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Key points 13 

• Characterizing electron loss through peaks and minima in radial phase space density can 14 

misrepresent simultaneous loss mechanisms. 15 

• Analysis of electron loss across all adiabatic invariants μ, K, and L*, is necessary to correctly 16 

identify loss mechanisms. 17 

• Observational analysis of phase space density data alone cannot be used to quantify 18 

individual contributions of simultaneous loss processes.  19 
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Abstract 20 

We analyzed the contribution of electromagnetic ion cyclotron (EMIC) wave driven electron loss 21 

to a flux dropout event in September 2017. The evolution of electron phase space density (PSD) 22 

through the dropout showed the formation of a radially peaked PSD profile as electrons were lost 23 

at high L*, resembling distributions created by magnetopause shadowing. By comparing 2D 24 

Fokker Planck simulations of pitch angle diffusion to the observed change in PSD, we found that 25 

the μ and K of electron loss aligned with maximum scattering rates at dropout onset. We conclude 26 

that, during this dropout event, EMIC waves produced substantial electron loss. Because pitch 27 

angle diffusion occurred on closed drift paths near the last closed drift shell, no radial PSD 28 

minimum was observed. Therefore, the radial PSD gradients resembled solely magnetopause 29 

shadowing loss, even though the local pitch angle scattering produced electron losses of several 30 

orders of magnitude of the PSD. 31 

Plain Language Summary 32 

Extremely energetic charged particles become trapped by Earth’s geomagnetic field, forming the 33 

Van Allen radiation belts. The total amount of radiation trapped within these belts varies 34 

depending on the solar wind conditions, which can disturb the geomagnetic field to produce 35 

geomagnetic storms. At the beginning of a geomagnetic storm, there is a relative calm in the 36 

radiation belt, produced by the rapid drainage of electrons from the geomagnetic field. It is not 37 

fully understood if these electrons are primarily lost into the solar wind, or if they are lost into 38 

Earth’s atmosphere. In this study, we analyze the remaining trapped electrons to reconstruct the 39 

mechanisms of electron escape at the beginning of a geomagnetic storm in September 2017. 40 

While previous work found that electrons were primarily lost into the solar wind, we found that 41 

loss into the atmosphere also played an important role. Furthermore, we showed that drainage of 42 

electrons into the atmosphere can be mistaken for loss into the solar wind if the energy and 43 

trajectory of lost electrons are not carefully considered.  44 
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1 Introduction 45 

Relativistic electron flux in the outer radiation belt is highly variable, changing on timescales from 46 

seconds to years (e.g., Abel & Thorne, 1998; Mann & Ozeke, 2016; Nakamura et al., 2000). These 47 

changes are controlled by a variety of acceleration and loss mechanisms acting independently or 48 

in tandem (Friedel et al., 2002; Reeves et al., 2003; Ripoll et al., 2020). One of the fastest and most 49 

dramatic changes to electron flux is radiation belt flux dropouts, when trapped electron 50 

populations are observed to suddenly decrease by a factor of 50 or more at a wide range of L-51 

shells, energies, and pitch angles (Pierrard et al., 2020; Turner et al., 2012a; Turner & Ukhorskiy, 52 

2020; Xiang et al., 2018). Losses are either produced by wave-particle interactions which scatter 53 

electrons into the atmospheric loss cone (Horne & Thorne, 1998; Kennel & Petschek, 1966; 54 

Miyoshi et al., 2008; Thorne & Kennel, 1971), or through the magnetopause into interplanetary 55 

space, termed ‘magnetopause shadowing’ (Green et al., 2004; X. Li et al., 1997; Morley et al., 2010; 56 

Shprits et al., 2006). The extent to which magnetopause shadowing and atmospheric precipitation 57 

each contribute to a radiation belt dropout has been a topic of continuing debate (e.g., Bortnik et 58 

al., 2006; Morley et al., 2010; Shprits et al., 2017; Staples et al., 2022; Turner et al., 2014; Turner et 59 

al., 2012b; Xiang et al., 2017; Zhang et al., 2016).  60 

A useful tool to distinguish loss mechanisms is phase space density (PSD) analysis of electron 61 

dynamics in adiabatic invariant coordinates (μ, K, L*), which reveal non-adiabatic changes to 62 

electron populations (e.g., Degeling et al., 2008; Green & Kivelson, 2004; Selesnick & Blake, 2000). 63 

Magnetopause shadowing is typically characterized by PSD loss outside of the last closed drift 64 

shell (LCDS), where electron drift paths intersect the magnetopause, followed by diffusive 65 

transport across radial gradients in L* towards the magnetopause (Loto'aniu et al., 2010; Shprits 66 

et al., 2006; Turner et al., 2012b). This process creates a localized peak in radial PSD profiles during 67 

flux dropouts (illustrated by Turner et al., 2012b). Precipitation to the atmosphere is characterized 68 

by PSD loss at a localized L*, which may create a minimum in radial PSD profiles (Aseev et al., 69 

2017; Blum et al., 2020; Capannolo et al., 2018; Shprits et al., 2018; Shprits et al., 2017). A local 70 

minimum in PSD must be observed to deepen over time to interpret with certainty that 71 

precipitation produces PSD loss, rather than magnetopause shadowing followed by inward radial 72 
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diffusion. Hence, satellite observations over multiple orbits are usually required to attribute loss 73 

observations to localized precipitation. Xiang et al. (2017) discussed how observations of PSD at 74 

a wide range of μ and K, for a given L*, provide credible clues to the dominant mechanism of 75 

electron loss. For example, EMIC wave scattering of electrons into the loss cone results in 76 

depletions at μ and K values associated with electron energies resonant with EMIC waves (Drozdov 77 

et al., 2022; X. Ma et al., 2020; Xiang et al., 2018).  78 

In this work we investigated the dependence of PSD loss over a wide range of μ and K during an 79 

electron flux dropout which took place in September 2017, following an extreme magnetospheric 80 

compression. Staples et al. (2022) previously identified that magnetopause shadowing was the 81 

dominant mechanism of electron loss during this dropout, based upon the evolution of PSD 82 

characteristics as a function of L*. However, such extreme magnetospheric compressions are also 83 

known drivers of EMIC wave generation (Anderson & Hamilton, 1993; Engebretson et al., 2002; 84 

Usanova et al., 2008; Xue et al., 2021). This paper aims to understand if localized precipitation into 85 

the atmosphere was appreciable during the dropout by analyzing PSD loss at a wide range of μ 86 

and K values. 87 

2 Data and Methodology  88 

2.1 Phase Space Density Dataset 89 

PSD observations between 7 – 9 September 2017 were taken from 32 individual satellites which 90 

are part of 5 different scientific missions and hosted payloads. This dataset achieves the highest 91 

temporal and spatial resolution of existing combined PSD observations of the radiation belt: 92 

• Van Allen Probe Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron-93 

Proton Telescope (REPT) instruments (Baker et al., 2014; Blake et al., 2014). 2 probes. 94 

• GOES 13, 15 (Geostationary Operational Environmental Satellite) Magnetospheric Electron 95 

Detector (MAGED) Energetic Proton, Electron, and Alpha Detector (EPEAD) (Rodriguez, 96 

2014a, 2014b; Sillanpää et al., 2017). 2 probes. 97 

• GPS (Global Positioning System) Navstar Combined X-ray Dosimeter (CXD) (Tuszewski et 98 

al., 2004). 21 probes. 99 
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• THEMIS (Time History of Events and Macroscale Interactions during Substorms) 100 

Electrostatic Analyzer (ESA) and Solid State Telescope (SST) (Angelopoulos, 2008; 101 

Angelopoulos et al., 2008; McFadden et al., 2008). 3 Probes. 102 

• MMS (Magnetospheric Multiscale) Fly's Eye Electron Proton Spectrometer (FEEPS) (Blake 103 

et al., 2016; Burch et al., 2016). 4 probes. 104 

Intercalibrations between satellites were completed following Staples et al. (2022). All spacecraft 105 

data is calibrated to Van Allen Probe B and bias corrected GOES 15 data, which are chosen as 106 

“gold standard”. In this work GPS pitch angle distributions were assumed using the Zhao et al. 107 

(2018) model. For each spacecraft instrument, the adiabatic invariants μ, K, and L* were computed 108 

using a either a realistic magnetospheric field model, represented by the International 109 

Geomagnetic Reference Field model (IGRF; Thébault et al., 2015) and Tsyganenko (1989) external 110 

magnetic field model (T89), or a dipolar field configuration.  111 

2.2 2D Fokker Planck Diffusion Simulation 112 

We used the Full Diffusion Code at University of California, Los Angeles, to calculate the electron 113 

diffusion coefficients due to EMIC waves (Q. Ma et al., 2019). The magnetic power spectra of EMIC 114 

waves were measured by the Electric and Magnetic Field Instrument Suite and Integrated Science 115 

(EMFISIS; Kletzing et al., 2013) instrument on Van Allen Probe B. Diffusion coefficients were 116 

calculated for six separate EMIC wave observations, each selected based upon EMIC wave power 117 

spectrogram over 30-minute windows through the dropout interval, 00 – 03 UT on 8 September 118 

2017 (see Figure 2), summarized in Supplementary Table S1. The EMIC wave normal angle 119 

distribution was assumed to change from quasi-field aligned at the equator to more oblique at 120 

higher latitudes, according to the latitudinally-varying model in Ni et al. (2015). The latitude of the 121 

wave power was assumed to span from the equator to 40°, and below the latitude where the wave 122 

frequency equals the crossover frequency. We considered 3 ion species with composition ratios 123 

of 70% H+, 20% He+ and 10% O+ (Meredith et al., 2003), and multiple harmonic resonances (up to 124 

5 orders) and Landau resonance between electrons and EMIC waves. Electron scattering by hiss 125 

waves was incorporated into diffusion coefficients by using the statistical hiss wave frequency 126 
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spectrum (W. Li et al., 2015). The diffusion coefficients due to hiss waves were much smaller than 127 

those due to EMIC waves at energies above 1 MeV, except for the high pitch angles close to 90º. 128 

After the bounce-averaged diffusion coefficients were computed, we performed 2D Fokker Planck 129 

simulations of the electron PSD evolution due to the resonant interaction with EMIC waves. The 130 

2D Fokker Planck equation was numerically solved using the Alternative Direction Implicit method 131 

(Q. Ma et al., 2012). The initial conditions and boundary conditions used in the simulation are 132 

detailed in Supplementary Text S1. The simulation was performed for 4-hours using the observed 133 

EMIC wave amplitudes. The electron PSD at each energy decreased exponentially with time shortly 134 

after the simulation starts. The time scale of the exponential decay corresponds to the electron 135 

lifetime, which is energy dependent. The simulated electron PSD evolution was not directly 136 

compared with observed dropouts because the MLT coverage of EMIC waves is uncertain. As will 137 

be shown in the following analysis, we compared the simulated µ and K dependences of electron 138 

PSD decay with the observation, after transforming the pitch angle and energy dependence into 139 

the adiabatic invariant coordinates for a dipolar magnetic field.  140 

3 Event Analysis 141 

The compound geomagnetic storm between 7-9 September 2017 was driven by a sequence of 142 

interacting coronal mass ejecta (CME) and interplanetary shocks travelling through the solar wind 143 

(Scolini et al., 2020; Shen et al., 2018; Werner et al., 2019). Figure 1 summarizes the radiation belt 144 

response to the solar wind and the subsequent geomagnetic conditions. At 23 UT on 7 September, 145 

an interplanetary shock arrived at the magnetosphere, indicated by the sudden increase in IMF 146 

field strength to 33 nT with a decrease of the Bz component to -31 nT (Figure 1a), and solar wind 147 

speed increases to 830 km s-1 (Figure 1b). As a result, the magnetopause was compressed within 148 

geostationary orbit (purple crosses, Figure 1c) and the Sym-H index suddenly decreased to -142 149 

nT, indicating storm onset followed by the main phase. Through the main phase of the storm (23 150 

UT 7 September – 01 UT 8 September), electron PSD decreased suddenly by up to 3 orders of 151 

magnitude (for μ = 1000 MeV/G and K = 0.1 G0.5RE, Figure 1e). Through the recovery phase of the 152 

storm the PSD remained low compared to pre-storm PSD, until 12 UT on 8 September when PSD 153 

increased substantially through localized electron acceleration (Staples et al., 2022).  154 
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Figure 1i-iv show radial PSD profiles during the dropout between 23 UT on 7 September – 03 UT 155 

on 8 September for μ = 1000 MeV/G and K = 0.1 G0.5RE. Each panel compares the hourly 156 

averaged PSD to the average pre-storm PSD between 17 - 21 UT on 7 September (gray profiles). 157 

Immediately prior to the dropout, between 23 – 24 UT on 7 September, the PSD at L* < 4 was, 158 

on average, slightly greater than the pre-storm PSD. At the onset of the dropout during the 159 

following hour (Figure 1ii), PSD measurements at L* > 3.7 were up to 3 orders of magnitude less 160 

than pre-storm PSD, with greater losses at higher L*. Between 01 - 02 UT on 8 September 161 

(Figure 1iii) loss continued to occur at L* > 3.7; the maximum PSD loss was measured to be over 162 

3 orders of magnitude compared to pre-storm PSD at L* = 4.4. The final interval 02 - 03 UT on 8 163 

September (Figure 1iv) showed the PSD was approximately the same as the pre-storm PSD at L* 164 

< 3.6, whereas PSD had decreased by over 2 orders of magnitude compared the pre-storm PSD 165 

at L* > 3.6, with greatest loss occurring at high L* = 4.4. PSD at L* > 4 increased substantially 166 

between 02 - 03 UT on 8 September (interval iv) compared to the previous hour (interval iii). 167 

Figure 1i-iv shows the formation of a radial PSD peak at L* ~ 3.7 following an incursion of the 168 

LCDS, with greatest electron losses observed at L* > 3.7. These characteristics appear consistent 169 

with electron loss to the compressed magnetopause, and outward radial diffusion, as concluded 170 

by Staples et al. (2022).  171 

 172 
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 173 

Figure 1 Panels a-e summarize the solar wind, geomagnetic, and radiation belt conditions 174 

between 12 UT 7 September – 00 UT 9 September 2017: (a) interplanetary magnetic field 175 

strength (blue) and Bz component (black); (b) solar wind speed; (c) subsolar magnetopause 176 

(black line, Shue et al., 1998) and radial distance to GOES magnetopause crossings (purple 177 

crosses); (d) Sym-H index; (e) PSD of electrons at μ = 1000 MeV/G and K = 0.1 G0.5RE. Panels 178 

(i-iv) show radial PSD profiles. The grey profile on all panels references the average pre-179 

storm PSD, the colored profiles show hourly PSD through the dropout, the beginning time 180 

of each hour is indicated by correspondingly colored vertical lines in panel (e). The location 181 

of the LCDS is indicated by the black line in panel (e) and vertical dashed lines in panels (i-182 

iv).  183 
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To analyze whether localized precipitation to the atmosphere contributed to electron loss during 184 

the dropout, we searched for EMIC wave signatures using EMFISIS observations of the magnetic 185 

power spectra. Strong EMIC waves were identified during the flux dropout, between 00 - 03 UT 186 

on 8 September, observed by Van Allen Probe B on an outbound orbit towards apogee at noon, 187 

summarized in Figure 2. Figure 2i shows that the total electron density was between 10 – 100 cm-188 

3, and significant power spectral density was observed below the equatorial H+ and He+ 189 

gyrofrequencies (Figure 2ii), indicating the presence of H+ band and He+ band EMIC waves. The 190 

integrated wave amplitude of the H+ and He+ frequency wave bands (Figure 2iii) show that He+ 191 

band waves were higher in amplitude throughout the interval, with the largest amplitude waves 192 

observed between 01:300 – 02:30 UT 8 September, reaching a maximum amplitude of > 2 nT in 193 

the He+ band and >1 nT in the H+ band. 194 

Figure 2a-f show bounce averaged electron pitch angle diffusion coefficients, Dαα, computed using 195 

the averaged EMIC wave spectra of the observed wave bursts (labelled on panels i-iii) and 196 

statistical hiss wave spectra. Figure 2a-f show that EMIC waves could interact with electrons at 197 

very low energies in the ~ 100s of keV range for equatorial electrons with pitch angles < 70 o and 198 

~ MeV range for electrons with equatorial pitch angles > 70 o. The high EMIC wave power in the 199 

He+ band between 01:30 – 02:30 UT resulted in extremely high pitch angle diffusion coefficients 200 

of > 0.001 s-1 for electron energies > 400 keV and pitch angles < 70o. While diffusion timescales 201 

of electrons varied greatly upon energy and pitch angles, Figure 2 nonetheless demonstrates that 202 

EMIC wave-particle interactions could produce rapid diffusion of electrons towards the loss cone 203 

during the dropout.  204 
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 205 

Figure 2. Van Allen Probe B observation of EMIC waves and the bounce-averaged diffusion 206 

coefficients. (i) Total electron density; (ii) magnetic wave power spectrogram, where the 207 

white solid and dashed lines are equatorial ion gyrofrequencies fcp and fcHe, respectively; (iii) 208 

H+ band and He+ band EMIC wave amplitudes. Green shaded boxes over i-iii indicate the 209 

times of EMIC wave samples a-f. Pitch angle diffusion coefficients, Dαα, computed from  210 

statistical hiss and sampled EMIC waves are displayed as a function of energy and pitch 211 

angle in panels a-f. White lines in panels a-f indicate minimum resonant energies between 212 

electrons and EMIC waves. 213 
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Figure 3 compares the simulated change in electron PSD during the dropout (Figure 3a-f, left 214 

column) to the observed change in PSD (Figure 3g-l, right column) as a function of μ and K. Each 215 

row shows the simulated and observed df for the case of each 30-minute window during the 216 

dropout period, where df is described by Equation 1. Because simulations of df were conducted 217 

in a dipolar magnetic field, PSD observations presented in Figure 3 were also converted into 218 

adiabatic coordinates using a dipolar magnetic field to allow for comparison. 219 

 220 

For the case of both simulated and observed df, 'Pre-storm PSD’ was set to average Van Allen 221 

Probe B observation between 17 – 21 UT on 7 September (gray shaded area Figure 1e). For 222 

simulated df, the ‘Dropout PSD’ for each 30-minute window was determined by a 2D Fokker-Plank 223 

simulation of electron diffusion which used diffusion coefficients calculated from sampled EMIC 224 

wave spectra (see Figure 2) and statistical hiss wave spectra (described in Section 2.2). The initial 225 

condition of this simulation was equal to the ‘Pre-storm PSD’. The final simulated PSD values were 226 

determined when the 2 MeV electron PSD matched the average PSD sampled by Van Allen Probe 227 

B during the 30-minute window. For the case of observed df, ‘Dropout PSD’ was the PSD averaged 228 

over 30-minute windows between 00 - 03 UT on 8 September (between purple-orange lines Figure 229 

1e). Note that the observed L range overlapped between windows because a wide sample of 230 

electron pitch angles is considered as the probe follows an outbound orbit.  231 

Figure 3 shows that PSD decreased (df < 0) compared to the pre-storm interval at nearly all μ and 232 

K values across the phase space, and PSD decrease exemplified pitch angle scattering loss instead 233 

of magnetopause shadowing effects: Throughout the dropout the magnitude of PSD loss was 234 

observed to be highly dependent on μ and K, with maximum PSD loss (white dots) showed a non-235 

linear relationship between μ and K, corresponding to the energy and pitch angle dependent loss 236 

mechanism. At the onset of the dropout, between 00 – 01 UT (Figure 3a,b), the μ and K values of 237 

maximum observed PSD loss aligned with the maximum simulated PSD loss for EMIC wave 238 

 𝑑𝑓 =  log10 (
Dropout 𝑃𝑆𝐷

Pre − storm 𝑃𝑆𝐷
) Equation 1 
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scattering. This serves as compelling evidence that PSD loss was produced by EMIC wave 239 

scattering between 4.46 < L < 5.42.  240 

Observations between 01 - 02 UT showed the greatest PSD decrease through the orbit of Van 241 

Allen Probe B (Figure 3i-j), with df < 3 for μ ~ 600 MeV/G and K ~ 0.2 G0.5RE. While the maximum 242 

PSD loss after 01 UT followed a similar relationship between μ and K as earlier in the dropout, the 243 

maximum observed df did not coincide with simulated df through EMIC wave scattering. The 244 

simulated df estimated that maximum PSD loss would occur at very high μ (multi-MeV), 245 

corresponding to energy channels where electron flux was measured at the instrument noise floor 246 

(above dashed white line). Nonetheless, simulated PSD loss showed that EMIC waves were capable 247 

of scattering electrons at μ and K below the noise floor by similar orders of magnitude as Van 248 

Allen Probe B observations. There could be several reasons why the maximum observed PSD loss 249 

after 01 UT did not align in μ and K with the maximum simulated PSD loss, such as inaccuracies 250 

in the assumptions made when calculating simulation diffusion coefficients. For example, the EMIC 251 

waves with a different frequency spectrum from that observed by Van Allen Probe B in Figure 2ii 252 

could occur at other MLT sectors or times which were not sampled by the satellite. Furthermore, 253 

an assumed ion composition ratio was used, which could alter the energy and pitch angle 254 

dependence of  pitch angle diffusion (Kang et al., 2015).  255 

Observations between 02 - 03 UT (Figure 3k-l) show that |df| was smaller than the previous hour 256 

(Figure 3i-j) at all μ and K. This shows that acceleration processes acted to produce a net-increase 257 

in PSD after ~ 02 UT compared to the previous hour, which is supported by high resolution multi-258 

mission PSD observations presented in Figure 1iii-iv. Because acceleration also produced changes 259 

to observed df during this hour, we cannot differentiate the effects of EMIC wave scattering across 260 

all μ and K.  261 
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 262 

Figure 3 Left Column (a-f) shows simulated change in PSD, df, based upon EMIC wave 263 

observations sampled over 30-minute windows during the PSD dropout between 00 UT 8 264 

September – 03 UT 8 September. Right column (g-l) shows corresponding Van Allen Probe 265 

B observations of average PSD change, df, over each window. Observed and simulated df 266 

are shown by color as a function of μ and K, approximated in a dipolar magnetic field. Solid 267 

white lines/dots show the values of maximum simulated/observed PSD loss (minimum df) 268 

as a function of μ. The dashed white line indicates the maximum measurable μ after taking 269 

the noise floor into consideration. 270 
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4 Conclusion 271 

This study examined the characteristics of electron loss induced by EMIC wave-particle 272 

interactions by considering changes to electron PSD as a function of the first and second adiabatic 273 

invariants. In the event analyzed in September 2017, an electron flux dropout was produced 274 

following a strong magnetospheric compression and geomagnetic storm. Previous work identified 275 

magnetopause shadowing as the dominant loss mechanism through analysis of radial PSD profiles 276 

across L* (Staples et al., 2022). In our analysis, we also found that the evolution of radial PSD 277 

profiles through the dropout interval showed characteristics of magnetopause shadowing; a radial 278 

PSD peak was formed following an incursion of the LCDS, and no PSD minima were observed to 279 

deepen over time (Figure 1i-iv). However, observations from Van Allen Probe B showed significant 280 

wave power in both H+ and He+ EMIC wave bands between 0 – 3 UT on 8 September. 281 

Simultaneously, Van Allen Probe B observed concurrent electron PSD loss by up to 3 orders of 282 

magnitude compared to the pre-storm interval (Figure 3). We found that observed PSD loss was 283 

closely reproduced by a 2D Fokker-Plank simulation which modelled diffusion by sampled EMIC 284 

wave observations, and statistical hiss waves, at the onset of the dropout 00 -01 UT 8 September 285 

(Figure 3a-b,g-h). PSD loss observed during the latter part of the dropout was found to be more 286 

difficult to analyze through simulation because the electron fluxes were reduced to the instrument 287 

noise floor, limiting PSD observations at high energies. Nonetheless, the observations of PSD loss 288 

at dropout onset provided compelling evidence that EMIC wave driven electron scattering 289 

contributed to electron loss for electrons at L* > 4. 290 

We argue that during this flux dropout event, EMIC wave-particle interactions produced electron 291 

loss on closed drift paths, whereas magnetopause shadowing produced electron loss on open 292 

drift paths beyond the LCDS. Figure 4 provides an illustration of PSD evolution for this scenario: 293 

At time t0 the PSD profile represents a pre-storm distribution which is radially peaked at L* = 5. 294 

Time t1 represents a period of strong magnetospheric compression which causes the LCDS to 295 

decrease to low L*, and EMIC waves are generated in the outer magnetosphere, near the LCDS. 296 

As a result, electrons on open drift paths beyond the LCDS are lost across the magnetopause, and 297 

on closed drift paths EMIC waves drive rapid pitch angle diffusion and subsequent loss to the 298 
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atmosphere. The location of the LCDS relative to EMIC wave activity obscures any radial PSD 299 

minimum created by local precipitation. Time t2 represents a relaxation of the magnetosphere, 300 

and the LCDS increases to higher L*. Combined losses to the magnetopause and atmosphere at 301 

high L* result in a localized peak in PSD and steep radial PSD gradients. Time t3 represents how 302 

ULF wave driven radial diffusion could act to smooth radial gradients produced by losses. This 303 

scenario demonstrates that simultaneous loss processes at high L* result in a PSD evolution which 304 

was previously interpreted as magnetopause loss only. Only when analyzing PSD loss as a function 305 

of μ and K do EMIC wave-particle interaction characteristics come to light.  306 

 307 

Figure 4 Diagram of PSD evolution over four time periods t0 – t3 (left to right) as a function 308 

of L* for a scenario where magnetopause shadowing produces electron loss on open drift 309 

paths, and EMIC wave-particle interactions produce fast precipitation to the atmosphere 310 

inside of the LCDS. Vertical dashed lines represent the LCDS. The blue dotted line in panel 311 

t1 illustrates PSD profile if local precipitation acted alone to produce a localized PSD loss. 312 

It is an unexpected finding that local wave-particle interactions could be an effective loss 313 

mechanism near the LCDS for two reasons: First, EMIC wave interactions typically produce 314 

scattering of ~MeV electrons (Usanova et al., 2014), but the observed loss was across a wide range 315 

of radiation belt energies > 100s keV. Second, efficient electron scattering by EMIC waves usually 316 

occurs in the overlapped region of the ring current and the high-density plasmasphere, where the 317 

minimum resonance energy is reduced (Meredith et al., 2003; Summers et al., 2007). In the 318 

September 2017, the drainage of electrons into the outer magnetosphere during the main phase 319 

of the geomagnetic storm (Figure 2i) provided higher than usual plasma density in the outer 320 

magnetosphere, allowing EMIC waves to interact with lower energy electrons (100s of keV). In 321 

addition, the magnetosphere was extremely compressed (Figure 1c), so the LCDS was located at 322 
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low L* relative to localized EMIC wave-particle interactions. This is an important finding because 323 

the conclusion is contrary to the previous understanding that a negative gradient in PSD towards 324 

the LCDS is indicative of magnetopause shadowing loss.  325 
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