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1. Pick Error Threshold

2. Determine # 
Terms to Keep

3. Set Threshold, Discard Terms, 
Re-Verify Model

10−13

Below Threshold → Discard Terms

(Full Z Scale: 
~10cm)
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Future Research
1) Automate Coefficient Thresholding and Point Error Ellipsoid Computation

• Current codebase only allows for manual coefficient thresholding and point error ellipsoid computation, automatic 
procedures necessary for successful deployment of  code to actual lidar applications

• Enables “simulated error” truth-testing for model self-verification and validation
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Motivation: Most LiDARs are vulnerable to position, pointing errors, and propagation effects
leading to projection errors on target. While fidelity of location/ pointing solutions can be high,
determination of uncertainty remains limited. NASA’s 2021 STV Incubation Study Report lists vertical
(horizontal, geolocation) accuracy as an associated product parameter for all (most) identified Science
and Application Knowledge Gaps.

Motivation and Overview

Variables used in this simulation are from ICESat-2 ATL02, ATL03 data, and span the Region 2 granule. Surrogate
Model Graph corresponds to a specific LiDAR bounce point in the mountains west of Boulder, CO, at ~40.0N, 105.4W.
(NOTE: The authors recognize that Pitch, Yaw do not represent real ATLAS pointing angles; in the interest of model
simplicity, Pitch, Roll, Yaw, were varied as a substitute for real pointing data, with other pointing variables held fixed.)

x

*(Modified from [2])

Bounce 
Point 
Height B.1) gPCE can be applied to diverse platforms and concepts of 

operation to rapidly assess measurement domains, systems, and techniques
• Space-based ICESAT-2/ATLAS LiDAR’s subaerial path serves as model algorithm 

test case → Subaqueous, satellite- (and drone-) based algorithms under development
B.2) High-fidelity gPCE model created using ICESAT-2/ATLAS photon 
bounce point geolocation algorithm analog

• Large variable range of  the 11 input parameters used to train model → Allows 
model to accurately represent a large range of  operational conditions

B.3) Minimizing model errors enhances model predictive power
• Model Verification success criterion met, when model error << science 

requirements on error

C.1) gPCE enables high fidelity, simultaneous assessment of parameter relationships
• Input variables (11, in this case, plus 11 uncertainties) form hyper-plane of  multi-variate system relationships
• 2-Input response surfaces displayed to best visualize input-output variable effects
• Topographic results presented for simplicity; bathymetric bounce point location algorithm in development
• Valid, highly sparse gPC expansion found 

• <13 terms (of  2300) in each variable have a relative significance >1%
• >40% of  expansion terms can be discarded with negligible change in error

• Simultaneous, computationally efficient, calculation of  quantities of  interest and uncertainty supported by gPCE
C.2) gPCE model reveals non-intuitive system response characteristics 

• Significant non-intuitive behavior can be revealed in high-correlation relationships
• Yaw angle of  near-nadir pointed lidar system caused significant effect, ignoring this contribution could have 

result in up to 6 cm of  error (see figure below)

A.1) generalized Polynomial Chaos Expansion analogous to Fourier Expansions
• Truncated infinite series of  coefficients & orthogonal basis functions (Karhunen-Loève Expansion)
• Multi-variate Askey basis functions used → minimized mean squared error and guaranteed convergence

A.2) General gPCE model finding procedure (see above)
• Solution samples, 𝒖𝒖(𝒚𝒚𝑖𝑖), generated using ICESat-2 photon bounce point location algorithm analog
• Multi-variate basis functions, 𝜳𝜳𝒋𝒋𝑖𝑖 𝒚𝒚𝑖𝑖 , evaluated at inputs, 𝒚𝒚𝑖𝑖 , basis function matrix, �𝜳𝜳, constructed
• �𝜳𝜳𝒄𝒄 = 𝒖𝒖 inverted to solve for gPCE coefficients, 𝒄𝒄

• L2 Minimization (Ordinary Least Squares) currently used for inversion
• Sparse matrix inversion methods to be implemented for better convergence

A.3) Using gPCE Models and Calculating Uncertainties
• Quantities of  Interest (QoI), e.g., photon bounce point location, calculated directly from inputs
• QoI uncertainties calculated by integrating input variable uncertainties near input variable values

• Inputs, 𝒚𝒚𝑖𝑖 ,  are intrinsically treated as stochastic by default by the gPCE method 
• Inputs modeled as 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝜔𝜔𝑖𝑖, with deterministic input, x, and (stochastic) input uncertainty, 𝜔𝜔

• Uncertainties determined “At Each Data Point,”  with low individual computational cost
• Only single-variate basis functions (in 𝜔𝜔𝑖𝑖) require integration to compute uncertainty 
• Can be pre-computed because of  separable inputs

• Coefficient selection optimizes computational cost, while managing model fidelity

A. generalized Polynomial Chaos Expansion (gPCE) Modeling

D.1) gPCE makes minimal a priori assumptions, seeks to fit model to best 
available information

• Traditional error analysis methods may miss significant relationships due to simplifying 
assumptions, e.g., all errors Gaussian and uncorrelated (or low correlation), or through 
unmodeled physics (excluded variables) in error analyses, or assuming negligible impact 
of  certain variables on overall final error

D.2) Real variable relationships likely to be correlated
• Errors may, or may not, be properly represented by traditional techniques, especially if  

degree of  correlation is low, but non-zero (see figure above), or if  a single variable 
dominates the relationship

• gPCE captures nonlinearities often ignored by traditional  UQ techniques

Research Objectives:
• Develop gPCE method for topo-bathymetric

LiDAR Uncertainty Quantification (UQ) as
an alternative to Total Propagated
Uncertainty & Monte Carlo UQ methods

C. ICESat-2/ATLAS gPCE Model System Response & D. gPCE Model Uncertainty Quantification

B. gPCE Lidar Model Verification, Model Error

gPCE Method Overview:

• Quantify & compare performance of UQ methods, in terms of computational cost & model fidelity
• Investigate subaerial simulations as validation to proceed with bathymetric simulation

(topographic/bare-earth results presented here; bathymetric results forthcoming)

11 Input Variables
+ 11 Uncertainties

① Time of  Flight
① System Time
③ Platform Position
③ Platform Velocity
③ Pointing Angles

(Full Z Scale: 
~75mm)

Model Verification
Predicted Bounce 
Point Location Model 
Mean Absolute Error:
• < 11 cm Northing
• <3.4 cm Easting
• <6.4 cm Height 

(w.r.t. WGS84 datum)
(≈400x30km point cloud)

2) Optimize Sparsity of Coefficient Matrix
• Computationally optimal solution is a sparse solution of  large coefficients
• Improved coefficient inversion solvers (such as those utilizing L1 minimization 

methods) needed to decrease computational complexity (convex, P-time vs. non-
convex, NP-hard problems) 

3) Advance Towards a Bathymetric LiDAR model
• Verify topographic model computational stability and cost
• Characterize bathymetric impact on geolocation algorithm
• Use point cloud gPCE model & UQ estimates for underwater object classification

(Northing axis not to scale. 

Approximate flight path angle in red.)
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