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Abstract18

Key to most subsurface processes is to determine how structural and topological features19

at small length scales, i.e., the microstructure, control the effective and macroscopic prop-20

erties of earth materials. Recent progress in imaging technology has enabled us to visualise21

and characterise microstructures at different length scales and dimensions. An approach22

to characterisation is the sampling of n-point correlation functions - known as statistical23

microstructural descriptors (SMDs) - from images. SMDs can then be used to generate24

statistically equivalent structures having larger sizes and additional dimensions – this pro-25

cess is known as reconstruction. We show that a deep-convolutional generative adversarial26

network trained with Wasserstein-loss and gradient penalty (WGAN-GP) results in a stable27

training and high-quality reconstructions of two-dimensional electron microscopy images of28

complex rock samples. To evaluate reconstruction performance, n-point polytope functions29

are calculated in both reconstructed and original microstructures and mean square error be-30

tween them is used as a quality metric. These n-point polytope functions provide statistical31

information about symmetric, user-oriented higher-order geometrical patterns in microstruc-32

tures. Our results show that GANs can naturally capture these higher-order statistics at33

short and long ranges. Furthermore, we compare our model with a benchmark stochastic34

reconstruction method based solely on two-point correlation. Our findings indicate that35

although yielding the same two-point statistics, two microstructures can be morphologi-36

cally and structurally different, emphasising the need for coupling higher-order correlation37

functions with reconstruction methods. This is a critical step for future schemes that aim38

to reconstruct complex heterogeneous systems and couple microstructures to macroscopic39

phenomena.40

Plain Language Summary41

In our work, we try to train a computer how very small structures, called microstruc-42

tures, hidden within rocks look like . We show the computer thousands of electron micro-43

scope images and use spatial statistics as well as artificial intelligence to have the computer44

regenerate realistic microstructures. We find that our artificial intelligence is extremely45

good in generating fake microstructures that are indistinguishable from the real ones, giv-46

ing us hope that in the future we can make artificial three-dimensional rocks although only47

having information from 2-dimensional microscope images, called 2D to 3D reconstruction.48

Developing such a reconstruction provides great technical and economical benefits as 2D49

images are more affordable, widely available, and can cover larger area of a sample in higher50

resolutions. This approach also paves the way to understand how these microstructures at51

small scales within rocks control e.g., the failure of rocks to generate earthquakes or the52

transport of water and gas for renewable subsurface energy.53

1 Introduction54

Many geological phenomena within the Earth result from physicochemical processes55

occurring at length scales ranging from nanometers to micrometres. For example, the motion56

of tectonic plates is associated with the movement of atomic imperfections (i.e., dislocations)57

within individual mineral grains (e.g., Wallis et al. (2021)). Likewise, the transport of fluids58

within the crystalline lithosphere (Plümper, John, et al., 2017; Plümper, Botan, et al.,59

2017) and reservoirs for the storage of CO2 (Bourg et al., 2015) and hydrogen (Mouli-60

Castillo et al., 2019) are governed by processes occurring at grain contacts and within61

microscopic pore spaces. However, it is not the individual dislocation nor pore that controls62

phenomena at larger length scales but the interaction of many dislocations and pores in63

tandem. Hence, to understand and model geological processes at larger length scales, we64

need to (i) quantitatively characterise microstructures that both includes existing samples65

and generalises beyond them and (ii) establish a link between these microstructures and the66

physical properties of rocks across length scales.67
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Two steps need to be taken to achieve a comprehensive description of microstructures.68

On the one hand, samples of complex earth materials need to be imaged with sufficient69

resolution to capture the smallest features of any given system. On the other hand, reliable70

mathematical descriptions - likely coupled to machine-learning algorithms - need to be71

developed to describe complex microstructures quantitatively and generate a larger yet72

statistically equivalent sample, allowing us to upscale both in lengths and dimensions and73

go beyond the limitations of available imaging techniques.74

In the past decades, rapid advances in imaging technologies have made it possible to75

characterise earth materials at different length scales. For example, electron backscattered76

diffraction is a 2D imaging technique used to describe polycrystalline rocks and gives valu-77

able information such as the lattice-preferred orientation of minerals in multiphase systems,78

grain shape, and distribution at different scales (Britton et al., 2016; Prior et al., 2009).79

Scanning electron microscopy (SEM) utilising backscattered electron (BSE) imaging is an-80

other technique that can be used to acquire high-resolution images of large areas of rock81

surfaces. However, applications of such 2D imaging techniques remain limited as many geo-82

logical processes such as rock deformation and fluid transport in porous media are inherently83

volumetric.84

X-ray tomography is a widely used technique to obtain three-dimensional images of85

rock microstructures, which provides detailed information about internal structures with a86

maximum pixel size of ±0.5 µm. However, a resolution of ±0.5 µm would not be sufficient to87

resolve much smaller features observed in complex heterogeneous media such as carbonates88

(Dehghan Khalili et al., 2013), shales (Wu et al., 2019) or dense crystalline rocks. In89

such circumstances, techniques such as focused ion beam nanotomography (e.g., Holzer and90

Cantoni (2012); Liu et al. (2016)) can be employed, which acquires images with nanometer91

pixel size but at the expense of the field of view (FoV). This tradeoff highlights the inherent92

limitation of imaging technologies; resolution and FoV are in direct competition. Moreover,93

while tiny structures may control the overall behaviour of a given medium, the modelling94

domain (i.e., FoV) needs to be sufficiently large to be representative of the whole system95

(Niu et al., 2020).96

Another challenge in heterogeneous systems is that the microstructural properties can97

significantly vary from one sample to another, so their variabilities also need to be evaluated98

to have a more realistic model. The variability assessment is typically done by conducting99

several imaging experiments or numerical simulations on different samples, allowing us to100

obtain a distribution over larger samples and capture the heterogeneity of the medium (e.g.,101

Mosser et al. (2017)). However, acquiring large image datasets comes with high costs and a102

severe time penalty.103

A pragmatic approach is to reconstruct synthetic but still realistic images of a given104

microstructure using reconstruction methods with no experimental limitations. The funda-105

mental underlying assumption of this approach is that the geometrical patterns of a limited106

number of samples are representative of a large class of materials sharing those patterns.107

As such, these patterns, often represented in terms of spatial statistics, must be implicitly108

or explicitly exploited in the reconstruction process. Thus, reconstruction of heterogeneous109

media is an inverse problem in which a limited amount of microstructural information is110

used to (re)construct realistic microstructures and evaluate macroscopic properties (Jiao111

et al., 2007; Yeong & Torquato, 1998). Consequently, image reconstruction has become112

an essential aspect of digital rock physics to produce representative samples for upscaling,113

multi-scale modelling, and uncertainty assessment.114

Several methods have been developed for image reconstruction in recent years, which115

can be grouped into two main approaches: stochastic methods and deep-learning-based116

reconstructions. Despite their differences, both methods should be supplemented with mi-117

crostructure characterisations of the system. Characterisation refers to statistically quan-118

tifying and representing the morphology of a system using spatial correlation functions,119
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also known as statistical microstructure descriptors (Bostanabad et al., 2018). Traditional120

stochastic methods take such correlation functions as an input and construct a synthetic121

microstructure with the same characteristics. On the other hand, although deep-learning122

methods do not require such information a priori, it is necessary to compute the correlation123

functions from original and reconstructed images to evaluate the reconstruction accuracy.124

Most research on stochastic methods formulates the image reconstruction as an optimi-125

sation problem in which n-point correlation functions, defined as the probability of n random126

points to lie in a phase of interest (e.g., solid, liquid, or void), are calculated from original127

images and used as target functions. Next, these methods seek to reconstruct a medium for128

which the calculated correlation function(s) matches the target function(s) derived from the129

original image. This match can be obtained by applying stochastic optimisation techniques130

such as simulated annealing (SA) (Jiao et al., 2007, 2008; Sheehan & Torquato, 2001).131

While such a framework is shown to be able to reconstruct single-scale microstructures such132

as Fontainebleau sandstone using a simple two-point correlation function (Jiao et al., 2008),133

it fails in the case of multi-scale complex heterogeneous systems since it only captures the134

largest scale features (Gommes et al., 2012b; Jiao et al., 2010). Recently, Karsanina and135

Gerke (2018) proposed a novel hierarchical optimisation approach to incorporate two-point136

correlations of different scales in SA for reconstructing coarse and fine microstructures in a137

single image.138

An alternative to two-point correlation is to employ multi-point statistics (MPS), or139

high-order n-point correlation functions (n ≥ 3). These methods have been used for 3D im-140

age reconstruction from 2D images, showing to be more effective in long-range connectivity141

(Okabe & Blunt, 2005; Strebelle, 2002). While reconstructing more realistic images, these142

methods and improved variants (Hajizadeh et al., 2011; Tahmasebi & Sahimi, 2012, 2013)143

are computationally costly and limited to isotropic media. Chen et al. (2019) developed a set144

of hierarchical descriptors, termed n-point polytope functions, which successively capture145

higher-order correlations of a given phase in an image. In contrast to MPS, these polytope146

functions can be computed significantly faster since only the probability of n vertices of a147

randomly- or user-selected regular polytope (e.g., triangle, square, hexagon for n = 3, 4148

and 6, respectively) is considered, i.e., they can be seen as a subset of n-point correlation149

functions with a fixed edge length. It has been shown that incorporating these higher-order150

correlation functions in SA as target functions will improve the reconstruction accuracy.151

However, adding more correlation functions increases the computational costs and makes152

convergence harder to achieve during SA (Chen et al., 2020).153

In recent years, the advent of deep learning has opened up unprecedented opportunities154

and insight into image reconstruction. Several studies have shown the successful application155

of these techniques for 2D (Guan, 2018) and 3D (Mosser et al., 2017, 2018; S. Liu et al.,156

2019). Notably, a growing body of literature has recently investigated 2D to 3D image157

reconstructions intending to infer 3D morphological and structural properties using features158

extracted from 2D images in specific orientations (Chung & Ye, 2021; Feng et al., 2020;159

Kench & Cooper, 2021; Volkhonskiy et al., 2019).160

Despite showing promising results, training GANs stably and efficiently is a non-trivial161

task. In this work, we employ a GAN coupled to an Earth-mover or Wasserstein-loss with162

a gradient penalty (WGAN-GP) (Arjovsky et al., 2017; Gulrajani et al., 2017) to improve163

the accuracy of reconstructions and overcome the common training challenges associated164

with original GANs (see section 3.3.1). We apply both WGAN-GP and stochastic meth-165

ods to reconstruct two-dimensional electron microscopy images taken from two of the most166

common fluid-rock interactions within the Earth’s lithosphere; (1) the hydrothermal alter-167

ation of feldspar in igneous rocks and (2) the hydration of upper mantle rocks to induce168

serpentinisation. While only two-point correlations are used in SA as a target function,169

polytope functions are calculated to evaluate the accuracy of both methods in reproducing170

higher-order structural information in the systems. To our knowledge, previous studies only171

used two-point correlation and a subset of the so-called Minkowski functionals (e.g., specific172
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surface area and Euler connectivity) to assess image reconstruction performance - none of173

these choices, however, have explicitly addressed how machine-learning-based reconstruc-174

tions perform in reproducing high-order spatial correlations. When determining how well175

we can reconstruct higher-order complexity, our results show that while a reconstructed176

microstructure can have the same two-point correlation as the original one, they can be177

morphologically different. Therefore, it is necessary to couple higher-order correlation func-178

tions with reconstruction methods. We also show that GANs can naturally reproduce the179

higher-order correlations at all ranges without being explicitly trained. This is important180

for reconstructing the higher-order geometry in complex heterogeneous systems and linking181

the microstructures to macroscopic phenomena.182

2 Theoretical approach183

2.1 Rock samples and dataset184

We focus on two commonly occurring rock types affected by fluid-rock interaction.185

The first example is an altered igneous rock representative for fluid-rock interactions of186

the Earth’s crust (?, ?) and the second example is a partially serpentinised peridotite187

representative for alteration within the Earth’s uppermost mantle (Plümper et al., 2012).188

For simplicity we refer to these two rock samples as meta-igneous rock and serpentinite from189

here on.190

For the meta-igneous rock, a small core was drilled with a diameter and height of 2.5191

mm and 1 cm, respectively. The core was cut, and the surface was imaged in backscattered192

electron (BSE) mode using the Zeiss Atlas software installed on a Zeiss Gemini 450 SEM.193

Zeiss Atlas allows large-area BSE imaging of up to several centimetres. Acquisition condi-194

tions were 20 kV acceleration voltage and 2 nA beam current. The pixel size was set to 50195

nm. Subsequently, a region of interest with the dimensions of 17920 by 54784 pixels (0.9196

mm by 2.7 mm) was imaged.197

For the partially serpentinised peridotite, the Atlas software-based BSE imaging ap-198

proach was utilised on various samples from selected Norwegian peridotites previously de-199

scribed in Plümper et al. (2012) and Plümper et al. (2014). The rock samples are charac-200

terised by a lizardite-mesh texture with remaining olivine and secondary magnetite. The201

serpentinisation process produces a fracture network creating pathways for fluid flow. In202

this case, a small part of a thin section was scanned with an acceleration voltage of 15 kV,203

2 nA current, and pixel size of 500 nm, resulting in a large image of dimensions 15000 by204

30000 pixels (7.5 mm by 15 mm).205

To remove the noise and artefacts that are often present in raw images, the acquired206

grayscale BSE images were first denoised by applying an edge-preserving denoising algo-207

rithm known as bilateral filtering. This filter smooths an image by averaging pixels based208

on their spatial distance and pixel value similarities. For more details, please see the original209

work by Tomasi and Manduchi (1998) and the scikit-image Python package’s documenta-210

tion (Van der Walt et al., 2014). The filtered images were subsequently segmented into211

binary images where a pixel value of 1 corresponds to the phase of interest, which is the212

reaction-induced pore network in feldspar and the fracture network in serpentinite samples,213

respectively. Image segmentation employed a convolutional neural network (CNN) with214

U-Net architecture (Ronneberger et al., 2015). CNN is a supervised deep-learning method215

and thus, requires previously annotated images for training. These labelled images were216

created using the ilastik software; an interactive software developed for image classification217

and segmentation (Berg et al., 2019). It is worth mentioning that although one can do the218

image segmentation using ilastik alone, the benefit of training a CNN is that, once trained,219

it can be used to quickly segment future images either directly (if the sample and imaging220

conditions are the same) or using transfer-learning.221
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2.2 n-point correlation functions222

Correlation functions have been proposed as an effective means to describe complex223

heterogeneous microstructures mathematically. The most widely used microstructural cor-224

relation function is the two-point correlation, S2(r), which is the probability P of two random225

points of distance r to occur in the same region of phase i, Vi, within a d-dimensional space226

Rd (Torquato & Haslach Jr, 2002):227

S
(i)
2 (r) = P (x ∈ Vi , x+ 1 ∈ Vi) for x and Vi ∈ Rd (1)

where x is an index showing the location of a pixel in the microstructure image. This is a228

radial form of two-point correlation calculated by averaging the functions in horizontal and229

vertical orientations for a statistically isotropic and homogeneous system. According to this230

definition, the probability of one random point (r=0) to occur in phase region Vi is a one-231

point correlation corresponding to the volume fraction of that phase, i.e., S
(Vi)
1 = S

(Vi)
2 = ϕi.232

As mentioned earlier, two-point statistics is not sufficient to uniquely characterise com-233

plex systems containing higher-order spatial correlations in different locations of an image.234

In such cases, an n-point correlation function Sn can be defined as a probability of n random235

points to lie in a given phase. While a complete description of the medium can be achieved236

by a set of Sn with n = 1, 2, 3, ...,∞, calculating and storing probabilities of all possible237

n-points statistics is computationally intractable. Thus, to sample high-correlations from238

digitally-sampled microstructures, a compromise must be made between geometric complete-239

ness and algorithmic practicality. One such approach to capture complex microstructures240

uses n-point polytope functions, defined as a probability of n vertices of a random regular241

n-point polytope having a given edge length that occurs within the same phase (Fig.1).242

Figure 1. Illustration of polytope functions in meta-igneous rock (a) and serpentinite (b) sam-

ples. P3H , and P3V indicate the probability of vertices of horizontal and vertical triangles, and P4

and P6 those of a square and hexagon, respectively.

The polytope functions capture partial higher-order n-point correlations of a specific243

phase, and can be directly computed from 2D or 3D images and incorporated in a stochastic244

optimisation method for image reconstruction (Chen et al., 2019). As shown in Fig. 1, for245

n = 2, the two-point polytope function is the same as S2. However, for n => 3, the higher-246

order polytope functions can be seen as a subset of the n-point correlation functions, which247
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can be efficiently computed as the edge length (r) is the only variable. A scaled version of248

these functions, known as scaled autocovariance function, has been introduced by Torquato249

and Haslach Jr (2002) and is related to the Pn functions via:250

Fn(r) =
Pn(r)− ϕn

ϕ− ϕn
(2)

where ϕ is the phase fraction. According to this equation, Fn(r = 0) = 1 and Fn(r →251

∞) = 0. The latter is obtained as for r → ∞, we have Pn ≈ ϕn. Although both Fn and252

Pn functions show the same behaviour for a given microstructure, it is more convenient to253

use the scaled autocovariance as it is normalised by the phase fraction - meaning that they254

describe geometric patterns independently from a given phase’s volume fraction.255

2.3 Stochastic reconstruction256

In this study, we use the stochastic Yeong-Torquato-based reconstruction algorithm
developed by Jiao and co-workers as a benchmark (Jiao et al., 2007, 2008). This approach
formulates the image reconstruction as an optimisation problem in which reconstruction
is performed by minimising a cost function using simulated annealing (SA) optimisation
(Kirkpatrick et al., 1983). The algorithm starts with a two-point correlation S2 of an
original image as a target function and a random initial system configuration with the same
volume fraction. An energy function is defined as the sum of the square errors between the
target function and correlation function of the proposed configuration Ŝ2:

E =
∑
r

[
Ŝ2 − S2(r)

]2
(3)

To evolve the random reconstruction towards the original image, the values of two ran-
dom pixels associated with different phases (i.e., black and white pixels) are exchanged,
ensuring that the volume fraction of both phases are preserved. Hence, a new energy Enew

corresponding to the new configuration, and the energy difference between two successive
configurations ∆E = Enew − Eold are calculated. Finally, the pixel exchange is accepted
according to the Metropolis acceptance rule:

p(∆E) =

{
1, if Enew < Eold

exp(−∆E/T ), if Enew ⩾ Eold

(4)

where p(∆E) is the acceptance probability of the pixel exchange, T is an imaginary tem-257

perature that is initially set to a high value and decreases by a factor of α (selected to258

be less than but close to 1) after each annealing stage of the algorithm i.e., T = α × T0.259

Accordingly, when the temperature is high at the initial steps, the acceptance probability260

of the pixel exchange can be higher even if Enew ⩾ Eold , i.e., the error between target and261

sampled two-point correlation in the new configuration is higher than the old one. Thus,262

the probability of accepting a bad configuration is higher. This helps to explore the whole263

solution space and prevents the algorithm from trapping in local minima. These steps are264

repeated until the energy (error) of the reconstructed image is less than a predefined thresh-265

old value or a maximum number of iterations is reached. In this study, 0.0000001, 0.97,266

and 250 were selected for the initial temperature (T0), the decreasing factor (α), and the267

number of iterations, respectively.268

Although the Yeong-Torquato SA is a well-known, flexible optimisation method that269

allows the incorporation of correlation functions to improve the reconstruction process, the270

computational costs significantly increase by including additional functions or dimensions -271

because they must be sampled at any iteration. And, similar to most stochastic optimisation272

methods, inference (reconstructions) accuracy is achieved after relatively large numbers of273

iterations. Hence, we only use the two-point correlation function as a benchmark against274

our GAN models.275
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2.4 Generative adversarial networks(GANs)276

GANs are unsupervised generative algorithms based on game theory (Goodfellow et al.,277

2014), which can directly learn complex high-dimensional probability distributions from the278

input data. The term adversarial originates from the fact that GANs are composed of two279

neural networks competing against each other: a generator (G) and a discriminator (D).280

The generator’s task is to generate realistic images from the data distribution pdata. This281

is done by transforming noise (i.e, random) vectors z into x = Gθ(z), with θ being a set of282

learnable parameters. These noise vectors, also known as latent space, are random variables283

usually sampled from a normal distribution. During training, the discriminator Dθ, which is284

a binary classifier, receives both real images (from pdata(x)) and reconstructed images (from285

pmodel(x)), and then learns to maximise the probability of correctly labelling reconstructed286

(with label= 0) and real images (with label= 1). At the same time, the generator is trained287

in such a way that a chosen discriminator metric e.g., log(1−D((G(z))) is minimised (i.e., to288

’fool’ the discriminator into classifying the reconstructed image as real with D((G(z)) = 1)289

). Mathematically, the cost function for a GAN is a minimax game with value function290

V (G,D) (Goodfellow et al., 2014):291

min︸︷︷︸
G

max︸︷︷︸
D

V (D,G) = Ex∼p(data)[(logD(x))] + EZ∼p(Z)[log(1−D(G(Z)))] (5)

2.4.1 Challenges in training GANs292

Although GANs have been successfully applied to reconstruct a wide range of images,293

training GANs stably and efficiently is non-trivial. The training involves achieving a Nash294

equilibrium to a non-cooperative game between the generator and the discriminator, each295

of them having its cost function: J (D)(θ(D), θ(G)) and J (G)(θ(D), θ(G)) for the discriminator296

D and the generator G, respectively. A Nash equilibrium is reached when a combination297

of parameters (θ(D), θ(G)) is found so that J (D) is minimum with respect to θ(D), and J (G)
298

is minimum with respect to θ(G). Finding these parameters to reach Nash equilibrium299

is difficult because a change in θ(D) to reduce J (D) may increase J (G), and similarly, a300

modification to θ(G) for minimising J (G) can increase J (D). Therefore, although the two301

players might reach an equilibrium in some cases, updating the parameters of both models302

does not necessarily lead to stable and convergent training. However, this is not a specific303

issue of GANs, but it is a general problem with game-theory-based approaches.304

Mode collapse is another common issue in GANs, which occurs when the generator305

collapses to a set of parameters θ that leads to reconstructing the same images, i.e., mapping306

different noise vectors into the same output (Goodfellow, 2016). The reason is that the307

discriminator receives and analyses each image independently. Therefore, when it cannot308

differentiate between real and reconstruction for a specific example, the generator updates309

its parameters to create more of that example and ’wins’ the game.310

Several heuristic methods are proposed to overcome these challenges and improve train-
ing stability. Some effective techniques are: feature matching, minibatch discrimination,
historical averaging, one-sided label smoothing, and visual batch normalisations (Salimans
et al., 2016). Adding Gaussian noise to the discriminator’s input and label switching can
also stabilise the training process (Mosser et al., 2018), though the greater statistical condi-
tions and implications of this approach are still to be researched. Furthermore, some studies
have investigated the use of other distance metrics and value functions than binary cross-
entropy (BCE) (Eq. 5). Arjovsky et al. (2017) used Earth-mover or Wasserstein-1 distance
to measure the distance between the probability functions of real and reconstructed images.
This method, known as WGAN, can prevent mode collapse and improve the stability and
convergence behaviour by forcing the gradient of the discriminator in a constrained space.
This can be done by applying a weight clipping or a gradient penalty, with the latter method
known as WGAN-GP (Gulrajani et al., 2017). In this paper, we use WGAN-GP to enforce
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the output of discriminator in [-1,1]:

min︸︷︷︸
G

max︸ ︷︷ ︸
D

V (D,G) = Ex∼p(data)[(D(x))] + EZ∼p(Z)[D(G(Z)))] + λEx̂[(
∥∥∇x̂D(x̂)

∥∥
2
− 1)

2
] (6)

where is a coefficient and here is set to 10, and x̂ is a mixture of real and the reconstructed311

image from the generator network calculated via x̂ = ϵ(x) + (1 − ϵ(x))G(z), in which is a312

random number from a uniform distribution U [0, 1].313

2.4.2 Training workflow314

While different architectures can be employed in GANs, several studies suggest that315

using convolutional networks in generator and discriminator can improve the fidelity of316

synthetic images and training performance. Such a network, known as deep-convolutional317

GAN (DCGAN), was first introduced by Radford et al. (2015). Our proposed workflow318

for image reconstruction is shown in Fig. 2a. We extracted smaller images from the two319

samples to prepare sufficient training images. In the meta-igneous sample, a total number320

of 14,697 images were created by sliding a window of the size 512 pixel2 with a stride of321

256 pixels over the original large BSE image. For the serpentinite sample, sliding window322

size and stride were 1024 pixels and 200, respectively, providing 10150 training images.323

These images were then segmented and resized to 1282. The smaller window size is selected324

for the meta-igneous sample because we observed a significant loss of information while325

downsampling larger images to 1282 which was our target size. More details about the326

architecture and hyperparameters used for training out WGAN-GP can be found in table327

S1 and table S2, respectively.328

Figure 2. Training WGAN-GP with BSE images of the meta-igneous rock. (a) Schematic

description of workflow. G and D are the generator and the discriminator with architectures

described in table A1.(b) Training dynamics showing how two losses are converging around zero

with generator iterations. In practice, the parameters of the discriminator were updated five times

for each generator’s update. The same workflow was used for the reconstruction of the serpentinite.

Fig. 2b. displays the evolution of loss functions versus generator iterations. It can be329

seen that after 250 iterations, generator and discriminator losses start converging stably.330

However, since a decrease in generator loss cannot be related to reconstruction quality, an331

average S2 curve was calculated for real and simulated batch images (batch size = 128) at332

the end of each iteration. Subsequently, the MSE between two average curves was used as333

the reconstruction quality criterion. The best results were obtained at iteration 4300 with334

MSE= 1.66e−8. The training was performed on two NVIDIA Quadro P6000 GPUs, and the335

curves converged after 3 hours.336
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3 Results337

To compare the capability of stochastic and GAN reconstruction, two WGAN-GPs338

are trained on BSE images of both samples using the workflow shown in Fig. 2a. The339

reconstruction quality is then evaluated in terms of the error between S2 and polytope340

functions of the original and reconstructed images. In all cases, the average functions of 128341

images are calculated and compared.342

3.1 Characterisation of the original microstructures343

In this section, we present the Pn polytope functions corresponding to different geo-344

metrical correlations. These functions provide new statistical information about the mi-345

crostructures. For example, the P4 function shows the square correlations (patterns) in346

the sample and adds unique higher-order information to triangular correlations (P3H and347

P3V ), which in turn, are complementary to P2. Fig. 3a-b show the average Pn functions of348

the original microstructures in the two samples. In each case, all functions start with the349

same probability at r = 0, corresponding to area fractions of phases of interest, which are350

0.052 and 0.352 for the meta-igneous rock and serpentinite samples, respectively. It can be351

seen that the correlation functions initially decrease as r increases. However, the reduction352

rate of each correlation function is faster than its lower-order function. This is because, for353

example, it is less probable that all vertices of a hexagon lie in the same phase compared to354

those of a triangle with the same edge length. Furthermore, the r value in which the curves355

stabilise shows the average size of the features of interest in the samples. Thus, one can356

infer that the average pore size is <10 pixels (∼ 0.5 µm) in meta-igneous microstructures357

(Fig. 3a), and similarly, the average serpentinite fracture width is 20 pixels (∼ 10 µm). The358

same trends can be observed in the scaled correlation functions Fn for each sample (Fig.359

3c-d).360

3.2 Characterisation of the reconstructed microstructures361

To compare and evaluate the accuracy of microstructure reconstruction, polytope func-362

tions are computed on 128 reconstructed images by the SA and our WGAN-GP model.363

Fig. 4 shows the quantification of microstructures reconstructed via the SA method (green364

curves). As can be seen, while there is a good agreement between S2 curves of the orig-365

inal and reconstructed images, apparent discrepancies are observed between higher-order366

correlations functions (i.e., for n > 2). A small error between S2 functions was expected367

as this function is used as the target function in the SA algorithm. Fig. 5 compares the368

polytope functions calculated from the GAN-reconstructed images with the original images.369

The close agreements between all polytope functions indicate that reconstructed images via370

GAN contain higher-order structural information present in the original microstructures.371

To quantify and compare the reconstruction accuracy of the two methods, the MSE372

between Fn functions derived from original and reconstructed images are calculated and pre-373

sented in table S3. The table highlights that the two reconstruction methods are comparable374

in capturing S2. However, with respect to higher-order correlations, the errors computed375

from WGAN-GP are between two (for meta-igneous rock) to three (for serpentinite) orders376

of magnitude less than the stochastic method.377

4 Discussion378

One of the main aims of this paper was to show that GAN can reconstruct images379

that are visually realistic and honour different orders of statistical correlations (symmetry)380

in the original images. Our results show that capturing these geometrical correlations is381

an inherent capability of GANs. The term inherent here refers to the fact that the GAN382

has not been trained to fit higher-order polytope functions. The information used by GAN383

during the training were (1) a great number (> 10000 images) of training images, and (2) the384
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Figure 3. Quantification of microstructures observed in 2D images of the meta-igneous rock (a

and c) and the serpentinite (b and d). (c) and (d) are the scaled autocovariance functions calculated

by Eq.2.

Figure 4. Comparison of polytope functions calculated from original microstructures (blue) and

reconstructed images by the SA method (green).
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Figure 5. Comparison of polytope functions calculated from original microstructures (blue) and

reconstructed images by our WGAN-GP model (red). The good match between polytope functions

shows that our model can accurately reproduce the complex features in the images.

MSE error between S2 of the original and reconstructed images as a stopping criterion. The385

above-mentioned capability of GANs may be explained by the fact that there are multiple386

layers of convolutions in the discriminator, each of them encodes spatial information from387

the images in the form of feature maps. In order for this nonlinear set of parameters to388

represent our samples geometry, the training data and chosen loss functions are the user-389

supplied priors - which the GAN relies upon during training to achieve network weights390

that lead to accurately-inferred reconstructions. In that process, the generator learns to391

simulate images containing those spatial correlations to ’fool’ the discriminator - informed392

by the large prior number of training images extracted from our imaged samples.393

4.1 Microstructure reconstruction: GAN vs. SA394

Fig. 6 depicts the image realisations obtained from SA and our GAN and highlights395

the importance of capturing higher-order correlation functions for generating realistic im-396

ages. Visual inspection of the reconstructions shows that the GAN model can generate more397

realistic images with similar geometrical and structural features such as shape, size, and ori-398

entation. This is consistent with quantitative analysis of polytope functions (Fig. 5), show-399

ing that different levels of morphological symmetries are reproduced in GAN-reconstructed400

images. However, to further quantify and compare morphological information of reconstruc-401

tions, we use a lineal-path function L (Lu & Torquato, 1992). This function is a statistical402

morphological descriptor defined as the probability that an entire line of the length r occurs403

in the same phase. Thus, it can provide additional insight into microstructure connectivity404

and linear clustering.405
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In the case of the meta-igneous rock, we observe that the pores reconstructed by SA406

(Fig. 6c) are circular and smaller than the original pores, lacking the preferred orientation407

apparent in the original microstructure. This observation is also confirmed by determining408

the average L computed from 128 images, as presented in Fig. 7. Although there is a close409

agreement between the L of original and reconstructed images (Fig. 7a), zooming into the410

flat part of the curves (Fig. 7c) reveals that SA has underestimated the L (i.e., the linear411

connectivity of pores) in the system. In particular, instead of the elongated pores in the412

original images, round-shaped isolated pores of smaller diameters are reconstructed. Fig.413

8 compares the probability distributions of the area and orientation of the major axis of414

pores in the real and reconstructed images of the meta-igneous rock sample, computed by415

the label analysis tool within the Thermo Fisher Scientific AVIZO software. From Fig. 7,416

we can conclude that GAN reproduces pores of similar size and orientation to the natural417

system, whereas there is a significant difference between SA-reconstructions and the natural418

microstructure.419

Moreover, it is also apparent from Fig. 6 that the SA-reconstructed images are entirely420

different from original ones in serpentinite fracture networks. Specifically, circular pores of421

large diameters are reconstructed instead of reproducing a network of fractures with varying422

widths and orientations (Fig. 6d). This observation is in agreement with our earlier results,423

which show that SA overestimates all higher-order polytope functions (Fig. 4b) and lineal-424

paths (Fig. 7d) with errors up to three-order of magnitudes greater than GAN, leading to425

reconstructed images that have no resemblance to the original microstructure.426

Unrealistic reconstructions obtained by the SA are due to the microstructural degen-427

eracy of the S2 function, i.e., a number of different microstructures can be compatible with428

a given target function S2 (Eq. 3), resulting in a near-zero energy (Gommes et al., 2012a).429

This means that the S2 does not contain sufficient information to characterise the system430

uniquely - particularly with regards to higher-order structures. However, it can be seen431

that SA performs much better in the meta-igneous rock sample than in the serpentinite432

sample. This may be explained because the serpentinite microstructure is of higher geo-433

metrical complexity, i.e., it contains higher-order correlations at different length scales (Fig.434

3b). In contrast, there are not many higher-order correlations in the porous meta-igneous435

rock system at longer ranges (Fig. 3a), in which polytope correlations become zero at short436

ranges.437

In addition to higher accuracy, the computational reconstruction time of the GAN is438

much less than for the SA method. This time difference is expected given the nature of439

stochastic optimisation versus the machine-learning approach. While stochastic optimisa-440

tion yields a single reconstruction by numerically sampling a model posterior distribution441

iteratively (conducted independently for each reconstruction), GAN directly yields samples442

from the model posterior once trained. In the case of GAN, the training data, the choice443

of loss functions and architecture parameters, and the upfront time spent in training yield444

an implicitly-built prior estimator in the form of trained network weights - allowing for445

near-instantaneous inference/reconstruction after training. This process involves finding446

the optimal hyperparameters for both generator and discriminator, which requires high-447

performance computational resources such as modern GPUs. Although training a GAN can448

be challenging, one can save the trained generator and reuse it to generate an unlimited449

number of synthetic microstructures swiftly. This is an essential advantage of GANs over450

the classical stochastic methods. For example, the time required for training our GAN on451

1282 feldspar images was about 3 hours using two 24GB NVIDIA Quadro P6000 GPUs.452

However, after training, it only needed 4 seconds to reconstruct 128 images, whereas recon-453

struction time of the same number of images via SA was about 2 hours on a system with454

24 CPUs (Intel Xeon Gold 6136, 3GHz), showing an acceleration of 1800 times.455
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Figure 6. Visual comparison of real (a-b) with reconstructed images using SA (c-d) and GAN

(e-f). Red solid lines illustrate how that the lineal-path function L can describe the linear clusters

and connectivity in the microstructures.

–14–



manuscript submitted to JGR: Solid earth

Figure 7. The average lineal-path functions L calculated from real (blue), SA-reconstructed

(green), and GAN-reconstructed (red) images. Grey areas in (c-d) are %95 confidence bounds

around real curves. A better match between curves is derived via GAN reconstructions in both

samples. CL = confidence level.

4.2 Reconstruction of representative microstructures456

The main question that needs to be addressed in microstructure reconstruction is de-457

termining representative image size capturing structural elements of the system under con-458

sideration. It has been shown that the models trained on small images will create pores459

with artefacts and unrealistic shapes. Although, the larger the size of the training images,460

the more computationally demanding and less stable the training.461

Mosser et al. (2017) proposed to use average grain size and chord length as the minimum462

training image size. However, a representative elementary size (RES) analysis should be463

carried out for heterogeneous and complex samples to find an adequate training image size464

(Volkhonskiy et al., 2019). RES analysis is a methodology to determine the smallest size of465

a system that is large enough to capture the system’s heterogeneity as a whole (Bargmann466

et al., 2018). RES analysis is conventionally performed for a particular rock property such467

as porosity or permeability and is used in upscaling to evaluate the effective macro-scale468

properties of rocks from a smaller yet representative sample size. Thus, the RES determined469

by this method can significantly vary depending on the property of interest. Furthermore,470

this approach involves plotting sample size versus its corresponding calculated property. A471

common observation is that the property fluctuates widely at small sizes, but it becomes472

insensitive to size at some point which can be considered the representative size, i.e., the473

transition between micro- and macro-scale (Al-Raoush & Papadopoulos, 2010).474

Here, we rely instead on the two-point correlation function itself to determine the475

representative image size - this allows for a material-dependent representative image size.476
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Figure 8. Comparison of real and reconstructed images in terms of pore properties in the meta-

igneous rock. (a) Probability density of pore area calculated from 128 randomly sampled images.

Dashed lines show the estimated probability density functions fitting the data. (b) Distribution of

pore orientations between -90 (clockwise) and + 90.

Such a representative size is characteristic for porosity (included as volume fraction in S2),477

but it is also structurally and topologically representative, which is important for many post-478

reconstruction analyses such as fluid flow simulations. Our approach consists of computing479

the average scaled two-point correlation (F2) for ten images of different sizes randomly480

selected from our original large BSE images of both samples (Fig. 9a-b). Then, MSEs481

between the largest image (i.e., of size 50002 pixels) and smaller images at the overlapping482

range is calculated (Fig. 9e-f). It can be seen that the F2 curves for the images smaller than483

2000 pixels show entirely different patterns (Fig. 9c-d), leading to more errors while the MSE484

does not decrease significantly beyond 2000 pixels. Thus, an image of size 20002 pixels can485

be considered representative for both samples - based on the stability of their corresponding486

two-point correlations. However, due to the GPUs memory limitations, training images of487

20482 were first downsampled to 5122. We cannot downsample images to any arbitrary sizes488

due to the loss of information and aliasing artefacts associated with downsampling. Here,489

images were resized using scikit-image package in Python (Van der Walt et al., 2014), and490

the image quality was visually inspected.491

Fig. 10 shows reconstructions of microstructures using GAN trained by representative492

images. The results indicate that GAN can reproduce synthetic microstructural images493

matching polytope functions of real microstructures. However, SA algorithms did not con-494

verge with such a large system because the microstructural degeneracy of the system expo-495

nentially increases with the number of pixels. This leads to a rough and complex energy496

landscape (i.e., model posterior or solution space) associated with SA optimisation, thereby497

exploring the solution space to find the minimum global energy becomes numerically chal-498

lenging (Gommes et al., 2012a, 2012b).499

5 Conclusions and outlook500

We investigated the use of a Wasserstein-loss GAN with gradient penalty (WGAN-501

GP) to reconstruct two-dimensional microstructures of natural rocks. We evaluate its per-502

formance in retrieving highly-complex geometries accurately by quantifying higher-order503

statistical correlation functions. As inputs, we used electron microscopic images of two het-504

erogeneous systems. The first sample is from an altered igneous rock with a mostly isolated505

but oriented pore network generated during fluid-driven mineral replacement. The second506

sample is from a serpentinised peridotite characterised by a complex and connected fracture507

network containing different geometrical patterns. Our results show that GANs are capable508

of capturing and reconstructing these topologically complex microstructures without prior509
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Figure 9. RES analysis by scaled autocovariance function Fn calculated for images of different

sizes. (a) and (b) are Fn functions computed for the meta-igneous rock and serpentinite samples,

respectively, where (c) and (d) show the magnified views of (a) and (d). Grey shadow indicates the

%95 confidence levels around the average values of the largest image (50002 pixels). (e-f) MSEs

calculated between the average Fn of the largest image and smaller ones.
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Figure 10. Characterisation and reconstruction of representative microstructures using our

WGAN-GP. (a) and (b) show microstructural characterisation of samples. (c-d) are real microstruc-

tures, and (e-f) are GAN-reconstructed images of feldspar pores and serpentinite fracture network,

respectively.

–18–



manuscript submitted to JGR: Solid earth

statistical information - provided one takes steps to ensure training stability and to perform510

quality-control after inference with the use of high-order descriptors511

An additional aim was to compare the performance of GAN with a conventional stochas-512

tic reconstruction method that uses two-point correlations as input and SA as an optimi-513

sation algorithm. To evaluate and compare the accuracy, n-point polytope correlations are514

employed for the original and the reconstructed microstructures, and the MSE used as a515

quality metric. Our findings demonstrate that errors associated with WGAN-GP are two516

to three orders of magnitude smaller than the stochastic method. Especially in the case517

of the serpentinite sample, which displays a high degree of geometrical complexity in its518

microstructure, SA fails to reconstruct realistic images. Thus, as a practical implication,519

we suggest that before a reconstruction method is selected, the level of complexity (i.e.,520

statistical degeneracy) of microstructures under consideration should be evaluated by e.g.,521

quantifying higher-order geometrical correlations.522

We also propose a new methodology for determining the representative image size based523

on the S2 function. This method is more comprehensive than the previous approaches (see524

section 4.2) - in terms of how it adapts to the properties of samples in question - because it525

considers the structural and morphological information captured by S2. In our case, having526

determined the representative image size to be larger than 20002 pixels, we downsampled the527

images of 20482 pixels to 5122 pixels and successfully trained a GAN to reconstruct realistic528

microstructures honouring the original n-point polytope statistics. However, we could not529

achieve convergence in the SA with images > 5122 pixels by trying different combinations530

of parameters.531

The success of applying GANs for image reconstruction in recent years has resulted in532

increased interest and the emergence of new variants of GAN with new capabilities that can533

be easily incorporated due to the flexibility of GANs. Examples are Slice-GAN (Kench &534

Cooper, 2021; Chung & Ye, 2021), BicycleGAN (Feng et al., 2020), and slice-to-pore GAN535

(Volkhonskiy et al., 2019), which all have been developed for 2D to 3D image reconstruc-536

tion where 2D images of orthogonal planes are used to generate synthetic but statistically537

equivalent 3D microstructures. This type of GANs receives increased attention because 2D538

images are easier and more affordable to acquire and usually have higher resolution and539

a larger field-of-view (FoV). Another example are progressively growing GANs (PG-GAN)540

introduced by Karras et al. (2017), which has been used to reconstruct large images up to541

10242 pixels from carbonate rocks (You et al., 2021).542

Despite high-quality image generation, much less is known about the properties of the543

latent space (z-space), for example, how image attributes are formed and organised in the544

latent space of a well-trained GAN, and the correlation between these attributes. Also,545

there is still uncertainty about how GANs can link the latent space to image semantic space546

and how the latent space can be interpreted and used for image manipulation (Shen et al.,547

2020). The reason is that the generator in GANs is not trained to be invertible, i.e., a548

two-way mapping between the dataset (image space) and the latent space is not established549

during adversarial training. Instead, GANs learn to produce high-quality synthetic images550

indirectly by optimising generator’s weights to imitate the original dataset according to551

feedback from discriminator. Learning such mapping between latent and image space allows552

us to explore the latent space and to manipulate realistically, edit, and combine the features553

in the generated image. Several studies have attempted to address this challenge by using554

inverse mapping, i.e., from image space to latent space. More information about such555

methods, known as GAN inversion, can be found in the comprehensive survey by Xia et al.556

(2021). Other approaches focus on coupling GANs with other generative models, such as557

variational autoencoder (Larsen et al., 2016).558

Employing such methods can be a fruitful area for future works to investigate how559

higher-order information (such as polytope functions) are encoded by GAN in latent space560

and intermediate semantic space, and how we establish a mapping between these informa-561
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tion and macroscopic properties of rock. Another potential application of such methods562

can be image manipulation which can be particularly useful in reaction-induced fluid flow563

simulations in which a connected pore network exists at the time of reaction. However,564

most pores are isolated after the reaction ceases (?, ?; Putnis, 2015), as observed in the565

meta-igneous rock system. In such a situation, GAN inversion methods may realistically566

reconnect the isolated pores and simulate the fluid flow at the time of reaction.567

6 Data availability statement568

Original and segmented BSE images and the data to reproduce the figures are avail-569

able at Utrecht University Yoda data repository accessible via: https://public.yoda.uu570

.nl/geo/UU01/ACSDR4.html. Python codes are also accessible via https://github.com/571

hamediut/GeoWGAN-GP572
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