2/2]x̃ + [σv′′u′′]ỹ + [σ$′′u′′ + ζ ′m′x̃]b̃

)
, (18)311

def
= −(E00

x̃ + E10
ỹ + E20

b̃
) (19)312

313

314

−e2 · (∇̃ ·E) = −σ−1
([
σû′′v′′

]
x̃

+
[
σ(v̂′′v′′ +

1

2σ
ζ ′2)
]
ỹ

+
[
σ($̂′′v′′ +

1

σ
ζ ′m′ỹ)

]
b̃

)
(20)315

= −σ−1
(

[σu′′v′′]x̃ + [σv′′v′′ + ζ ′2/2]ỹ + [σ$′′v′′ + ζ ′m′ỹ]b̃

)
, (21)316

def
= −(E01

x̃ + E11
ỹ + E21

b̃
). (22)317

318
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Figure 3. The residual-mean Ertel potential vorticity normalized by the local Coriolis param-

eter (Π#/f
def
= σ−1(1 + Ro#)) a and terms in the E-P flux tensor b-f on January 3, 2008 on the

iso-surface of buoyancy as in Figure 2. Note the scaling factors on panels a, e and f.
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Figure 4 shows each term in the E-P flux divergence. The first thing to note is that the319

signal in the separated Gulf Stream dominates over the entire North Atlantic gyre; this320

is consistent with Jamet et al. (2021) where they found the subtropical gyre to be a Fofonoff-321

like inertial circulation (Fofonoff, 1981), and that the separated jet was where the en-322

ergy input from surface winds were predominantly lost to eddies. The divergence of in-323

terfacial form stress becomes larger than the divergence of the Reynolds stress term at-324

tributable to barotropic instability, which is the smallest amongst the three terms in the325

E-P flux divergence (Figure 4b,c) including the North Brazil Current region. It is quite326

surprising that the signals in the equatorial undercurrent region, although having rel-327

atively high KE (Figure 2d), are significantly smaller than in the Gulf Stream and North328

Brazil Current regions, virtually not visible in Figures 3 and 4. This implies that the residual-329

mean flow dominates over the eddies in the equatorial region.330

We now examine further details in the separated Gulf Stream region. The dipole331

features for the zonal direction in the divergence of eddy momentum fluxes and inter-332

facial form stress likely contribute to the jet meandering (Figure 4a,e). In the meridional333

direction, the eddy momentum flux divergence tends to shift the separated Gulf Stream334

northwards (flux momentum into the jet on the northern flank and out of it on the south-335

ern flank; Figure 4d), while the divergence of interfacial form stress (i.e. baroclinic in-336

stability) counteracts to shift the jet southwards (Figure 4f). The two tend to cancel each337

other out (Figure 4a,d,e,f), however, with the residual generally having the same struc-338

tures as the eddy momentum flux divergence in the zonal direction (Figure 4a,g), and339

meridional direction (Figure 4d,h). This implies that in our model, barotropic processes340

dominate over baroclinic in the separated Gulf Stream, which is consistent with Jamet341

et al. (2021). In order to estimate the integrated net effect between the divergence of eddy342

momentum fluxes and interfacial form stress, we compute the volume average of them343

(E00
x̃ , E

20
b̃

and E11
ỹ , E

21
b̃

) over buoyancy levels roughly corresponding to the depths of 300-344

1000 m for the northern flank (38◦N-40◦N; Figure 5c,d) and southern flank (36◦N-38◦N;345

Figure 5e,f) respectively over the zonal extent of 29◦E-305◦E where the separated Gulf346

Steam is roughly zonal. The separated Gulf Stream can be identified with the steep shoal-347

ing of the iso-surfaces of buoyancy between 36◦N-40◦N (Figure 5a,b). The overall mag-348

nitude and reversal in sign around 40◦N with diminishing amplitude with depth for the349

zonal E-P flux divergence (−e1·(∇̃·E); Figure 5a) is roughly in agreement with Ringler350

et al. (2017, their Figure 6 where the sign convention in equation (17) is reversed from351

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a

hg

fe

dc

b

Figure 4. The terms in the divergence of E-P flux tensor on January 3, 2008 on the iso-

surface of buoyancy as in Figure 2. Positive values (red shadings) indicate the eddies fluxing

momentum to the mean flow and visa versa a-f. The panels are laid out so that summing up

the top three rows per column yields the total zonal (−e1 · (∇̃ · E)) g and meridional E-P flux

divergence (−e2 · (∇̃ ·E)) h respectively.
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ours for the eddy forcing term and their units are in [m s−1 day−1]) where they diag-352

nosed an idealized zonally re-entrant jet. We would like to note that unlike Ringler et353

al. (2017), we do not take the zonal mean to define the mean flow so we are able to dis-354

cuss zonal inhomogeneities in the TWA structure. Figure 5c-f shows that the two tend355

to counteract each other with opposite signs on the northern and southern flank of the356

jet throughout the five years of output we analyze. The divergence of E-P flux closely357

follows that of eddy momentum fluxes. This counteracting balance is consistent with what358

Aoki et al. (2016, the terms ∂xR
x and ∂z(R

z + F+
a ) in their Figures 5a and 6) found359

in the Kuroshio extension region.360

4.2 The Ertel potential vorticity flux361

As was noted by Young (2012), the E-P flux divergence is directly related to the362

eddy Ertel PV flux and can be written as:363

e1 · (∇̃ ·E) = −σF# · j , e2 · (∇̃ ·E) = σF# · i , (23)364

where F# def
= F#1e1 + F#2e2 = σ−1

[
{e2 · (∇̃ · E)}e1 − {e1 · (∇̃ · E)}e2

]
and Π# def

=365

σ−1(f+ v̂x̃− ûỹ) are the eddy Ertel PV flux and residual-mean Ertel PV respectively.366

Note Π#, computed from the residual-mean velocities, is different from the TWA Ertel367

PV, viz. Π̂ = σ−1σΠ = σ−1(f+vx̃−uỹ) and consequently F# 6= û′′Π′′; the difference368

has to due with the cross-product operator not commuting with the TWA operator (J. R. Mad-369

dison & Marshall, 2013). Equation (23) implies that if we are able to parametrize the370

eddy Ertel PV flux, equivalently we have parametrized the eddy feedback onto the mean371

flow encapsulated in the E-P flux divergence.372

It is well known that i) the governing equation for Ertel PV is similar to that of373

passive tracers (e.g. Haynes & McIntyre, 1987, and references therein), and ii) mesoscale374

eddies stir passive tracers along neutral surfaces (Redi, 1982; Gnanadesikan et al., 2015;375

Naveira Garabato et al., 2017; Griffies, 2004; Jones & Abernathey, 2019; Uchida et al.,376

2020). Minimizing the effect of compressibility in the buoyancy coordinate (equation (3))377

also minimizes the solenoidal baroclinicity term (viz. ∇̃b̃ ·(∇̃ρ×∇̃φ); Vallis, 2017, see378

Section 4.5 for more details) and further primes us to treat Ertel PV as a tracer. One379

significant difference between Ertel PV and passive tracers, however, is in its dynami-380

cal significance; the Ertel PV feeds back onto the dynamics in the form of eddy fluxes381

perhaps most well known in the transformed-Eulerian mean framework (e.g. Vallis, 2017,382

Chapter 10). This has led to the idea that the dynamical effect of mesoscale turbulence383
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a b

c

f

e

d

Figure 5. The zonal-mean transect between 290◦E-305◦E of the E-P flux divergence on

January 3, 2008 is shown in colored shading and ensemble-mean depth in black contours a,b.

The iso-surface of buoyancy used through Figures 2-4 is shown as the black dashed line. The

masked out region north of 40N near the surface is where the iso-surfaces of buoyancy outcrop

across all ensemble members. c-f Time series the volume-averaged divergence of eddy momentum

flux (−E00
x̃ , −E11

ỹ ; black solid), interfacial form stress (−E20
b̃

, −E21
b̃

; red solid), and E-P flux

(−e1 · (∇̃ · E), −e2 · (∇̃ · E); black dashed). Note the order of magnitude difference between the

black and red y axis.
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may be parametrized as a local gradient flux of the mean Ertel PV (e.g. Killworth, 1997;384

Greatbatch, 1998; D. P. Marshall et al., 1999, 2012; Eden, 2010), i.e.385

F# = −κ∇̃hΠ#, (24)386

where κ is the eddy diffusivity. Equations (1), (2), (23) and (24) provide a pathway for387

a unique solution for the eddy closure problem as the divergence of fluxes is gauge in-388

variant (J. R. Maddison & Marshall, 2013).389

While it is tempting to directly infer a scalar eddy diffusivity from equation (24),390

assuming an isotropic diffusivity for an anisotropic flow as in our realistic simulation is391

a poor approximation (R. D. Smith & Gent, 2004; Ferrari & Nikurashin, 2010; Fox-Kemper392

et al., 2013). We, therefore, take the approach of estimating the eddy diffusivity tensor393

(K) from a least-squares best fit to (Plumb & Mahlman, 1987; Abernathey et al., 2013;394

Bachman & Fox-Kemper, 2013):395 
û′′θ′′ v̂′′θ′′

û′′s′′ v̂′′s′′

F#1 F#2


︸ ︷︷ ︸

F

= −


θ̂x̃ θ̂ỹ

ŝx̃ ŝỹ

Π#
x̃ Π#

ỹ


︸ ︷︷ ︸

G

·

 κuu κvu

κuv κvv


︸ ︷︷ ︸

K

. (25)396

In studies trying to parametrize the eddy-induced fluxes of isopycnal thickness, they have397

the freedom to parametrize the total flux or only its divergent component as it is the eddy398

flux divergence that enters the buoyancy equation (e.g. Eden et al., 2007; Grooms & Kleiber,399

2019). This has caused some ambiguity on how the rotational component of the eddy400

flux, often referred to as the gauge freedom, should be treated (discussed in depth by Griffies,401

2004). However, since the TWA equations are forced directly by the eddy Ertel PV flux402

itself and not its divergence, we do not need to consider the discussion centred around403

rotational fluxes. In other words, equation (23) makes the case for parametrizing the to-404

tal eddy flux, as opposed to solely its divergent component, when formulating a closure405

scheme for Ertel PV. The assumption that goes into equation (25) is that the eddy flux406

of temperature, salinity and Ertel PV behave statistically in a similar manner (Bachman407

et al., 2015). Since they are all active tracers, we would expect this assumption to hold408

to a good degree.409

The least-squares fit can be estimated as K = G+F where G+ is the Moore-Penrose410

psuedo inverse of G for each data point (Bachman et al., 2015). Although it is possible411

to invert equation (25) with just two tracers, the inversion becomes ill defined unless their412

distributions are orthogonal to one another (Bachman et al., 2015). We have, thus, kept413
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it over-determined using three tracers. The gradients of the mean field tended to be noisy414

due to errors accumulating from the remapping process (equation (12)). Therefore, we415

applied a convolutional spatial smoothing to the mean fields (θ̂, ŝ,Π#) prior to taking416

their gradient and eddy terms (viz. each element in F) with a 15×15 Hann filter in the417

horizontal grid points using the xscale Python package (Sérazin, 2019). The spatial smooth-418

ing can be considered similar to a numerical convergence of the fields with an increase419

in the number of ensemble members. Each row in F and G was then normalized by hor-420

izontal median of the magnitude of each eddy fluxes (i.e. (GC ,FC)
median[|GC |] where FC is the421

smoothed eddy flux of an arbitrary tracer C) prior to the inversion so that each tracer422

had roughly equal weighting in inverting equation (25).423

From Figure 4, it is evident that the equatorial region contributes little to the Gulf424

Stream, so we will focus on north of 20◦N in this section. Figure 6a,b shows the diag-425

nosed smoothed eddy Ertel PV flux (FΠ), which we refer to as the “true” flux, and its426

reconstructed equivalent via equation (25) as a local-gradient flux of the mean Ertel PV427

(FΠ
reconstructed = GΠ·KΠ; Figure 6c,d). (We show the reconstruction of the eddy tem-428

perature and salinity fluxes in Figures C1 and C2.) We see that the local-gradient flux429

closure successfully captures the spatial features of the true flux with the residual be-430

tween the two being small (Figure 6e,f). The residual comes from the smoothing we have431

applied prior to inverting equation (25) and/or errors in the remapping and discretiza-432

tion, but it is likely that this residual would decrease with an increase in the number of433

ensemble members. One may argue that since we are fitting the eddy diffusivities, the434

agreement is to be expected. It is nevertheless encouraging to see how well the eddy Er-435

tel PV fluxes can be represented via an anisotropic eddy diffusivity tensor (Figure 7) com-436

pared to previous studies reconstructing the eddy tracer fluxes with a scalar diffusivity437

(e.g. Wilson & Williams, 2006; Eden & Greatbatch, 2008; J. Maddison et al., 2015; Mak438

et al., 2016). This also provides confidence to the assumption behind equation (25) that439

Ertel PV behaves similarly to active tracers along buoyancy contours. In other words,440

along with the TWA framework, we have chosen the appropriate regression model to re-441

late the total eddy transport of active tracers to their mean fields.442

The diffusivities presented in Figure 7a-d are roughly on the same order as previ-443

ous estimates based on satellite products (J. Marshall et al., 2006; Abernathey & Mar-444

shall, 2013; Klocker & Abernathey, 2014; Busecke et al., 2017; Bolton et al., 2019), in-445

situ observations (Cole et al., 2015; Roach et al., 2018; Groeskamp et al., 2020), and mod-446
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FΠ1 FΠ2

Figure 6. The diagnosed zonal and meridional eddy PV flux on January 3, 2008 on the iso-

surface of buoyancy as in Figure 2 where FΠ (= FΠ1e1 + FΠ2e2) is the smoothed F#. We see

a strong signal in the Gulf Stream region a,b. c,d The reconstructed eddy PV flux via equa-

tion (25). e,f The residual between the true and reconstructed eddy PV flux.
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elling studies (Wilson & Williams, 2006; S. K. Smith & Marshall, 2009; Liu et al., 2012;447

Abernathey et al., 2013; Bachman & Fox-Kemper, 2013; Bachman et al., 2020; Num-448

melin et al., 2020), which range spatially between O(102–106) [m2 s−1]. The negative449

values, however, may come as a surprise. One of the key differences from the satellite450

and in-situ observation based estimates is that we do not assume an isotropic down-gradient451

flux closure with a scalar diffusivity. In other words, the negative ”κ”s do not necessar-452

ily translate to up-gradient tracer fluxes as, based on equation (25), the closure is a lin-453

ear combination of the zonal and meridional gradients; the fluxes could be down gradi-454

ent in the two-dimensional sense. On the other hand, in cases where the eddy fluxes are455

locally oriented up gradient of the mean tracer field, negative “κ”s would be a faithful456

representation of this. We show the inner angle between the smoothed eddy flux and gra-457

dient of the mean field:458

ϕC = arccos

[
FC ·GC

|FC ||GC |

]
, (26)459

in Figure 8 for each tracer; a down-gradient eddy flux would result in ϕ ∼ 0. There are460

regions of both down-gradient and up-gradient eddy fluxes on the spatial scales as seen461

in the diffusivities for all three tracers (Figures 7a-d and 8). Although the eddy fluxes462

should be down gradient of the mean field in the global sense in order to allow for the463

homogenization of tracers (D. P. Marshall et al., 2012; J. R. Maddison & Marshall, 2013),464

a locally up-gradient eddy flux is associated with an up-gradient transfer of tracer vari-465

ance. It should not be surprising that in a realistic simulation, instantaneous fields of466

tracer variance can be spatially inhomogenous with sources, sinks and transport of vari-467

ance (Wilson & Williams, 2006; Chen & Waterman, 2017; Bachman et al., 2020). In the468

context of energy-backscattering eddy parametrizations, when the tracer is Ertel PV, an469

up-gradient eddy flux is equivalent to the eddies fluxing momentum back into the mean470

flow, which is precisely the effect we would want to represent.471

It is also informative to examine the diffusive component of the diffusivity tensor472

in regards to isopycnic tracer mixing, i.e. the eigenvalues of the symmetric part of the473

tensor (S
def
= (K+KT)/2 where KT is the transpose). Since equation (25) only includes474

isopycnic eddy fluxes, the eigenvectors of S indicate in which direction the eddies tend475

to stir the tracers along buoyancy planes with a diffusivity corresponding to each eigen-476

value. The spatial median of the eigenvalues along the major-axis (λM ) and minor-axis477

(λm) of eigenvectors on January 3, 2008 (Figure 7e,f) are 2363.4 (8370.7) m2 s−1 and478

110.0 (1694.6) m2 s−1 respectively with a long tail in both positive and negative values.479
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Figure 7. The diagnosed eddy diffusivity parameters via equation (25) in the diffusivity ten-

sor K on January 3, 2008 on the iso-surface of buoyancy as in Figure 2 a-d. e,f The major- and

minor-axis eigenvalues of the diffusivity tensor.

[radian]

a b c

0 π /4 π /2 3π /4 π

φθ φs φΠ

Figure 8. The inner angle between the eddy flux and horizontal gradient of the mean on

January 3, 2008 for potential temperature (ϕθ) a, practical salinity (ϕs) b and Ertel PV (ϕΠ) c

on the buoyancy layer as in Figure 2. The angles are close to zero when the eddy flux is oriented

down gradient of the mean Ertel PV and close to π when oriented up gradient.
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The values in round brackets show the median of the normed diffusivities |λM | and |λm|480

respectively and do not show a clear seasonality (Figure 9a). The negative values likely481

come from the mean flow being strongly inhomogeneous. The spatial median of the anisotropy482

parameter (|λM |/|λm|) is around 4.37. Although the order of magnitude of the eigen-483

values is similar to previous modelling studies (e.g. Abernathey et al., 2013; Bachman484

et al., 2020), it is difficult to make a direct comparison due to the differences in the av-485

eraging operator and model configuration.486

We end this section by quantifying the performance of reconstructing the eddy fluxes487

and show the spatial correlation and error between the true and reconstructed flux along488

the temporal and buoyancy dimensions:489

rC =

∑[
(FC − 〈FC〉)(FCreconstructed − 〈FCreconstructed〉)

]√∑
(FC − 〈FC〉)2

√∑
(FCreconstructed − 〈FCreconstructed〉)2

, (27)490

491

EC def
=
|FC − FCreconstructed|

|FC |
, (28)492

where 〈·〉 is the horizontal domain average and the summation (
∑

) is taken over the hor-493

izontal spatial dimension. The spatial correlation and error metric complement one an-494

other as rC is sensitive to extrema due its dependence on the spatial mean and EC is sen-495

sitive to very small values of eddy fluxes in its dominator (Figure C3). Equations (27)496

and (28) were calculated using every three grid points in the zonal and meridional di-497

mension between 20◦N-50◦N and 270◦E-340◦E, and every two grid points in the buoy-498

ancy dimension across the range roughly corresponding to depths between 300–2000 m.499

The correlation is generally higher than 0.3 for all three tracers across all seasons in the500

quasi-adiabatic interior for the five years of output we analyze (Figure 9b). The corre-501

lation of Ertel PV shows a seasonal cycle where it decreases over the winter (December-502

April) but is higher than 0.9 for the other seasons which is quite remarkable. During win-503

tertime, the MLD deepens making the fluctuation of thickness (σ) near the surface large;504

the increase in correlation can be seen with depth (Figure 9d). The large temporal fluc-505

tuations in correlation is likely due to extrema values (Figure 9b) as the spatial median506

of the error is stable over the entire time series (Figure 9c). The robustness of our di-507

agnosed diffusivities can also be seen from the vertical structure of the error (Figure 9e,g,i);508

it shows very little temporal variation regardless of the date.509
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Jan. 18, 2012 Jul. 11, 2012 Sep. 24, 2012
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a

b

c

i

Figure 9. Timeseries of the spatial median of the normed major eigenvalue of the diffusiv-

ity tensor on the buoyancy level as in Figure 2 plotted against the left y axis (blue; |λM |) and

normed minor eigenvalue plotted against the right y axis (orange; |λm|). Note the difference in

the left and right y axes a. b,c The correlation coefficient and spatial median of the error for

potential temperature (red; rθ, Eθ), practical salinity (green; rs, Es) and Ertel PV (black; rΠ, EΠ).

The zonal component is shown in solid lines and the meridional in dotted lines. The correlation

coefficients and error on the buoyancy level as in Figure 2. The circle, triangle and plus markers

indicate the dates we show the vertical profiles. d-i The vertical profiles on January 18, July 11,

and September 24 in 2012.

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

5 Discussion and summary510

By running a 24-member ensemble run of the North Atlantic Ocean at mesoscale-511

permitting resolution (1/12◦), we have shown that the thickness-weighted average (TWA)512

framework can be employed successfully in diagnosing eddy-mean flow interactions in513

a realistic ocean simulation. The ensemble approach negates the necessity for any tem-514

poral averaging in defining the residual-mean flow; we are able to exclude any tempo-515

ral variability, such as seasonal and interannual fluctuations, from the eddy term and ex-516

tract the intrinsic mesoscale variability of the ocean. We show that the Eliassen-Palm517

(E-P) flux divergence, which encapsulates the eddy feedback onto the mean flow (J. R. Mad-518

dison & Marshall, 2013), tends to meridionally accelerate the separated Gulf Stream on519

its northern flank and decelerate it on its southern flank (−e2 ·(∇̃·E); Figures 4h and520

5b). Modelling studies with varying spatial resolution have shown that the Gulf Stream521

tends to overshoot northwards in coarse resolution models (e.g. Lévy et al., 2010; Chas-522

signet & Xu, 2017). This overshooting may partially be attributable to mesoscale eddy523

feedback, in particular baroclinic instability, which tends to decelerate the separated Gulf524

Stream on its northern flank (−E21
b̃

; Figures 4f and 5d), being insufficiently resolved at525

such resolutions, in addition to submesoscale boundary layer processes (e.g. Renault et526

al., 2016).527

In the TWA framework, the eddy Ertel potential vorticity (PV) flux is directly re-528

lated to the E-P flux divergence (Young, 2012). In the context of eddy parametrization,529

this implies that if we can relate the eddy Ertel PV flux to the residual mean fields, one530

has a solution for the mesoscale eddy closure problem. Zanna et al. (2017) achieve this531

goal under quasi-geostrophic (QG) and ergodic assumptions where they formulate a clo-532

sure for the QGPV and invert the streamfunction from it. We show in Figures 6 and 7533

that the eddy flux can be locally represented via the residual-mean Ertel PV, a first step534

towards formulating such closure for primitive equation models. We would like to em-535

phasize that the eddy diffusivities presented in this paper are diagnostic rather than prog-536

nostic variables. Future work would need to examine how each parameter in the eddy537

diffusivity tensor (K; equation (25)) is determined by the residual-mean field for a prog-538

nostic eddy closure scheme. Data-driven methods may be a viable way to discover such539

equations to constrain the “κ”s (e.g. Zhang & Lin, 2018; Zanna & Bolton, 2020). While540

it is beyond the scope of this study, it would also be interesting to examine the relation541

between the “κ”s and eddy shape, orientation and/or energy (e.g. D. P. Marshall et al.,542
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2012; Waterman & Lilly, 2015; Chen & Waterman, 2017; Bachman et al., 2017; Anstey543

& Zanna, 2017; Mak et al., 2018; Poulsen et al., 2019).544

Nevertheless, we have shown that the eddy Ertel PV flux can be represented as an545

active tracer by a local-gradient flux closure across all seasons (Figure 9). The appar-546

ent success of our diffusivity tensor lies on the fact that it relates the eddy fluxes to the547

residual-mean as opposed to the Eulerian-mean fields. As was noted by McDougall and548

McIntosh (2001) and Young (2012), the TWA framework allows one to shift the focus549

of eddy parametrization from the buoyancy equation to the momentum equations (1)550

and (2). What follows is that the tensor K not only brings together the (eddy-induced)551

skew-diffusive flux of isopycnal thickness (Gent & Mcwilliams, 1990; Griffies, 1998, hereon552

referred to as GM) and isopycnic diffusive flux of tracers (Redi, 1982, hereon referred to553

as Redi), which have conventionally been treated separately, but also includes the eddy554

momentum fluxes, which energy-backscattering eddy parametrizations are being devel-555

oped to represent (e.g. Kitsios et al., 2013; Zanna et al., 2017; Berloff, 2018; Bachman556

et al., 2018; Bachman, 2019; Jansen et al., 2019; Perezhogin, 2019; Zanna & Bolton, 2020;557

Juricke et al., 2020). There are four parameters in the tensor K, but this is no more than558

assuming, for example, spatial variability and anisotropy in the GM and Redi diffusiv-559

ities. Although, the Redi diffusivity has existed longer than GM, there has been much560

more physical insight into the latter (e.g. Visbeck et al., 1997; Cessi, 2008; Mak et al.,561

2018); this has left the Redi diffusivity poorly constrained, leading to large uncertain-562

ties in the oceanic heat and carbon uptake (Gnanadesikan et al., 2015; Jones & Aber-563

nathey, 2019). Being able to treat GM and Redi simultaneously is another strength of564

our framework in contrast to other closure schemes based on PV (e.g. Eden, 2010; Zanna565

et al., 2017). We believe our results provide a robust framework to evaluate such newly566

developed energy-backscattering parametrizations in primitive equation models, i.e. they567

should be representing the E-P flux divergence, and a first step towards a unified mesoscale568

eddy closure scheme.569

Appendix A Energetics under a non-linear equation of state570

The TWA residual-mean horizontal momentum equation in geopotential coordi-571

nates neglecting dissipation is (Young, 2012; Ringler et al., 2017):572

ût + v# · ∇û + fk× û = −∇hφ
# − e · (∇h ·E), (A1)573
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where v# def
= ûi + v̂j + w#k and φ# def

= m(t̃, x̃, ỹ, b#(t, x, y, z)) + b#z are the residual-574

mean velocity and hydrostatic pressure anomaly. It is important to keep in mind that575

the “z” here is the ensemble averaged depth of an iso-surface of buoyancy, viz. z = ζ(t̃, x̃, ỹ, b#(t, x, y, z)).576

The residual-mean kinetic energy (K# = |û|2/2) budget becomes:577

K#
t + v# · ∇K# = −û · ∇hφ

# − û ·
[
e · (∇h ·E)

]
(A2)578

= −û · ∇hφ
# − w#φ#

z + w#b# − û ·
[
e · (∇h ·E)

]
(A3)579

= −v# · ∇φ# + w#b# − û ·
[
e · (∇h ·E)

]
. (A4)580

581

We can now define the mean dynamic enthalpy as (McDougall, 2003; Young, 2010):582

h# def
=

∫ Φ#

Φ0

b#(θ, s,Φ#)

g
dΦ#′ =

∫ 0

z

b#dz′, (A5)583

where Φ# = Φ0−gz is the dynamically non-active part of the hydrostatic pressure to584

be consistent with the Boussinesq approximation. The material derivative of h#(θ, s,Φ#)585

is:586

D#

Dt
h# = h#

Φ#

D#Φ#

Dt
+ h#

θ

D#θ

Dt
+ h#

s

D#s

Dt
(A6)587

= h#
Φ#Φ#

z

D#z

Dt
+ h#

θ

D#θ

Dt
+ h#

s

D#s

Dt
(A7)588

= −w#b# + h#

θ

D#θ

Dt
+ h#

s

D#s

Dt
. (A8)589

590

Therefore,591

D#

Dt
(K# + h#) = −∇ · v#φ# +H# − û ·

[
e · (∇h ·E)

]
, (A9)592

where H# def
= h#

θ
D#θ
Dt + h#

s
D#s
Dt and we have invoked ∇ · v# = 0.593

On the other hand, the total kinetic energy budget remapped onto buoyancy co-594

ordinate is:595

DK

Dt
= −∇̃ · vφ+ wb̃, (A10)596

where v
def
= v1e1 + v2e2 + v3e3 = ue1 + ve2 +

(
$ +

ζt̃
σ

)
e3 and ∇̃ · v = σ−1

[
(σv1)x̃ +597

(σv2)ỹ + (σv3)b̃
]

(= 0) is the three-dimensional divergence. Defining the dynamic en-598

thalpy in a similar manner as in equation (A5), namely,599

h =

∫ 0

ζ

b̃ dζ ′ =

∫ bsurf

b̃

b′σ db′, (A11)600

yields:601

D

Dt
(K + h) = −∇̃ · vφ+H, (A12)602
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where H def
= hθ

Dθ
Dt+hs

Ds
Dt . Ensemble averaging after thickness weighting equation (A12)603

gives:604

σ
D

Dt
(K + h) = −σ∇̃ · vφ+ σH (A13)605

= −σ∇̃ · vφ
∧

+ σĤ, (A14)606
607

The total kinetic energy can be expanded as:608

K =
1

2
|û + u′′|2 (A15)609

=
|û|2

2
+
|u′′|2

2
+ ûu′′ + v̂v′′ (A16)610

def
= K# + K + ûu′′ + v̂v′′, (A17)611612

so plugging in equation (A17), and keeping in mind that (̂·) = (̂·) and σ(·)′′ = 0, each613

term on the left-hand side (LHS) of equation (A14) can be written as:614

σ
DK

Dt
= σ(Kt̃ + uKx̃ + vKỹ +$Kb̃) (A18)615

= (σK)t̃ + (σuK)x̃ + (σvK)ỹ + (σ$K)b̃ (A19)616

= σ
[D#

Dt
(K# + K̂ ) + ∇̃ · (JK + ûJu + v̂Jv)

]
, (A20)617

618

where JK
def
= û′′K e1 + v̂′′K e2 + $̂′′K e3, Ju

def
= û′′2e1 + v̂′′u′′e2 + $̂′′u′′e3, Jv

def
=619

û′′v′′e1+v̂′′2e2+$̂′′v′′e3 are the eddy fluxes of eddy kinetic energy (EKE), eddy zonal620

and meridional velocities respectively, and621

σ
Dh

Dt
= σ(ht̃ + uhx̃ + vhỹ +$hb̃) (A21)622

= (σh)t̃ + (σuh)x̃ + (σvh)ỹ + (σ$h)b̃ (A22)623

= (σĥ)t̃ +
[
σ(ûĥ+ û′′h′′)

]
x̃

+
[
σ(v̂ĥ+ v̂′′h′′)

]
ỹ

+
[
σ($̂ĥ+ $̂′′h′′)

]
b̃

(A23)624

= σ
(D#

Dt
ĥ+ ∇̃ · Jh

)
, (A24)625

626

where Jh
def
= û′′h′′e1 + v̂′′h′′e2 + $̂′′h′′e3 is the eddy flux of fluctuations in dynamic627

enthalpy, and we have used the relation σφθ = σ(φ̂θ̂+φ̂′′θ′′) (equation (72) in Young,628

2012). Hence, combining equations (A20) and (A24), equation (A14) becomes:629

D#

Dt
(K# + K̂ + ĥ) = −∇̃ · (JK + Jh + ûJu + v̂Jv)− ∇̃ · vφ

∧

+ Ĥ. (A25)630

Subtracting equation (A9) from (A25) yields the eddy energy budget:631

D#

Dt
(K̂ + ĥ− h#) = −(∇̃ · vφ

∧

−∇ · v#φ#)− ∇̃ · (JK + Jh + ûJu + v̂Jv)632

+ Ĥ − H# + û ·
[
e · (∇h ·E)

]
. (A26)633

634
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Equations (A9) and (A26) are the relations derived by Aoki (2014) but for a non-linear635

EOS and non-zero dia-surface velocity where the residual-mean flow and eddies exchange636

energy via the E-P flux divergence. It is perhaps interesting to note that h′′ is not the637

eddy potential energy (EPE; H
def
= ĥ−h# in equation (A26)) and they are related to638

one another as h′′ = h− (h# + H ).639

For a linear EOS, the EPE can be rewritten as:640

H = −b#(ζ̂ − ζ) = −b#σ
′ζ ′

σ
, (A27)641

642

by taking advantage of ĥ = −b̃ζ̂, h# = −b#ζ and b̃ = b#(t, x, y, ζ(t̃, x̃, ỹ, b̃)). Equa-643

tion (A27) provides the physical intuition of EPE being defined as the difference between644

potential energy at the TWA depth (ζ̂) and ensemble-mean depth (ζ). In a similar man-645

ner, we can also derive:646

h′′ = −b̃(ζ − ζ̂) = −b̃ζ ′′, (A28)647

and hence, h′′ = −H . Assuming the background buoyancy frequency can be defined648

as the inverse of ensemble-mean thickness (viz. σ−1 ∼ N2) leads to further manipu-649

lation of EPE:650

H ∼ −b#N2ζ ′
b̃
ζ ′ = −b#N2

(ζ ′2
2

)
b̃

(A29)651

= −N2

[(
b#
ζ ′2

2

)
b̃
− ζ ′2

2

]
, (A30)652

653

where the last term in equation (A30) further reduces to the available potential energy654

under quasi-geostrophic approximation (b′ ∼ N2ζ ′).655

Appendix B Kinematics of discretization656

As in Figure B1, imagine u1 and u2 are on the same buoyancy contour. The re-657

lation between the two is:658

u2 = u1 + ux∆x+ uζ∆ζ. (B1)659

Now,660

ux̃
def
= ux +

∆ζ

∆x
σ−1ub̃ (B2)661

= ux +
∆ζ

∆x
uζ (B3)662

=
u2 − u1

∆x
(∵ equation (B1)), (B4)663

664

so once all of the variables are remapped onto the buoyancy coordinate from geopoten-665

tial, the discretized horizontal gradients can be taken along the original Cartesian grid.666
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b̃ = const.

u1(b̃)

u2(b̃)
Δζ

Δx

Figure B1. Schematic of discretized gradients.

The gradients on the model outputs were taken using the xgcm Python package (Abernathey667

& Busecke, 2019; Busecke & Abernathey, 2020). In order to minimize the computational668

cost, we took the ensemble mean first whenever possible, e.g. σ = ∂b̃ζ = ∂b̃ζ, ∇̃hσ =669

∂b̃∇̃hζ etc. The gradient operators commuting with the ensemble mean is also the case670

for the perturbations, i.e.671

∇̃h(m+m′) = ∇̃hm = ∇̃hm+ (∇̃hm)′. (B5)672

Hence, ∇̃hm
′ = (∇̃hm)′ (cf. J. R. Maddison & Marshall, 2013, Section 2.3 in their pa-673

per).674

Appendix C Reconstruction of eddy temperature and salinity fluxes675

In this section, we show the reconstruction of the eddy temperature and salinity676

fluxes and the spatial structure of errors for each tracer (equation (28)). Unlike Ertel PV,677

the strongest signals of eddy temperature and salinity fluxes are in the subpolar gyre (Fig-678

ures C1 and C2). The spatial structure of the errors also differ amongst the tracers (Fig-679

ure C3); the errors for Ertel PV are small in the separated Gulf Stream region while as680

the errors are spread out across the North Atlantic basin for potential temperature and681

are concentrated within the subtropical gyre for salinity. The banded structure in tem-682

perature may be associated with regions of zero-crossing of eddy fluxes. To some extent,683

the difference in spatial structure implies that the eddy fluxes and local gradient fluxes684

are not aligned parallel to each other. This provides justification to invert equation (25).685
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a

fe

dc

b

Figure C1. The diagnosed zonal and meridional eddy temperature flux on January 3, 2008

on the iso-surface of buoyancy as in Figure 2 where Fθ (= F θ1e1 + F θ2e2) is the smoothed û′′θ′′

a,b. c,d The reconstructed eddy temperature flux via equation (25). e,f The residual between

the true and reconstructed eddy temperature flux.
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a

fe

dc
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Figure C2. The diagnosed zonal and meridional eddy salinity flux on January 3, 2008 on the

iso-surface of buoyancy as in Figure 2 where Fs (= F s1e1 + F s2e2) is the smoothed û′′s′′ a,b.

c,d The reconstructed eddy salinity flux via equation (25). e,f The residual between the true and

reconstructed eddy salinity flux.
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Figure C3. The error due to reconstruction for Ertel PV (EΠ) a,b, potential temperature

(Eθ) c,d and practical salinity (Es) e,f on the iso-surface of buoyancy as in Figure 2 for their

zonal and meridional component respectively on January 3, 2008.
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M. (2019). The contribution of submesoscale over mesoscale eddy iron trans-1045

port in the open southern ocean. Journal of Advances in Modeling Earth1046

Systems, 11 , 3934–3958. doi: 10.1029/2019MS0018051047

Uchida, T., Balwada, D., Abernathey, R. P., McKinley, G. A., Smith, S. K., &1048
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