References
Balaram, J., Aung, M. & Golombek, M. P. (2021). The Ingenuity
Helicopter on the Perseverance Rover. Space Science Reviews ,217 , 56. https://doi.org/10.1007/s11214-021-00815-w.
Bell, J. F. III et al. (2003). Mars Exploration Rover Athena
Panoramic Camera (Pancam) investigation. Journal of Geophysical
Research , 108 (E12), 8063.
https://doi.org/10.1029/2003JE002070.
Bell, J. F. III et al. (2006), In-flight calibration and
performance of the Mars Exploration Rover Panoramic Camera (Pancam)
instruments, Journal of Geophysical Research , 111 ,
E02S03, https://doi.org/10.1029/2005JE002444.
Bell, J. F., III et al. (2017). The Mars Science Laboratory
Curiosity rover Mastcam instruments: Preflight and in-flight
calibration, validation, and data archiving. Earth and Space
Science , 4 , 396–452,
https://doi.org/10.1002/2016EA000219.
Bell, J. F., III et al. (2021). The Mars 2020 Perseverance Rover
Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging
Investigation. Space Science Reviews , 217 , 24.
https://doi.org/10.1007/s11214-020-00755-x.
Bell, J. F., III et al. (2022). Geological and Meteorological
Imaging Results from the Mars 2020 Perseverance Rover in Jezero Crater.
Under review.
Bhartia, R. et al. (2021). Perseverance’s Scanning Habitable
Environments with Raman and Luminescence for Organics and Chemicals
(SHERLOC) Investigation. Space Science Reviews , 217 , 58.
https://doi.org/10.1007/s11214-021-00812-z.
Buz, J. et al. (2019). Photometric characterization of Lucideon
and Avian Technologies color
standards including application for calibration of the Mastcam-Z
instrument on the Mars 2020 rover. Optical Engineering ,58 (2), 027108. https://doi.org/10.1117/1.OE.58.2.027108.
Farley, K. A. et al. (2020). Mars 2020 Mission
Overview. Space Science Reviews , 216 , 142.
https://doi.org/10.1007/s11214-020-00762-y.
Garczynski, B. et al. (2022). Evidence of alteration on the
Jezero crater floor: A Mastcam-Z multispectral analysis. This issue.
Gillespie, A. R. et al. (1986). Color enhancement of highly
correlated images. I. Decorrelation and HIS contrast stretches.Remote Sensing of Environment , 20 , 3, 209-235.
https://doi.org/10.1016/0034-4257(86)90044-1.
Hayes, A. G. et al. (2021). Pre-Flight Calibration of the Mars
2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic
Imager. Space Science Reviews , 217 , 29.
https://doi.org/10.1007/s11214-021-00795-x.
Horgan, B. et al. (2022). Mineralogy, morphology, and geological
significance of the Máaz formation on the Jezero crater floor from orbit
and rover observations. This issue.
Kinch, K. M., et al. (2006), Preliminary analysis of the MER
magnetic properties experiment using a computational fluid dynamics
model. Planetary and Space Science , 54 (1), pp 28-44,
https://doi.org/10.1016/j.pss.2005.07.008.
Kinch, K. M. et al. (2007). Dust deposition on the Mars
Exploration Rover Panoramic Camera (Pancam) calibration targets.Journal of Geophysical Research , 112 , E06S03,
https://doi.org/10.1029/2006JE002807.
Kinch, K. M. et al. (2020). Radiometric Calibration Targets for
the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Science
Reviews , 217 , 46.
https://doi.org/10.1007/s11214-021-00828-5.
Lemmon, M. T. et al. (2015). Dust aerosol, clouds, and the
atmospheric optical depth record over 5 Mars years of the Mars
Exploration Rover mission. Icarus , 251 , 96-111.
https://doi:10.1016/j.icarus.2014.03.029.
Lemmon, M. T. et al. (2019). Large Dust Aerosol Sizes Seen During
the 2018 Martian Global Dust Event by the Curiosity Rover.Geophysical Research Letters , 46 , 16, 9448-9456.
https://doi.org/10.1029/2019GL084407.
Lemmon, M. T. et al. (2022). Dust, sand, and winds within an
active Martian storm in Jezero crater. This issue.
Madsen, M. B. et al. (2009). Overview of the magnetic properties
experiments on the Mars Exploration Rovers. Journal of Geophysical
Research , 114 (E6), E06S90. http://doi.org/10.1029/2008je003098
Maki, J. N. et al. (2020). The Mars 2020 Engineering Cameras and
Microphone on the Perseverance Rover: A Next-Generation Imaging System
for Mars Exploration. Space Science Reviews , 216 , 137.
https://doi.org/10.1007/s11214-020-00765-9.
Mandon, L. et al. (2022). Reflectance of Jezero crater floor: 2.
Mineralogical interpretation. This issue.
Mangold, N. et al. (2021). Perseverance rover reveals an ancient
delta-lake system
and flood deposits at Jezero crater, Mars. Science , 374 ,
6568, 711-717. https://doi.org/10.1126/science.abl4051.
Maurice, S. et al. (2021). The SuperCam Instrument Suite on the
Mars 2020 Rover: Science Objectives and Mast-Unit
Description. Space Science Reviews , 217 , 47.
https://doi.org/10.1007/s11214-021-00807-w.
Newman, C. E et al. (2022). The dynamic atmospheric and aeolian
environment of Jezero crater, Mars. Science Advances , 8 ,
21. https://doi.org/10.1126/sciadv.abn3783.
Núñez, J. I. et al. (2022). Stratigraphy and Mineralogy of the
Séítah formation on the floor of Jezero crater, Mars as seen with
Mastcam-Z. This issue.
Rice, M. et al. (2022). Spectral variability of rocks and soils
on the Jezero crater floor: A summary of multispectral observations from
Perseverance’s Mastcam-Z instrument. This issue.
Royer, C. et al. (2022). Reflectance of Jezero crater floor: 1.
Data processing and calibration of IRS/SuperCam. This issue.
Vaughan, A. et al. (2022). Regolith of the crater floor units,
Jezero crater, Mars: Textures, composition, and implications for
provenance. This issue.