Enhanced Shale Permeability Estimation Based on Statistical Rock Physics Analysis
: A Midland Basin Wolfcamp Shale Case Study
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1. Introduction 4. Exploratory Data Analysis (EDA) 7. Results
1. An accurate estimation of the shale permeability (k) is essential to understand - Three-phase statistical shale rock physics model (Lee & Lumley, 2019) (a) Herron’s method (b) Modified Kozeny’s equation
heterogeneous organic-rich shale rocks and predict the complexity of pore fluid © Y =ayp+ a3V, +asTOC + ay =1 i T T T T T
transport in the rocks. | 5 y « Porosity shows the strongest correlation with the shale matrix permeability.
2. However, predicting the shale matrix permeability by traditional models, such —» The porosity can be an efficient indicator to estimate the permeability.
as Kozeny’'s equation and Herron’s method, is still challenging because they ) 067 N
require information often measured from core measurements. T : : . e -“m
3. In this study, we estimate shale matrix permeability by a combined exploratory L v L ' 1 f'. 2 . | :; §,< Ce (a) 0.40 2.4x10%
data analysis (EDA) and nonlinear regression estimation from the wireline logs. j; Ghgete . v S fw - it AT T VILR e T
As a result, a cubic logarithmic function of porosity significantly improves the 5 g - | : : .
estimation of the permeability values, better than the traditional methods. (d) k = a(log $)*+b(log p)*+c(log @) + d (b) Vol | 2ol
T T 1T T 1T 1. 1 [~ (c) 0.67 2.0x10%
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2. Study Area

(c) R=0.24 ve (d) R=-0.47

* University Lands in the Midland Basin (eastern part of the Permian Basin, TX)
 Well logs and core measurements
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Figure 3. Predicted versus actual permeability plots for four estimation functions.
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Figure 1. (a) Study area and well locations in three counties, the southern part of T0C 0.25 0.30 1.00 . measurements
the Midland Basin. (b) Mineralogic ternary diagram of the core measurements. Ve 0.24 0.49 0.22 1.00 =
o -0.47 -0.74 -0.71 -0.40 1.00 7900 {  7eof
iy Table 1. Bivariate correlation values between the permeability and four rock properties. o Generating the permeability
3. Traditional Methods ogs from the calibrated
, JI % - porosity logs
 Kozeny’s equation (Kozeny, 1927 : ¢ : : e W i 7 s 4 B RN N
oreny's eduation (Kozeny, 1327) ol ot 6. Multivariate Linear Regression (MLR s B Vi B bl de | et
S|ng¢|330r03| y and specitic su acie area ot solid grains Figure 4. Synthetic permeability logs from the calibrated porosity logs with the
* k=cg~a’, c= * k=a1¢+ayVqy +azTOC + a4 (R*=0.46, RMSE = 0.00023) core permeability measurements (black dots).
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. H 4 is diff It(i COS% arccis(??_,[;)+gn)+4).f. " | | « Porosity is the most influential factor on the permeability estimation. Therefore,
owever, it is difficult to characterize the specific surface area values or grain borosity can be a better indicator to predict the permeability.

sizes In the well logs. * Due to the nonlinearity between two variables, we can derive a nonlinear permeability 8. Conclusmns

function with a better it to the permeability data than the traditional methods. « First, we conduct a bivariate correlation analysis for permeability and rock properties in core

 Herron’s method (Herron, 1987)

« Based on the mineral contents provided by well log data in quartz-rich | a | a | oas | measurements. We find that permeability change has a significant effect on the variation in porosity.
sandstone rocks Coefficient  0.0000857  -2.56e-06  0.000011  -0.0002961 « Second, we derive a nonlinear polylogarithmic estimation function of porosity to permeability, comparing it
P SBM)) SRC 0.71 0.12 0.06 to the traditional methods and the MLR model. As a result, a cubic logarithmic function of porosity
* k=4 (1—¢)? e Shapley 87.9% 11.2% 0.9% significantly improves the fitting performance of the permeability values better than the traditional methods.
. However, the predictive accuracy is low due to the different pore network Table 2. MLR analysis with regression coefficient, standardized regression coefficient « We successfully generate the permeability logs from the calibrated porosity logs, and this approach can

structures of the shales. (SRC), Shapley values between the permeability and three rock properties. also help to understand the pore systems in shales and improve the fluid flow modeling.




