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Abstract  21 

 Marine heatwaves (MHWs) are events of abnormally warm sea surface temperatures 22 
(SSTs) that can have devastating impacts on marine ecosystems and coastal economies. The 23 
evolution of these events depends partially on the local atmospheric response, and how changes 24 
in clouds and surface heat fluxes in turn affect SSTs. Understanding the role of the atmosphere in 25 
MHWs is essential for modeling and forecasting these events. Here we use satellite data from 26 
2001-2019 to identify MHWs and anomalous atmospheric variables- including radiative heat 27 
fluxes, turbulent heat fluxes, and cloud cover- associated with these events. We find robust 28 
patterns in SST-cloud and SST-heat flux relationships that show important geographical 29 
differences in atmosphere-ocean interactions during MHWs. Because of these regional 30 
differences, we don’t expect MHWs to evolve the same way in all regions. We also find that the 31 
cloud response observed during MHWs globally corresponds well with the cloud response to 32 
future warming, as identified in the Cloud Feedback Model Intercomparison Project (CFMIP) 33 
ensemble of global climate models. This suggests that MHWs can provide valuable insight to 34 
anomalous atmosphere-ocean interactions under future warming.  35 

1 Introduction 36 

 Marine heatwaves (MHWs) are events of anomalously warm sea surface temperatures 37 
(SSTs) that exceed an upper SST threshold for an extended period of time1,2. MHWs have 38 
already become more frequent and more severe in the last few decades due almost entirely to 39 
warming mean ocean temperatures3, and this trend is expected to continue with future global 40 
warming4,5. Although MHWs are discrete regional warming events, it is reasonable to wonder if 41 
these events offer a preview of anomalous atmosphere-ocean interactions under future warming. 42 
Here we quantify the mean local atmospheric response to MHWs, with a focus on surface heat 43 
fluxes and clouds, and evaluate whether the local responses align with changes predicted by 44 
global climate models in a warmer world.  45 

Recent MHWs have had negative impacts on marine ecosystems and on the economies of 46 
coastal communities. Common ecological observations among recent MHWs include extreme 47 
mortality of marine species, harmful algal blooms, coral bleaching, and shifts in species ranges 48 
to cooler waters6,7,8,9. When fish species shift ranges during MHWs, it heavily influences the 49 
success of local fisheries, and less available catch can lead to economic devastation of fishing 50 
communities7,8. Understanding atmospheric perturbations that accompany past MHWs is central 51 
to understanding and modeling the physical processes driving MHWs, which will help in 52 
anticipating and minimizing future negative environmental and socioeconomic impacts during 53 
these events. 54 

 Despite the name, MHWs are not solely oceanic phenomena. They result from coupled 55 
atmosphere-ocean interactions. MHWs can be influenced by both local and non-local, large-scale 56 
atmosphere-ocean processes. In turn, MHWs can have both local and non-local atmospheric 57 
effects. Here we focus on local processes associated with MHWs and do not consider large scale 58 
climate modes or circulation changes associated with extreme SSTs. Anomalous SST patterns 59 
can be started or perpetuated locally by atypical ocean currents or processes in the ocean mixed 60 
layer, as well as atypical atmospheric processes10,11. In the atmosphere, the response of clouds to 61 
warm SSTs and the resulting net heat flux at the ocean surface can drive the tendency of SSTs 62 
during MHWs11. Understanding the changes in atmospheric processes during MHWs is 63 
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important for determining regional differences in atmosphere-ocean interactions that drive MHW 64 
evolution, and for forecasting evolution of MHWs during future events.  65 

 An analysis of the atmospheric response to the 2013-2016 Northeast Pacific MHW 66 
showed substantial anomalies in cloud cover, radiative fluxes, and turbulent fluxes concurrent 67 
with the anomalously warm SSTs. During the approximately 2-year long MHW, low cloud cover 68 
decreased, downward shortwave radiative flux increased, upward and downward longwave 69 
radiative fluxes increased, and latent and sensible heat fluxes out of the ocean increased11. While 70 
there was a small positive net heat flux into the ocean at times during the event due to a positive 71 
SST-cloud feedback, there was a small net negative heat flux anomaly (out of the ocean, 72 
increased cooling) averaged over the lifetime of the event. The question is: does the atmosphere 73 
respond similarly during all MHW events worldwide? What can we generalize about 74 
atmospheric responses to MHWs to better understand processes that control the evolution of 75 
individual events? Does this provide insight into atmospheric adjustment to warm SSTs in a 76 
warmer future climate?  77 

Here we: (1) detect global MHWs from 2001-2019 using satellite data and compute the 78 
additional forcing to the atmosphere during these events; (2) present local anomalous patterns in 79 
clouds and heat fluxes observed during MHW events; and (3) detail how radiative and turbulent 80 
heat flux anomalies contribute to the spatial variability in net heat flux response during MHWs. 81 
Results are compared to global climate model predictions of clouds to determine that MHWs 82 
provide an example of future anomalous atmosphere-ocean interactions. 83 

2 Methods 84 

The SST values used here are from the Hadley Centre Global Sea Ice and Sea Surface 85 
Temperature (HadISST) V1.1. The HadISST product uses in-situ and satellite SST 86 
measurements combined using an optimal interpolation procedure12. Grid boxes and timesteps in 87 
which sea ice was present were removed for this analysis. The HadISST data is available from 88 
1871 to present, but we use 1°x1° gridded monthly means from 2001-2019 to match the 89 
availability of the radiative flux and cloud satellite data. 90 

The surface radiative fluxes and cloud cover are from NASA’s Clouds and Earth’s 91 
Radiance Energy System (CERES) Energy Balanced and Filled (EBAF) Edition 4.1 satellite 92 
measurements. The CERES-EBAF Surface product is a derivative of the CERES synoptic 1° 93 
monthly means product, which calculates radiative fluxes using a 1D radiative transfer model 94 
based on inputs of temperature profiles, water vapor profiles, clouds, and other geostationary 95 
satellite observations. The data are constrained to match top of atmosphere fluxes and ocean heat 96 
storage. Detailed information on the CERES-EBAF product can be found in Kato et al. (2013) 97 
and Kato et al. (2018). CERES-EBAF data is provided on a 1°x1° grid. We use monthly means 98 
from 2001-2019. All mention of radiative fluxes here refers to fluxes at the ocean surface. 99 

 Turbulent fluxes are from the Woods Hole Oceanographic Institute (WHOI) Objectively 100 
Analyzed air-sea Fluxes (OAFlux) Project. The OAFlux product synthesizes meteorological 101 
variable estimates from various sources. The objective analysis reduces errors in individual input 102 
sources to yield an output product with minimal error. Then, the COARE 3.0 bulk flux algorithm 103 
is used to compute turbulent fluxes from the input meteorological variables. The OAFlux dataset 104 
is available over the global oceans on a 1°x1° grid and we use monthly means of latent and 105 
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sensible heat fluxes from 2001-2019 to match the available time period of the CERES-EBAF 106 
data. 107 

 MHWs were detected in the HadISST dataset by first computing the climatological 95th 108 
percentile of SSTs for each month in each grid cell. Each time the mean SST in a given month 109 
exceeds the monthly 95th percentile threshold, it is flagged as a MHW in a binary file. The binary 110 
file is used to select surface heat flux and cloud cover data during MHWs. Those data are 111 
composited over all months flagged as MHWs, and averaged to yield ‘MHW-averaged’ variables 112 
in each grid box. The MHWs were tested for spatial and temporal coherence (i.e., are they larger 113 
than one grid cell and longer in duration than one month) by using an algorithm that clusters 114 
events that are congruent in space and/or time. Each larger/longer congruent event is given a 115 
common event label. This allows us to relate the number of MHW grid boxes to the number of 116 
global events. Given the length of the data record used here, some especially long MHWs (like 117 
the 2013-2016 NE Pacific MHW) may not be captured in their entirety by this algorithm, which 118 
necessarily only detects 5% of months as MHWs. In this sense, we can view this analysis as 119 
capturing the MHW months with the highest magnitude SST anomalies (as opposed to capturing 120 
all MHW months). Lowering the detection threshold to a 90th percentile threshold helps address 121 
this issue of including entire MHWs; however, a sensitivity analysis showed that changing the 122 
threshold did not significantly alter results presented here. 123 

To help interpret any regional differences in average surface heat fluxes or cloud cover 124 
during marine heatwaves compared to average conditions, it is useful to know if the atmosphere 125 
experiences similar regional forcing due to a change in SSTs during MHWs. We assume that the 126 
forcing from the sea surface to the atmosphere can be quantified as the upwelling longwave 127 
radiative flux, computed by the Stefan-Boltzmann equation:  128 

 129 

 𝐿𝑊 ൌ 𝜖𝜎𝑇ସ [1] 

 130 

 We can quantify the difference in forcing by the ocean surface to the atmosphere 131 
between normal and marine heatwave conditions by differentiating the Stefan-Boltzmann 132 
equation and rearranging: 133 

 𝑑𝐿𝑊
𝑑𝑇

ൌ 4𝜖 𝜎𝑇ത ଷ 

 

[2] 

 𝑑𝐿𝑊 ൌ 4𝜖 𝜎𝑇ത ଷሺ𝑇ᇱ െ 𝑇തሻ [3] 

 134 

 where LW is the upward longwave radiative flux at the ocean surface, 𝜎 is the Stefan-135 
Boltzmann constant, 𝜖 is the emissivity (which we assume is unity at the ocean surface and will 136 
be dropped in further equations), 𝑇ത is the mean SST, and T’ is the MHW SST threshold at the 137 
95th percentile. The equation can be rearranged and reduced to a fractional representation to 138 
yield: 139 

 𝑑𝐿𝑊
𝜎𝑇ത ସ ൌ 4

ሺ𝑇ᇱ െ 𝑇തሻ
𝑇ത

 
[4] 
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 140 

This equation can be multiplied by 100 and used to analyze the percentage change in 141 
forcing during MHWs in different regions around the world. The hypothesis is that, if there are 142 
differences in forcing during a MHW warming, the atmosphere will show larger anomalies in 143 
regions where the forcing from SST changes is also larger. 144 

3 Results 145 

3.1 MHW Detection & Forcing during MHWs 146 

 The MHW detection algorithm identified 16,550 spatially and/or temporally congruent 147 
MHW events in the 18-year SST dataset. While this number appears large, recall there are 148 
approximately 45,360 1°x1° oceanic grid cells. In 18 years, each grid cell experiences on average 149 
11 months (~5% of an 18-year data record) of MHW conditions, which means our algorithm has 150 
detected a reasonable number of clustered MHW events, given the 95th percentile detection 151 
threshold. For all MHWs identified across the globe, the average SST anomaly for all events was 152 
0.8 °C. 153 

 Figure 1 shows the change in forcing due to anomalously warm SSTs during MHW 154 
conditions as computed in Equation 4, averaged over all seasons. The forcing change due to a 155 
warmer SST during MHWs is not uniform globally. Areas of strong forcing are evident in 156 
regions such as the Northeast Pacific, Northwest Atlantic, central and eastern tropical Pacific, 157 
and the Southwest Atlantic. While Figure 1 is computed using data from 2001-2018, and thus the 158 
95th percentile thresholds used in the calculation may be influenced by recent large and severe 159 
MHWs, the same calculation using the full HadISST dataset (1870-2018) yields nearly the same 160 
spatial pattern (though magnitudes of percentage forcing change are larger, see Figure S1 in 161 
supplemental material). The fact that the larger forcing changes observed in some regions 162 
compared to others are robust across a long dataset highlights unique atmosphere-ocean 163 
interactions occurring in these regions.  164 

 The magnitude of the average SST anomaly during MHWs (Figure 2a) matches the 165 
pattern of forcing change (Figure 1), as expected. As we show, regions that experience a greater 166 
percentage change in forcing also experience larger anomalies in some atmospheric variables 167 
during MHWs.  168 
 169 
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(e.g., the Kuroshio current in the northwest Pacific and the Gulf Stream current in the northwest 199 
Atlantic) (Figure 2g). Throughout large areas in the subtropics and midlatitudes, latent heat flux 200 
anomalies are small and negative (indicating less cooling by latent heat fluxes). Sensible heat 201 
fluxes are small compared to other flux terms everywhere (Figure 2h) except at very high 202 
latitudes, where our confidence in the data is lower due to interference by sea ice and challenges 203 
with satellite retrievals. 204 
  205 
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western boundary current regions and the tropics. Since upward and downward longwave 233 
radiative flux anomalies have robustly similar signs (and, to a lesser extent, similar magnitudes) 234 
during MHWs in all regions of the globe (Figures 2c,d), they are not contributing much to the 235 
spatial structure of the net heat flux anomaly.  236 

We can quantify the extent to which heat flux components (i.e., downward/upward 237 
longwave, downward/upward shortwave, latent, and sensible fluxes) contribute to regional 238 
variations in net heat flux anomaly by computing the percentage contribution of each heat flux 239 
component anomaly to the total net heat flux anomaly during MHWs in each grid box. We do 240 
this by dividing the absolute value of each individual net heat flux component anomaly by the 241 
sum of the absolute value of all net heat flux component anomalies. Results of this calculation 242 
are shown in Figure 4. In many places, downward shortwave radiative flux anomalies (Figure 243 
4d) and latent heat flux anomalies (Figure 4e) are the dominant contributors to net heat flux 244 
anomalies during MHWs. The fact that latent heat fluxes account for 20-40% of the anomalous 245 
net heat flux response during MHWs is particularly notable since under climatological 246 
conditions, latent heat fluxes are a much smaller contributor to net heat fluxes (5-10%, not 247 
shown). 248 

Downward and upward longwave radiative flux anomalies contribute secondarily to the net 249 
heat flux anomaly spatial variation in most regions (Figures 4a,b). Sensible heat flux anomalies 250 
and upward shortwave radiative flux anomalies only contribute substantially in very high 251 
latitudes where sea ice is often present (Figures 4c,f).  252 
  253 
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Furthermore, ocean-atmosphere interactions have an amplified response in these places. For 269 
some atmospheric variables (downward longwave radiative flux, cloud cover and latent heat 270 
fluxes), the larger forcing may be associated with larger atmospheric anomalies. The implication 271 
is that the world’s oceans are not uniform in response to MHWs, and our analyses and modeling 272 
efforts should reflect the heterogeneity in regional evolution of these extreme events. 273 

4.2 Atmospheric patterns during MHWs 274 

Our results capture MHW months with only the most extreme SSTs; they represent only 275 
the highest 5% of SST anomalies during the data period. In some extreme cases when the MHW 276 
persists for many months of years, like that of the 2013-2016 NE Pacific MHW, the entire event 277 
is not captured in this analysis since the duration is longer than could be captured by the MHW 278 
detection algorithm given the length of the data record. (For analyses of individual events with 279 
longer duration, the threshold for MHW detection can be reduced to, say, the 90th percentile or 280 
below, in order to analyze the full consecutive event; alternatively, the detection algorithm can 281 
be altered so that time periods in which SSTs drop below the threshold can be included in the 282 
event if the anomalies are bookended on both sides by MHW conditions). Throughout the 283 
evolution of an entire MHW, the atmospheric patterns may vary. For example, in the 2013-2016 284 
NE Pacific MHW, the average net heat flux anomaly over the duration of the event was net 285 
negative11. However, the analysis here shows the net heat flux anomaly in that same region is net 286 
positive. A careful look at the time series of net heat flux anomalies during the event indicates 287 
that during the time periods of most intense SST anomalies (also captured in this analysis), the 288 
net heat flux anomaly is indeed positive. However, averaging over the lifetime of the MHW 289 
yields a negative net heat flux anomaly, as this includes months when the SSTs were cooling 290 
back to below the MHW threshold. While composited MHW results are useful, a careful time 291 
series analysis of individual events is also crucial in understanding dynamics that are at play 292 
throughout the build-up, duration, and decay of the MHW. The dynamics during each phase will 293 
be different and not necessarily the same as the processes represented in event-composited 294 
results. 295 

It is also prudent to note that this analysis does not consider non-local downstream 296 
impacts of extreme SSTs associated with MHWs. One could imagine that a perturbation in the 297 
underlying SST would not only have a local impact, but also could be carried by the atmosphere 298 
downstream and ultimately influence surface heat fluxes and cloud cover. These non-local 299 
responses could depend on the spatial extent of the MHW; for example, if a MHW is large 300 
enough, the atmosphere may more fully equilibrate to the SST anomalies. While not addressed 301 
here, this is an important area of future research.  302 

Regional patterns in MHW-averaged cloud anomalies presented here generally align well 303 
with SST-cloud relationships published in the literature. As SSTs increase during a MHW, low 304 
clouds decrease almost everywhere15,16,17,18. One notable exception is the northwest Pacific (Sea 305 
of Okhotsk and Bering Sea regions), for which the literature on SST-cloud relationships is 306 
sparse, though it is reasonable to assume this area is intermittently affected by sea ice and/or cold 307 
air outbreaks from the Siberian region that could influence clouds. The Southern Ocean also 308 
experiences increases in low cloud in some areas, which could be attributed to sea ice interaction 309 
or poor data quality at high latitudes. We show that high clouds generally increase everywhere 310 
during MHWs. This is expected given the SST-high cloud relationships outlined in the literature 311 
which suggest deep convection generally increases with warming ocean waters19,20. This is 312 
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especially apparent in our high cloud results in the central and eastern Pacific, when warm waters 313 
typically associated with El Niño and a shift in the Walker circulation bring deep convection and 314 
precipitation to these areas. Increases in high cloud cover in the subtropics or midlatitudes 315 
associated with warm SSTs19,20 or MHWs11,21 have been observed by many other studies as well. 316 
Our MHW-composited cloud anomaly results show that, even at the tail end of the SST 317 
distribution (MHW events), our understanding of cloud behavior under warm SSTs is consistent 318 
with the observations. 319 

The influence of the El Niño-Southern Oscillation is apparent in the tropical Pacific in 320 
many of the figures presented. We note that a strong El Niño event can technically be classified 321 
as a MHW in the east and central equatorial Pacific, so El Niño events are rightly included in the 322 
analysis, since we are interested to see how extreme SSTs influence the atmosphere. While the 323 
driving forces of El Niño-related MHWs could certainly be different than the driving forces of 324 
other MHWs globally, we are not concerned here with what drives the spin-up of the MHW; 325 
rather, we are focused on the overlying atmospheric anomalies associated with warm SST 326 
events. In fact, including El Niño-influenced events provides an excellent confirmation of our 327 
results. The increased convection in the central and eastern tropical Pacific, represented by 328 
decreased low cloud and increased high cloud fractional coverages, aligns with our expectations 329 
of El Niño behavior. Additionally, the increase in humidity in the eastern and tropical Pacific 330 
aligns with the changes in the Walker circulation during El Niño events.   331 

In the case of downward longwave radiative flux, a near universal increase during MHWs 332 
is somewhat surprising given the spatial differences in cloud changes regionally. Since 333 
downward longwave radiative flux is determined mainly by air temperature, humidity levels, and 334 
cloud cover, regional variability in the magnitude of cloud cover anomalies during MHWs might 335 
be expected to yield regional variability in downward longwave radiative flux anomalies at the 336 
surface. Rather, the widespread increases in air temperature and humidity dominate the 337 
downward longwave response. Cloud changes are of secondary importance on downward 338 
longwave radiative flux anomalies during MHWs. These results provide observational evidence 339 
during natural warming events that support the theory that downward longwave radiative flux is 340 
largely set by surface temperatures and the resulting turbulent fluxes that warm and moisten the 341 
overlying atmosphere; cloud changes make a much smaller contribution22. 342 

It is worth mentioning that the seasonal dependence of these results is not analyzed here, 343 
as the relatively short time series of MHW events does not allow for sufficient data points in 344 
each season to provide robust results. However, there is good reason to think that these results 345 
are seasonally dependent. For example, outside of the tropics when the oceanic mixed layer is 346 
shallow, it may be easier to warm the ocean water to MHW levels and thus a disproportionate 347 
fraction of MHWs could occur in the warm season. Additionally, climatological cloud cover 348 
differs from season to season in many parts of the world, so cloud response, and more 349 
importantly- the impact of that cloud response on net heat flux at the ocean surface- could 350 
depend heavily on the season. Future work analyzing seasonal dependence of the atmospheric 351 
response to MHWs using longer datasets should be prioritized. 352 

4.3 Implications  353 

 There are two important implications of this analysis. First, we show that the role of the 354 
atmosphere in MHWs is regionally variable and, because of these regional differences in 355 
atmosphere-ocean interactions, we do not expect MHWs to evolve similarly in all regions. 356 
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Second, we argue that the MHW-averaged atmospheric responses shown here are similar to 357 
global climate model predictions of those atmospheric variables in a warmer world, suggesting 358 
that MHWs provide a observational surrogate of what surface flux and atmospheric changes will 359 
look like in a warmer world. The results of our analysis show that some atmospheric variables 360 
have a similar and robust local response to MHWs in all regions globally, while other 361 
atmospheric variables behave differently in the tropics, subtropics, and midlatitudes. These 362 
differences combine to produce spatial variability in the net heat flux response during MHWs. 363 
The net heat flux during MHWs encompasses the atmospheric effects on SST tendency; 364 
consequently, the local atmospheric contribution to MHWs is regionally variable.  365 

Atmospheric variables like downward and upward longwave radiative fluxes at the 366 
surface, low cloud cover, high cloud cover, and humidity anomalies are robustly uniform in sign 367 
during MHWs in nearly all regions. But atmospheric variables like latent heat flux, total cloud 368 
cover, and downward shortwave radiative flux anomalies show large regional differences in sign. 369 
It is the latter variables that drive the global spatial differences in net heat flux response at the 370 
surface during MHWs. Generally speaking, the atmosphere tends to cool SSTs through a 371 
negative surface net heat flux anomaly during MHWs in the tropics; the opposite is the case 372 
during MHWs in the subtropics and midlatitudes. Differences in tropical versus subtropical vs. 373 
midlatitude atmosphere-ocean interactions are largely dictated by cloud response and latent heat 374 
fluxes, which emphasizes the importance of understanding clouds and latent heat fluxes to 375 
properly model the coupled climate system.  376 

Average SSTs in most ocean basins will warm 1°C above 1986-2006 historical averages 377 
by the end of the century in an RCP4.5 scenario, and by 2050 in an RCP8.5 scenario23. The SST 378 
anomalies during MHWs presented here average about 0.8 °C, and thus are a conservative 379 
representation of the future ocean conditions under global warming. The global response of total 380 
cloud cover to MHWs in our data set closely resembles the global response of total cloud cover 381 
per degree warming in the global climate model ensemble mean from the Cloud Feedback Model 382 
Intercomparison Project (CFMIP; Zelinka et al., 2012, Figure 1). Models and observational data 383 
from MHWs both show an increase in total cloud cover over the tropical oceans, a decrease in 384 
the subtropics and midlatitudes, and an increase in the high latitudes. Regional changes in low 385 
cloud and non-low cloud fraction (which make up changes in total cloud fraction) during MHWs 386 
are also consistent with those from global climate model ensemble means (Mark Zelinka, 387 
personal communication).  388 

We do not claim MHWs are exact replicas of future ocean conditions. For example, 389 
large-scale SST gradients that exist currently between MHW regions and neighboring non-MHW 390 
regions will either not be present or very significantly reduced when future SST warming 391 
happens on a global scale. Nevertheless, MHW events provide valuable insight into the potential 392 
atmospheric response to future warming of SSTs. It is a reasonable hypothesis that radiative 393 
fluxes, turbulent fluxes, clouds, and humidity will respond similarly to future warm SSTs as 394 
observed in the MHWs analyzed here. Furthermore, MHWs can help validate atmospheric 395 
response to warming SSTs in global climate models. We show that cloud response is a key factor 396 
in determining the net het flux response to MHWs and, thus, the atmospheric contribution to SST 397 
tendency during MHWs. Correctly modeling clouds in global climate models is fundamental to 398 
properly representing atmosphere-ocean interactions and net heat fluxes in global climate 399 
models; therefore, it is encouraging to see the consistency between the results in this MHW 400 
analysis and model ensemble means.  401 
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