References
Ammon, C. J., Ji, C., Thio, H.-K., Robinson, D., Ni, S.,
Hjorleifsdottir, V., et al. (2005). Rupture process of the 2004
Sumatra-Andaman earthquake. Science , 308 (5725),
1133–1139. https://doi.org/10.1126/science.1112260
Ampuero, J.-P., & Ben-Zion, Y. (2008). Cracks, pulses and macroscopic
asymmetry of dynamic rupture on a bimaterial interface with
velocity-weakening friction. Geophysical Journal International ,173 (2), 674–692.
https://doi.org/10.1111/j.1365-246X.2008.03736.x
Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a
fault between different materials. Journal of Geophysical
Research: Solid Earth , 102 (B1), 553–571.
https://doi.org/10.1029/96JB02856
Bilek, S. L., & Lay, T. (2002). Tsunami earthquakes possibly widespread
manifestations of frictional conditional stability: Variability of
greenland accumulation. Geophysical Research Letters ,29 (14), 18-1–18-4. https://doi.org/10.1029/2002GL015215
Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along
interplate megathrust faults in subduction zones. Nature ,400 (6743), 443–446. https://doi.org/10.1038/22739
Bizzarri, A., & Das, S. (2012). Mechanics of 3-D shear cracks between
Rayleigh and shear wave rupture speeds. Earth and Planetary
Science Letters , 357-358 , 397-404.
https://doi.org/10.1016/j.epsl.2012.09.053
Blanpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional
slip of granite at hydrothermal conditions. Journal of Geophysical
Research: Solid Earth , 100 (B7), 13045–13064.
https://doi.org/10.1029/95JB00862
Brocher, T. M. (2005). Empirical relations between elastic wavespeeds
and density in the Earth’s crust. Bulletin of the Seismological
Society of America , 95 (6), 2081–2092.
https://doi.org/10.1785/0120050077
Chen, T., & Lapusta, N. (2009). Scaling of small repeating earthquakes
explained by interaction of seismic and aseismic slip in a rate and
state fault model: Simulations of repeating earthquakes. Journal
of Geophysical Research: Solid Earth , 114 (B1).
https://doi.org/10.1029/2008JB005749
Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison
of finite difference and boundary integral solutions to
three-dimensional spontaneous rupture. Journal of Geophysical
Research , 110 (B12), B12307. https://doi.org/10.1029/2005JB003813
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental
results and constitutive equations. Journal of Geophysical
Research , 84 (B5), 2161–2168.
https://doi.org/10.1029/JB084iB05p02161
Duan, B. (2010). Role of initial stress rotations in rupture dynamics
and ground motion: A case study with implications for the Wenchuan
earthquake. Journal of Geophysical Research , 115 (B5),
B05301. https://doi.org/10.1029/2009JB006750
Duan, B. (2012). Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki
earthquake: Roles of a possible subducting seamount. Journal of
Geophysical Research: Solid Earth , 117 (B5), n/a-n/a.
https://doi.org/10.1029/2011JB009124
Duan, B., & Day, S. M. (2008). Inelastic strain distribution and
seismic radiation from rupture of a fault kink. Journal of
Geophysical Research , 113 (B12), B12311.
https://doi.org/10.1029/2008JB005847
Duan, B., & Oglesby, D. D. (2006). Heterogeneous fault stresses from
previous earthquakes and the effect on dynamics of parallel strike-slip
faults: Heterogeneous stress on parallel faults. Journal of
Geophysical Research: Solid Earth , 111 (B5), B05309.
https://doi.org/10.1029/2005JB004138
Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B.,
Ampuero, J. P., et al. (2009). The SCEC/USGS dynamic earthquake rupture
code verification exercise. Seismological Research Letters ,80 (1), 119–126. https://doi.org/10.1785/gssrl.80.1.119
Harris, R. A., Barall, M., Andrews, D. J., Duan, B., Ma, S., Dunham, E.
M., et al. (2011). Verifying a computational method for predicting
extreme ground motion. Seismological Research Letters ,82 (5), 638–644. https://doi.org/10.1785/gssrl.82.5.638
Harris, Ruth A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K.,
et al. (2018). A suite of exercises for verifying dynamic earthquake
rupture codes. Seismological Research Letters , 89 (3),
1146–1162. https://doi.org/10.1785/0220170222
Harris, R. A., & Day, S. M. (1997). Effects of a low-velocity zone on a
dynamic rupture. Bulletin of the Seismological Society of
America , 87 (5), 1267–1280.
https://doi.org/10.1785/BSSA0870051267
den Hartog, S. A. M., & Spiers, C. J. (2013). Influence of subduction
zone conditions and gouge composition on frictional slip stability of
megathrust faults. Tectonophysics , 600 , 75–90.
https://doi.org/10.1016/j.tecto.2012.11.006
Hayes, G. P. (2011). Rapid source characterization of the 2011 M w 9.0
off the Pacific coast of Tohoku Earthquake. Earth, Planets and
Space , 63 (7), 529–534. https://doi.org/10.5047/eps.2011.05.012
Huang, Y., & Ampuero, J.-P. (2011). Pulse-like ruptures induced by
low-velocity fault zones. Journal of Geophysical Research ,116 , B12307. https://doi.org/10.1029/2011JB008684
Hughes, T. J. R. (2000). The finite element method: linear static
and dynamic finite element analysis . Mineola, NY: Dover Publications.
Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow dynamic overshoot
and energetic deep rupture in the 2011 mw 9.0 Tohoku-Oki earthquake.Science , 332 (6036), 1426–1429.
https://doi.org/10.1126/science.1207020
Im, K., Saffer, D., Marone, C., & Avouac, J.-P. (2020).
Slip-rate-dependent friction as a universal mechanism for slow slip
events. Nature Geoscience , 13 (10), 705–710.
https://doi.org/10.1038/s41561-020-0627-9
Ishii, M. (2011). High-frequency rupture properties of the M w 9.0 off
the Pacific coast of Tohoku Earthquake. Earth, Planets and Space ,63 (7), 609–614. https://doi.org/10.5047/eps.2011.07.009
Kanamori, H. (1986). Rupture process of subduction-zone earthquakes.Annual Review of Earth and Planetary Sciences , 14 (1),
293–322. https://doi.org/10.1146/annurev.ea.14.050186.001453
Kaneko, Y., Lapusta, N., & Ampuero, J.-P. (2008). Spectral element
modeling of spontaneous earthquake rupture on rate and state faults:
Effect of velocity-strengthening friction at shallow depths.Journal of Geophysical Research , 113 (B9), B09317.
https://doi.org/10.1029/2007JB005553
Kiser, E., & Ishii, M. (2011). The 2010 Mw 8.8 Chile earthquake:
Triggering on multiple segments and frequency-dependent rupture
behavior: The 2010 Mw 8.8 Chile earthquake. Geophysical Research
Letters , 38 (7), L07301. https://doi.org/10.1029/2011GL047140
Kodaira, S., Iidaka, T., Kato, A., Park, J.-O., Iwasaki, T., & Kaneda,
Y. (2004). High pore fluid pressure may cause silent slip in the Nankai
Trough. Science , 304 (5675), 1295–1298.
https://doi.org/10.1126/science.1096535
Koper, K. D., Hutko, A. R., Lay, T., & Sufri, O. (2012). Imaging
short-period seismic radiation from the 27 February 2010 Chile (M W 8.8) earthquake by back-projection ofP , PP , and PKIKP waves: Rupture imaging of 2010
Chile earthquake. Journal of Geophysical Research: Solid Earth ,117 , B02308. https://doi.org/10.1029/2011JB008576
Kozdon, J. E., & Dunham, E. M. (2013). Rupture to the trench: Dynamic
rupture simulations of the 11 March 2011 Tohoku Earthquake.Bulletin of the Seismological Society of America , 103 (2B),
1275–1289. https://doi.org/10.1785/0120120136
Lapusta, N., & Liu, Y. (2009). Three-dimensional boundary integral
modeling of spontaneous earthquake sequences and aseismic slip.Journal of Geophysical Research , 114 (B9), B09303.
https://doi.org/10.1029/2008JB005934
Lapusta, N., Rice, J. R., Ben-Zion, Y., & Zheng, G. (2000).
Elastodynamic analysis for slow tectonic loading with spontaneous
rupture episodes on faults with rate- and state-dependent friction.Journal of Geophysical Research: Solid Earth , 105 (B10),
23765–23789. https://doi.org/10.1029/2000JB900250
Lay, T. (2015). The surge of great earthquakes from 2004 to 2014.Earth and Planetary Science Letters , 409 , 133–146.
https://doi.org/10.1016/j.epsl.2014.10.047
Lay, T., Ammon, C. J., Kanamori, H., Koper, K. D., Sufri, O., & Hutko,
A. R. (2010). Teleseismic inversion for rupture process of the 27
February 2010 Chile (M w 8.8) earthquake: The 2010 great
Chile earthquake rupture. Geophysical Research Letters ,37 (13), L13301. https://doi.org/10.1029/2010GL043379
Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L.,
et al. (2012). Depth-varying rupture properties of subduction zone
megathrust faults: Megathrust rupture domains. Journal of
Geophysical Research: Solid Earth , 117 , B04311.
https://doi.org/10.1029/2011JB009133
Lin, Y. N., Sladen, A., Ortega-Culaciati, F., Simons, M., Avouac, J.-P.,
Fielding, E. J., et al. (2013). Coseismic and postseismic slip
associated with the 2010 Maule earthquake, Chile: Characterizing the
Arauco Peninsula barrier effect. Journal of Geophysical Research:
Solid Earth , 118 (6), 3142–3159.
https://doi.org/10.1002/jgrb.50207
Liu, D., & Duan, B. (2018). Scenario earthquake and ground‐motion
simulations in North China: Effects of heterogeneous fault stress and 3D
basin structure. Bulletin of the Seismological Society of
America , 108 (4), 2148–2169. https://doi.org/10.1785/0120170374
Liu, D., Duan, B., Prush, V. B., Oskin, M. E., & Liu-Zeng, J. (2021).
Observation-constrained multicycle dynamic models of the Pingding Shan
earthquake gate along the Altyn Tagh Fault. Tectonophysics ,814 , 228948. https://doi.org/10.1016/j.tecto.2021.228948
Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge
spontaneously in three-dimensional rate and state modeling of subduction
earthquake sequences. Journal of Geophysical Research ,110 (B8), B08307. https://doi.org/10.1029/2004JB003424
Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic
deformation transients in a subduction fault model. Journal of
Geophysical Research , 112 (B9), B09404.
https://doi.org/10.1029/2007JB004930
Lotto, G. C., Dunham, E. M., Jeppson, T. N., & Tobin, H. J. (2017). The
effect of compliant prisms on subduction zone earthquakes and tsunamis.Earth and Planetary Science Letters , 458 , 213–222.
https://doi.org/10.1016/j.epsl.2016.10.050
Luo, B., & Duan, B. (2018). Dynamics of nonplanar thrust faults
governed by various friction laws. Journal of Geophysical
Research: Solid Earth , 123 (6), 5147–5168.
https://doi.org/10.1029/2017JB015320
Luo, B., Duan, B., & Liu, D. (2020). 3D finite-element modeling of
dynamic rupture and aseismic slip over earthquake cycles on
geometrically complex faults. Bulletin of the Seismological
Society of America , 110 (6), 2619–2637.
https://doi.org/10.1785/0120200047
Ma, S. (2012). A self-consistent mechanism for slow dynamic deformation
and tsunami generation for earthquakes in the shallow subduction zone:
Slow rupture and tsunami generation. Geophysical Research
Letters , 39 (11), L11310. https://doi.org/10.1029/2012GL051854
Ma, S., & Hirakawa, E. T. (2013). Dynamic wedge failure reveals
anomalous energy radiation of shallow subduction earthquakes.Earth and Planetary Science Letters , 375 , 113–122.
https://doi.org/10.1016/j.epsl.2013.05.016
Meng, Q., & Duan, B. (2022). Do upper-plate material properties or
fault frictional properties dominate tsunami earthquake characteristics?
https://doi.org/10.1002/essoar.10511617.1
Meng, Q., Duan, B., & Luo, B. (2022). Using a dynamic earthquake
simulator to explore tsunami earthquake generation. Geophysical
Journal International , 229 (1), 255–273.
https://doi.org/10.1093/gji/ggab470
Miura, S., Takahashi, N., Nakanishi, A., Ito, S., Kodaira, S., Tsuru,
T., & Kaneda, Y. (2001). Seismic velocity structure off Miyagi fore-arc
region, Japan Trench, using ocean bottom seismographic data.Frontier Research of Earth Evolution , 1 , 337–340.
Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S., &
Kaneda, Y. (2005). Structural characteristics off Miyagi forearc region,
the Japan Trench seismogenic zone, deduced from a wide-angle reflection
and refraction study. Tectonophysics , 407 (3–4), 165–188.
https://doi.org/10.1016/j.tecto.2005.08.001
Prada, M., Galvez, P., Ampuero, J., Sallarès, V., Sánchez‐Linares, C.,
Macías, J., & Peter, D. (2021). The influence of depth‐varying elastic
properties of the upper plate on megathrust earthquake rupture dynamics
and tsunamigenesis. Journal of Geophysical Research: Solid Earth ,126 (11). https://doi.org/10.1029/2021JB022328
Rice, J. R., & Ruina, A. L. (1983). Stability of steady frictional
slipping. Journal of Applied Mechanics , 50 (2), 343–349.
https://doi.org/10.1115/1.3167042
Rice, J. R. (1992). Chapter 20 Fault stress states, pore pressure
distributions, and the weakness of the San Andreas Fault. In Fault
Mechanics and Transport Properties of Rocks (Vol. 51, pp. 475–503).
San Diego, California: Elsevier.
https://doi.org/10.1016/S0074-6142(08)62835-1
Rice, J. R. (1993). Spatio-temporal complexity of slip on a fault.Journal of Geophysical Research , 98 (B6), 9885.
https://doi.org/10.1029/93JB00191
Rubin, A. M., & Ampuero, J.-P. (2005). Earthquake nucleation on (aging)
rate and state faults: Rate and state earthquake nucleation.Journal of Geophysical Research: Solid Earth , 110 (B11).
https://doi.org/10.1029/2005JB003686
Rushing, T. M., & Lay, T. (2012). Analysis of seismic magnitude
differentials (m b−M w) across megathrust faults in the vicinity of
recent great earthquakes. Earth, Planets and Space ,64 (12), 1199–1207. https://doi.org/10.5047/eps.2012.08.006
Sallarès, V., & Ranero, C. R. (2019). Upper-plate rigidity determines
depth-varying rupture behaviour of megathrust earthquakes.Nature , 576 (7785), 96–101.
https://doi.org/10.1038/s41586-019-1784-0
Sallarès, V., Prada, M., Riquelme, S., Meléndez, A., Calahorrano, A.,
Grevemeyer, I., & Ranero, C. R. (2021). Large slip, long duration, and
moderate shaking of the Nicaragua 1992 tsunami earthquake caused by low
near-trench rock rigidity. Science Advances , 7 (32),
eabg8659. https://doi.org/10.1126/sciadv.abg8659
Scholz, C. H. (1998). Earthquakes and friction laws. Nature ,391 (6662), 37–42. https://doi.org/10.1038/34097
Tong, X., Sandwell, D., Luttrell, K., Brooks, B., Bevis, M., Shimada,
M., et al. (2010). The 2010 Maule, Chile earthquake: Downdip rupture
limit revealed by space geodesy. Geophysical Research Letters ,37 (24), L24311. https://doi.org/10.1029/2010GL045805
Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016). Rupture
characteristics of major and great (M w ≥ 7.0)
megathrust earthquakes from 1990 to 2015: 2. Depth dependence.Journal of Geophysical Research: Solid Earth , 121 (2),
845–863. https://doi.org/10.1002/2015JB012427