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Detailed description of the data

In this section, details of the data used in this study are given, such as the methods for

spatial and temporal aggregation, as well as the details of estimated parameters separately

for land, climate and vegetation.

Land:

We used three sets of predictors to model land effects which covers soil hydraulic prop-

erties, water table depth and topographic complexity. In order to prepare the first set

of predictors, we used sand, clay and organic matter contents of soil, together with volu-

metric coarse fragments data from SoilGrids dataset (Hengl et al., 2017) for top and deep

soil. We grouped layers up to 1 meter as top soil and the rest as deep soil and finally

took mean of the layers. We then calculated soil hydraulic properties using the equations

in Saxton and Rawls (2006). Additionally, we estimated maximum potential upwards

capillary flux (Icap) in millimetres per day (mm/day) at 1 meter above groundwater level

using Richards’ equation (Richards, 1931). Finally, we used Plant Available Water (PAW)

as the difference in soil water content between field capacity and wilting point, soil hy-

draulic conductivity at field capacity (kFC) and Icap for two layers as predictors to model

λ. SoilGrids dataset was aggregated to target resolution by taking mean.

We defined the second set of predictors considering Water Table Depth (WTD). Ad-

ditional to the WTD data from Fan, Li, and Miguez-Macho (2013), we also used Height

Above Nearest Drainage (HAND) data from Yamazaki et al. (2019) since HAND is a good

proxy to show the drainage positions (Fan et al., 2019), which strongly affect the depth

of groundwater. We aggregated WTD and HAND by taking mean. Even though seasonal
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variations of WTD may be significant, WTD product used in this study is static due to

properties of high resolution products. In order to capture effects of seasonally shallow

groundwater, i.e., due to seasonal flooding, we used the wetlands data from Tootchi, Jost,

and Ducharne (2019). We aggregated the data by computing percentage of wetlands over

target grid cells.

Last set of land predictors used for modelling λ is related to topographic complexity.

We used Topographic Wetness Index (TWI) as a proxy for the likelihood of soil moisture

due to lateral convergence. In order to account for slope and aspect at hillslope scales,

we used Vectoral Ruggedness Measure (VRM) which is a compound metric quantifying

slope and aspect together using a sine-cosine derivation. Overall VRM values, having a

range from 0 to 1, increase with ruggedness. Finally, we used magnitude and scale of

terrain roughness, which is derived from VRM. Magnitude of roughness is an important

parameter to represent the variation in topography even after spatial aggregation. All

data used in this set of predictors are obtained from Amatulli, McInerney, Sethi, Strobl,

and Domisch (2020) and aggregated by taking the mean.

Climate:

We used mean values for temperature and radiation, and total precipitation for annual

time scales. For seasonal scales, we used seasonality and annual range of temperature and

precipitation that are available in monthly resolution from Fick and Hijmans (2017) in the

native spatial resolution of λ. For radiation, we computed the features from the monthly

data of Abatzoglou, Dobrowski, Parks, and Hegewisch (2018), with the same approach

taken for temperature.
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Vegetation:

We used canopy height from Simard, Pinto, Fisher, and Baccini (2011) after aggregating

the original data to 5 km resolution by mean. Additionally, we used four MODIS based

products which are vegetation cover for both tree and non-tree fractions (Dimiceli et al.,

2015), burned area (Giglio et al., 2015) and Plant Functional Type (PFT) (Friedl & Sulla-

Menashe, 2019). While the first three are aggregated by taking mean values within the

target grid cell, PFT is aggregated by assigning the most common class found within the

grid cell. Additional to the major type of PFT within grid cell, we computed Shannon’s

diversity index (Shannon, 1948) of the PFTs within the grid cells to be aggregated and

used as another predictor.

Spatial distribution of the target variable

Spatial distribution of the target variable is shown in Fig. S1. Yellow colour represents

faster rate of seasonal vegetation cover decay while blue represents slower decay. Note that

study domain is filtered based on the quality of λ estimations and annual precipitation of

1500 mm/year. Further details of the metric and its derivation is available in Küçük et

al. (2020).

Land attributed variations in λ

In this section, we present the land attributed variations of λ using the raw SHAP values

of the modelled λ. Spatial variation of the raw SHAP values are given in Fig. S2 as total

attribution, together with it’s component as direct land effects and land interaction effects

with climate and vegetation in the panels. Directly land attributed variations (φland−direct)

are the dominant component of the total land attributed variations of λ (φland−total). Large
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positive values in φland−direct in regions with shallow groundwater like the Sudd Swamp

(Box-D) where groundwater is shallow (Tootchi et al., 2019) and with complex topography

like the Ethiopian Highlands (Box-E) show that the e-folding time of FVC is slowed down

up to 6 days directly owing to the land parameters modulating secondary water resources

– see Fig. S2a. Conversely, we observed strong negative effects in very arid regions like

Senegal (Box-A in Fig. S2b), Somalia, and the Kalahari Desert, where groundwater is

disconnected from surface (Fan et al., 2013).

Interestingly, interaction effects between land and climate make strong positive variation

on λ in Okavango Delta (Box-C in Fig. S2c) that inverts the negative effects of land

parameters in the region. This conceptually agrees with the fact that the Okavango Delta,

being a seasonally flooded delta, is strongly affected by climate seasonality (Cronberg et

al., 1995). Lastly, interaction effects between land and vegetation are not so prominent

through the study domain (Fig. S2d).

Climate and vegetation attributed variations in λ

Spatial variations of raw SHAP values for climate and vegetation are given in Fig. S3

to illustrate their effects on λ as direct effects (φclim−direct and φveg−direct) and interaction

effects (φclim−veg).
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Figure S1. Observed λ as the target variable of the gradient boosting model.
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(a) (b)

(c) (d)

Figure S2. Land attributed variations of λ as (a) total effects, φland−total = φland−direct +

φland−clim + φland−veg, (b) direct effects of land, φland−direct, (c) interaction effects between land

and climate, φland−clim, (d) interaction effects between land and vegetation, φland−veg.
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(a) (b) (c)

Figure S3. Maps of feature attribution for (a) direct effects of climate (φclim−direct), (b) direct

effect of vegetation (φveg−direct), (c) interaction effects between climate and vegetation (φclim−veg).

Note the larger range of colourbar in φclim−direct than other maps of raw SHAP values.
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