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Key Points: 27 

• Networks across communities, with Coordinated data and information modeling 28 
practices, improve scientific outcomes for all involved. 29 

• Integrated, Coordinated, and Open data requires sustainable support to create and 30 
maintain infrastructure for interdisciplinary Networks.  31 

• Integrated and Coordinated use of data in machine learning calls for Open benchmark 32 
datasets, shared across Networks for improved outcomes. 33 

  34 
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Abstract 35 
This article is composed of three independent commentaries about the state of ICON principles 36 
(Goldman et al., 2021) in Earth and Space Science Informatics (ESSI) and includes discussion on 37 
the opportunities and challenges of adopting them. Each commentary focuses on a different 38 
topic: (Section 2) Global collaboration, cyberinfrastructure, and data sharing; (Section 3) 39 
Machine learning and multiscale modeling; (Section 4) Remote sensing for advancing Earth 40 
system model development by integrating field and ancillary data. ESSI addresses data 41 
management practices, computation and analysis, and hardware and software infrastructure. Our 42 
role in ICON science therefore involves collaborative work to assess, design, implement, and 43 
promote practices and tools that enable effective data management, discovery, integration, and 44 
reuse for interdisciplinary work in Earth and space science disciplines. Networks of diverse 45 
people with expertise across Earth, space, and data science disciplines are essential for efficient 46 
and ethical exchanges of FAIR research products and practices. Our challenge is then to 47 
coordinate the development of standards, curation practices, and tools that enable integrating and 48 
reusing multiple data types, software, multi-scale models, and machine learning approaches 49 
across disciplines in a way that is as open and/or FAIR as ethically possible. This is a major 50 
endeavor that could greatly increase the pace and potential of interdisciplinary scientific 51 
discovery.  52 
Plain Language Summary 53 
We present commentaries on the state of “ICON principles'' in Earth and Space Science 54 
Informatics. ICON principles (Integrated, Coordinated, Open, and Networked) are meant to 55 
improve the research experience for all. Ultimately, data standardized according to community 56 
conventions and formats lead to more effective and efficient collaboration, data discovery, 57 
integration, and analyses. Data standards, tools, and machine learning developed using ICON 58 
principles enhance our understanding of Earth processes. Using ICON principles improves 59 
model results and efficacy, fosters interdisciplinary research, and provides a framework by which 60 
non-experts can confidently contribute volunteered data and findings. Standardized data also 61 
provides reliable common resources to help train and benchmark machine learning algorithms. 62 
When networked communities work together to standardize and share data openly, the resulting 63 
web of research products is more readily findable, accessible, interoperable, and reusable 64 
(FAIR). Ongoing support is crucial to develop and sustain the people, systems, and tools 65 
necessary to realize ICON principles in Earth and Space Science Informatics now and in the 66 
future.  67 

1 Introduction 68 
Integrated, Coordinated, Open, Networked (ICON) science aims to enhance synthesis, 69 

increase resource efficiency, and create transferable knowledge (Goldman et al., 2021a). This 70 
article belongs to a collection of commentaries (Goldman, et al., 2021b) spanning geoscience on 71 
the state and future of ICON science. Earth and Space Science Informatics (ESSI) encompasses a 72 
broad field that addresses data management practices, computation and analysis, and hardware 73 
and software infrastructure. ESSI’s role in ICON science therefore involves collaborative work 74 
to assess, design, implement, and promote practices and tools that enable effective data 75 
management, discovery, integration, and reuse for interdisciplinary work in Earth and space 76 
science (ESS) disciplines. In this series of commentaries, we examine the current state, 77 
challenges, and opportunities of ICON science through the lenses of global collaboration, 78 
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cyberinfrastructure, and data sharing (Section 2); machine learning and multiscale modeling 79 
(Section 3); and remote sensing for advancing Earth system models (ESM) development by 80 
integrating field and ancillary data (Section 4). 81 

2 Global collaboration, cyberinfrastructure, and data sharing 82 

2.1 Current state and challenges 83 
Global collaboration across disciplines is essential to the development and 84 

implementation of data/metadata standards and cyberinfrastructures. Thus, many organizations 85 
have emerged to facilitate such collaboration, e.g., Research Data Alliance, World Data System, 86 
OneGeology, Earth Science Information Partners. These organizations have produced numerous 87 
active groups involved in Earth, space and environmental science data and research, and 88 
developed many data tools and services, e.g. Earth, Space and Environmental Sciences Data 89 
Vocabulary Repositories. Research is more efficient with Networked data practices and 90 
cyberinfrastructures that support scientific discovery. Yet, there is still a large disconnect and 91 
lack of Coordination across many informatics communities and the broader communities we 92 
aim to support. 93 

Research teams often lack sufficient resources (e.g., appropriate cyberinfrastructure, 94 
expert data/software personnel, financial allotment) to effectively manage, standardize, and 95 
publish high-quality data (Mons, 2020). This hinders data from being Open and/or Findable, 96 
Accessible, Interoperable, and Reusable (FAIR; Wilkinson et al., 2016). Further, specific 97 
criteria to make data FAIR (Gries et al., 2019; Jones et al., 2019) inevitably vary across 98 
disciplines and data types. Because there are no widely accepted standards to evaluate FAIR-99 
ness, data may be miscaterogized (e.g., Kinkade & Shepherd, 2021; Mons et al., 2017; Stall et 100 
al., 2019). Importantly, FAIR does not mean Open; data can be Open without being FAIR, and 101 
vice versa (see What is the difference between “FAIR data” and “Open data” if there is one?). 102 

Supporting ESS research requires assessing, designing, building, and maintaining 103 
cyberinfrastructures (e.g., data repositories/archives, application programming interfaces (APIs), 104 
visualization tools, search interfaces) that are often organized around a particular data type, 105 
discipline, or organization. Interoperability issues are then minimized using bespoke or ad hoc 106 
conventions within that particular community (e.g., Deep Carbon Observatory, HydroShare, 107 
Long-Term Ecological Research Network, National Ecological Observatory Network). However, 108 
most cyberinfrastructures lack the resources for Integration and Coordination necessary for 109 
interdisciplinary work, including guidance and leading practices; domain semantics; technical, 110 
data, methodological, and instrumentation standards; workflow management; training; and 111 
sustainable technical and financial support. These deficits hinder Open data that fosters machine 112 
actionable, interdisciplinary scientific discovery. 113 

While existing standards and practices may address similar concepts, they are not fully 114 
interoperable or Integrated within and across relevant disciplines. Valuable resources are spent 115 
developing/updating translators, or disciplinary standards are simply disconnected and inefficient 116 
for interdisciplinary users. Coordination is needed to implement standards for effective 117 
interdisciplinary data discovery and exchange. A major limitation to Coordination involves a 118 
lack of consistent and transparent protocols (e.g., data and code production, processing methods) 119 
across interdisciplinary teams that limits reuse and replication. These combined factors create 120 
barriers to Open and FAIR data. 121 
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Ever-increasing volumes of open data and tools now allow us to ask science questions 122 
that synthesize data and knowledge across scientific disciplines from globally distributed 123 
resources, thus expanding the impact of funded research (e.g., Michener, 2015; Rosenberg et al., 124 
2019). More successful Networked data sharing efforts (e.g., Global Biodiversity Information 125 
Facility, Ameriflux, Consortium of Universities for the Advancement of Hydrologic Science, 126 
Inc.) have been driven by 1) demand for a specific data type (Barrett et al., 2012; Novick et al., 127 
2018; Robertson et al., 2014); 2) reporting standards that enable global data search and 128 
integration (e.g., Wieczorek et al., 2012; Yilmaz et al., 2011); and 3) associated user-friendly 129 
tools (Clark et al., 2016; Robertson et al., 2014).  130 

2.2. Opportunities and moving forward 131 
Replicable and transparent research that reflects ICON principles requires sustainable 132 

investment in cyberinfrastructure to improve interoperability and Integration. Global high-level 133 
Coordination across organizations is needed to bridge siloed efforts across disciplines, 134 
organizations, and/or countries. A commitment to community engagement is needed to bring 135 
together input across disciplines, understand data management challenges and needs, and 136 
promote the adoption of shared practices. Making data as Open and/or FAIR as ethically 137 
possible requires key advocates who facilitate Networked collaboration.  138 

Data users, code contributors, and tool developers should align with established standards 139 
or community practices. We can encourage practices that promote ICON principles, such as 140 
Open publication of study plans (e.g., PLOS ONE study proposals), data production and 141 
processing protocols (e.g., Common Workflow Language), and software code. We must 142 
continually evaluate how to Coordinate and Integrate across existing cyberinfrastructure from 143 
local to global scales, which involves iterative rounds of engagement; education and outreach; 144 
and feedback across data providers, tool and service creators, and scientists who use ESS data 145 
and services. Coordinating Networks across disciplines will involve technical approaches to 146 
connect related data (e.g., PIDs, APIs, ontologies, geospatial standards) and promoting 147 
widespread adoption of community standards that improve scientific outcomes and benefit all 148 
participants in the network. 149 

3 Machine learning and multiscale modeling 150 

3.1 Success and current status of AI/ML 151 
Over the past decade, artificial intelligence approaches, including machine learning 152 

(AI/ML), have revolutionized scientific discovery across disciplines, including ESSI (Maskey, 153 
Alemohannad, et al., 2020). The AI/ML revolution, driven by a wealth of Open data and rapid 154 
technological development in computational cyberinfrastructure, has led to more processing 155 
power and greater Networking which allows unprecedented resource and data sharing. There are 156 
many success stories demonstrating how AI/ML has been used to address challenging issues in 157 
ESS, e.g., extreme weather prediction (Maskey, Ramachandran, et al., 2020; Pradhan et al., 158 
2018; Wimmers et al., 2019), land use/land cover change monitoring (Hansen et al., 2013), earth 159 
system modeling (Reichstein et al., 2019), endangered species identification (Allen et al., 2021), 160 
spatial downscaling of climate models and satellite observations (López López et al., 2018; 161 
Vandal et al., 2019), space weather forecasting (Wintoft et al., 2017), and lunar and planetary 162 
landform classification (Palafox et al., 2017; Silburt et al., 2019). Various funding agencies 163 
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worldwide have recently released their strategic plans and guidelines to expand the investment in 164 
AI/ML research which will further its adoption within ESSI for at least the next decade.  165 

3.2 Common challenges in AI/ML 166 
To accelerate this adoption, the ESS community needs to collectively address three key 167 

challenges. First, most AI/ML applications in ESS are ad hoc research that lacks system-wide 168 
Coordination and is time-consuming. There are little AI-ready data (e.g., cleaned, harmonized, 169 
formatted, well understood) that can be efficiently Integrated across domains or applications 170 
and few recommended practices on proper model development and documentation (Maskey, 171 
Alemohammad, et al., 2020). Thus, amplifying the value of AI/ML in ESS requires an ecosystem 172 
including AI-ready training datasets and standardized model development practices. This 173 
ecosystem would enable the ESS community to collaboratively develop open AI/ML 174 
applications at scale. A second challenge is related to the wealth of Open data in ESS. Currently, 175 
there are no community-recommended practices on how to properly develop, document, and 176 
share the AI/ML applications that track provenance and enable reproducibility (Sun et al., 2020). 177 
Third, the explainability and generalizability of AI/ML models are also major concerns for the 178 
ESS community (McGovern et al., 2019; Toms et al., 2020). To address complex questions in 179 
ESS systems, we need to better understand why AI/ML models perform in a certain way, their 180 
consistency with domain knowledge, and how models developed using a specific set of data can 181 
adjust dynamically to shifts in ESS data. Additionally, ethical awareness, conduct, and 182 
responsibility in AI/ML and related activities are essential to the practice of principled research. 183 

3.3 Opportunities and moving forward 184 
We identify five opportunities where researchers may focus their efforts to make ESS 185 

AI/ML more efficient. One opportunity relates to big data in ESS. Because the capacity and 186 
application scope of AI/ML heavily depends on patterns in training data, it should be as 187 
representative as possible. The requirements for big training datasets have led to calls for 188 
libraries of Open and FAIR benchmark datasets (WILDS, Koh et al., 2020; Radiant Earth 189 
Foundation; Rasp et al., 2020) related to questions within ESS (Crystal-Ornelas et al., 2021). A 190 
second opportunity is increased Networking through cloud computing (Gorelick et al., 2017; 191 
Mayer-Schönberger & Cukier, 2013). By sharing data and models in the cloud, researchers 192 
around the world can access these resources without being limited by local computing power. 193 
More work needs to be done to make cloud computing more accessible for ESS despite recent 194 
progress. Increased Openness in the exchange of data handling practices to allow sharing 195 
common workflows while handling large datasets is a third opportunity. A fourth opportunity is 196 
to improve interpretability through Integration across disciplines by: (1) including physics in 197 
ML models (Jia et al., 2019; Raissi et al., 2019), (2) leveraging machine learning exploratory 198 
tools (Montavon et al., 2017; Ying et al., 2019), and (3) involving domain experts into AI/ML 199 
pipelines. A final opportunity for growth is to automate workflows to improve the development 200 
efficiency (e.g., auto-sklearn, AutoKeras) (He et al., 2021). To improve AI engineering 201 
efficiency and reduce data collection and processing costs, modelers may also use data 202 
augmentation methods such as mixup (Zhang et al., 2017) to fill in the missing data and enhance 203 
data quality (Alexandrov & Vesselinov, 2014; Vesselinov et al., 2018). We emphasize that these 204 
opportunities for ESS to inform and apply AI/ML models is not exhaustive; rather it is a starting 205 
point for exploring how ICON science can benefit the future of this rapidly growing field within 206 
ESS. 207 
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4 Remote sensing for advancing Earth system model development by integrating field and 208 
ancillary data 209 

4.1 Current Status 210 
Remote sensing technology combined with field and ancillary data (e.g., field 211 

measurements, other imagery; Acton, 1996) has transformed the development of ESMs as they 212 
have advanced from aerial imagery of the early nineteenth century (Necsoiu et al., 2013) to the 213 
present-day’s Google Earth Engine (Gorelick et al., 2017) and Unmanned Aerial Vehicles (Singh 214 
& Frazier, 2018). Most publicly-funded remote sensing datasets are Open and hosted on public 215 
repositories (e.g., government-sponsored repositories, Github, Zenodo). In addition, this data is 216 
collected through Coordinated standards between government agencies across the globe 217 
(Alameh, 2020). Integration of remote sensing technology with independent field measurements 218 
and high spatial resolution satellite imagery has been essential for ESM validation. This also 219 
includes estimating derived data products (e.g., from satellites) accuracy and quantifying 220 
uncertainty (Strahler et al., 2006). Crowdsourcing and citizen science have further advanced the 221 
integration of remote sensing with field data (e.g., RaspberryShake, Khan et al., 2018; Saralioglu 222 
& Gungor, 2020; Worldwide Hydrobiogeochemistry Observation Network for Dynamic River 223 
Systems [WHONDRS], Stegen & Goldman, 2018), resulting in broader Networked efforts that 224 
benefit researchers and a wide variety of data users. We note that agencies in the US and Europe 225 
have open-sourced their data to all users internationally. Some popular open data sources, 226 
associated cyberinfrastructure, and tools are included in an associated github repository. 227 

4.2 Challenges and call to action 228 
Two primary challenges which the ESSI community faces are limited global data 229 

collection and inadequate cyberinfrastructure. Despite advances in sensors, crowdsourcing, and 230 
citizen science (e.g., RaspberryShake, WHONDRS), collecting and hosting high-quality global 231 
data present immense challenges. For example, RaspberryShake has collected more than 30TB 232 
of seismographic data over the past decade but lacks the necessary cyberinfrastructure to reliably 233 
and sustainably store it. 234 

Recent progress in AI/ML has improved the representation of Earth system processes 235 
(e.g., thermal, land physics and hydrology, radiation, atmospheric ocean circulation) in ESMs 236 
(Rasp et al., 2018). ML, in particular, requires massive datasets to represent processes at both 237 
normal and extreme events (e.g., hurricanes, wildfires); however, extreme event data are rare due 238 
to the unique challenges faced during collection. Thus, the concept of crowdsourcing data 239 
collection, using Coordinated methods (e.g., RaspberryShake, WHONDRS) on extreme events, 240 
is an attractive option that improves Networked research.   241 

There has been a Coordinated effort from US and European agencies to develop 242 
cyberinfrastructure that improves and increases access to data to enhance predictions and 243 
understanding of various Earth system processes. For example, the European Space Agency 244 
Sentinel data products are recently available in the Copernicus Data and Information Access 245 
Service cloud environments. In addition, the US Geological Survey Landsat satellite data 246 
inventory has been open to the public since 2008 and has been in the cloud since 2020 (U.S. 247 
Geological Survey, 2008). Furthermore, the National Aeronautics and Space Administration 248 
(NASA) and the National Oceanic and Atmospheric Administration (NOAA) have adopted a 249 
strategic vision to leverage cloud computing and operate multiple components of their data 250 
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systems in a retail cloud environment. This calls for action to identify the opportunities to 251 
improve policy and strategy planning across various countries to make satellite data products 252 
accessible to all users in open data portals. In addition, automated quality assurance of satellite 253 
observations is needed to support global, regional, or local data services. Coordinated across 254 
international agencies, a standard open data cyberinfrastructure will help to assure ESM data 255 
from multiple sources (national, regional, governments, academia, and the private sector) are 256 
available and easily Integrated into open-source platforms and networks.  257 

4.3 Opportunities and moving forward  258 
First, close coordination would help international agencies and organizations build a 259 

standard open data cyberinfrastructure to ensure that earth science data are free, open, and easily 260 
integrated into ESMs. Second, we need next-generation sensors and satellites which provide 261 
more fine resolution data to increase the accuracy of ESMs. For example, the joint NASA-Indian 262 
Space Research Organization (ISRO) Synthetic Aperture Radar (SAR) (NISAR) mission is 263 
anticipated to provide fine-scale resolution radar data with a spatial resolution of less than a 264 
centimeter to study the earth’s features and processes. Third, the role of AI/ML needs to be 265 
expanded to plug in the gaps of remote sensing data. 266 

5 Concluding remarks 267 
ESSI science that utilizes ICON principles enables data synthesis, increases resource 268 

efficiency, and creates knowledge that transcends individual systems (Goldman et al., 2021a). 269 
ESSI can work to ensure that diverse scientists have user-friendly resources to contribute and use 270 
data that follows community conventions. Such collections of Open and/or FAIR data, shared 271 
across Networks for mutual benefit, are critical to appropriately train AI/ML, which furthers 272 
Integration and Coordination in ESSI science. Cross-community Networks improve scientific 273 
outcomes for all involved. Communities must work together to share data openly using 274 
community standards, to produce Open and/or FAIR data that enables data synthesis and can 275 
revolutionize fields of research (e.g., Kelling et al., 2009). Ongoing, sustainable support is vital 276 
to create and maintain the cyberinfrastructure and human resources necessary for Integrated, 277 
Coordinated, and Open and/or FAIR data (as much ethically as possible) for interdisciplinary 278 
Networks. 279 
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