
Wildfire Classification using PETSc-based Support Vector Machines on Distributed-Memory GPU-based Parallel Computers
Richard Tran Millsα, Zachary Langfordβ, Jitendra Kumarβ, Forrest M. Hoffmanβ

αArgonne National Laboratory βOak Ridge National Laboratory

1. Introduction

As high-resolution geospatiotemporal data sets from observatory networks, remote sens-ing platforms, and computational Earth system models increase in abundance, fidelity,and richness, machine learning approaches that can fully utilize increasingly powerfulparallel computing resources are becoming essential for analysis and exploration ofsuch data sets. We explore one such approach, applying a state-of-the-art distributedmemory parallel implementation of Support Vector Machine (SVM) classification tolarge remote-sensing data sets in which we want to identify wildfire-affected areas.The parallel tool we employ is PermonSVM, which is built on top of the widely-usedopen source toolkit PETSc, the Portable, Extensible Toolkit for Scientific Computation.Recent developments in PETSc have focused on supporting cutting-edge GPU-basedhigh-performance computing (HPC) architectures, and these can be easily leveragedin PermonSVM by using appropriate GPU-enabled matrix and vector types in PETSc.This combines the existing extreme inter-node scalability of PETSc to be combinedwith efficient use of the on-node, fine-grained parallelism that is representative of thedesign of upcoming exascale-class supercomputers
2. Wildfire Detection

In this study, wildfire detection is a binary classification problem where the model willclassify a wildfire pixel or non-wildfire pixel. Knowing the location and extent of wildfireburns can help with a variety of applications (evacuation routes, ecological restoration,climate modeling, etc.). We focus on the 2004 wildfire season for Alaska and the 2020wildfire season for California (largest wildfire seasons for both states). The study re-gion for Alaska (Figure 1 top) consisted of interior Alaska, while we focus on the entirestate for California (Figure 1 bottom). The 2004 Alaska wildfire season was the worston record in terms of area burned by wildfire, burning more than 27,000 km2 (6 mil-lion acres) of land. The 2020 California wildfire season was also the worst on record,burning more than 17,000 km2 (4 million acres) of land.
2.1 Data CollectionWe used 500 m MODIS 8-day surface reflectance (MOD09A1) for classifying wild-fires over Alaska and California. Google Earth Engine was used to extract MODISproducts for the wildfire season. MOD09A1 consists of 7 bands ranging from 620nm to 2155 nm in wavelength. Table 1 describes the time periods for data collec-tion and the amount of pixels for the wildfire and non-wildfire class for our studyregions. We plan to look into 8-day land surface temperature (MOD11A2) in futureresearch. California wildfire boundaries for 2020 was collected from the CaliforniaDepartment of Forestry and Fire Protection’s Fire and Resource Assessment Program(https://frap.fire.ca.gov). Alaska wildfire boundaries for 2020 was collectedfrom the Monitoring Trends in Burn Severity (MTBS) project, a multi-agency program(https://www.mtbs.gov/).

Figure 1: Study regions showing MODIS surface reflectance and fire boundaries for Alaska (A) and
California (B).

2.2 Data ProcessingAfter the data was collected, we processed the data as follows:• Convert wildfire boundaries to raster pixels (e.g., -1 = no wildfire and 1 = wildfire)• Combine all MODIS images together into a single image (i.e., gdal_merge)• Convert 3D array into 2D dataframe, where each feature consists of a band (Figure 2)• Split data in train and test sets, randomly shuffling rows, using 70% for training and30% for testing• Convert dataframes into PETSc binary array for PermonSVM

Figure 2: Subset of the data converted into dataframe.

Table 1: Description of data, where pixels is equal to 500 m.

State Year Start End Area Burned(pixels) Area Other(pixels)CA 2020 June October 81392 1735393AK 2004 May September 43680 684069
2.3 ResultsTable 2 shows the results on the test dataset, displaying the true positives (TP),false positives (FP), true negatives (TN), false negatives (FN), accuracy, precision,recall and F1 (harmonic mean of precision and recall). We compared PermonSVM toPython’s scikit-learn SVM using the default parameters (https://scikit-learn.
org/stable/modules/generated/sklearn.svm.SVC.html). Figure 3 showshow precision and recall are calculated from TP, FP, and FN. Both classifiers showsimilar scores for accuracy and F1 but PermonSVM shows more false positives for bothAK and CA. Since MTBS does not map wildfires under 1000 acres, more false posi-tives (i.e., classifying non-wildfire pixel as wildfire pixel) would be more of interest thanhaving more false negatives.

Table 2: Results comparing PETSc PermonSVM to Python scikit-learn SVM.

CA 2020PermonSVM CA 2020scikit-learn AK 2004PermonSVM AK 2004scikit-learnTP 18199 18028 6925 8461TN 519253 519287 135131 204784FP 6069 1132 1681 403FN 1515 6589 1813 4677Accuracy 0.98 0.98 0.97 0.97Precision 0.75 0.94 0.80 0.95Recall 0.94 0.73 0.79 0.64F1 0.83 0.82 0.80 0.77

Figure 3: Diagram explaining precision and recall (source https://towardsdatascience.com/
whats-the-deal-with-accuracy-precision-recall-and-f1-f5d8b4db1021)

3. Parallel Solution of SVM Problems using PermonSVM and PETSc

3.1 PermonSVM and PETScWe build our SVM models using PermonSVM, an SVM implementation designed fordistributed-memory parallel HPC resources that is part of the PERMON package(http://permon.vsb.cz/):• Solves the dual formulation for soft-margin SVM problems• Supports full and relaxed-bias (used here) formulations• Supports grid search with k-fold and stratified k-fold cross-validation for hyperpa-rameter tuning• Solves the quadratic programming problems for SVM training using PermonQP, whichprovides an assortment of sophisticated QP solvers, or, optionally, using the TAO nu-merical optimization solvers that are part of PETSc• PermonSVM and PermonQP are built on top of PETSc, which provides parallelcommunication constructs, parallel matrix and vector operations, Krylov solvers, and(optionally) numerical optimization solvers used by PERMON.PETSc (the Portable, Extensible Toolkit for Scientific Computation, https://petsc.
org/) is a software library for the scalable solution of linear, nonlinear, and ODE/DAEsystems, computation of adjoints (sometimes called sensitivities) of ODE systems, andoptimization. It is most often used in PDE-based simulation, but one of us (Mills) hasrecently been applying it to model-parallel machine learning problems.

Portable, Extensible Toolkit for Scientific
Computation / Toolkit for Advanced Optimization

Scalable algebraic solvers for PDEs. Encapsulate
parallelism in high-level objects. Active & supported
user community. Full API from Fortran, C/C++, Python.

https://www.mcs.anl.gov/petsc

PETSc provides the backbone of
diverse scientific applications.
clockwise from upper left: hydrology,
cardiology, fusion, multiphase steel,
relativistic matter, ice sheet modeling

§ Easy customization and
composability of solvers at
runtime
— Enables optimality via flexible

combinations of physics,
algorithmics, architectures

— Try new algorithms by
composing new/existing
algorithms (multilevel, domain
decomposition, splitting, etc.)

§ Portability & performance
— Largest DOE machines, also

clusters, laptops
— Thousands of users worldwide

Preconditioners

Krylov Subspace Solvers

Nonlinear Algebraic Solvers

Time Integrators

Computation & Communication
Kernels

Optimization

Domain-
Specific
Interfaces Structured Mesh

Unstructured Mesh
Quadtree / Octree

Networks

Vectors MatricesIndex Sets

Figure 4: Diagram illustrating the hierarchical organization of PETSc components and
some key features

3.2 Utilizing GPUs in PermonSVM via PETScPETSc’s design for GPU support (https://arxiv.org/abs/2011.00715) en-ables existing codes that use PETSc to invoke its GPU-enabled backends with verylittle, or sometimes no, changes to user code:
• Every PETSc object is an instance of a class whose data structure and functionalityis provided by specifying a delegated implementation type at runtime.

– For example, a matrix in compressed sparse row representation is created as aninstance of class Mat with type MATAIJ, whereas a sliced ELLPACK storagematrix has type MATSELL.
• Using GPUs to execute the linear algebra operations defined over Vec and Mat isaccomplished by choosing the appropriate delegated type.

– For instance, the computations will use the vendor-provided kernels from NVIDIA if
VECCUDA and MATAIJCUSPARSE are specified in user code or through commandline options.

– Alternatively, Kokkos kernels will be used when VECKOKKOS and
MATAIJKOKKOS are specified

• Because the higher-level classes such as timesteppers (TS) ultimately employ Vecand Mat operations for the bulk of their computations, this provides a means to of-fload most of the computation for PETSc solvers—even the most complicated andsophisticated—onto GPUs.
– This includes both the TAO optimization solvers and the PermonQP solvers (whichrely almost entirely on PETSc Mat and Vec operations).

1

Performance portability in PETSc

Back-end PETSc Vector and Matrix
implementations

PETSc computation kernels
CPU: Use compiler options and vendor libraries for

performance
GPU: Chosen for either speed of development or

highest performance. Use GPU vendor libraries

OpenCL: ViennaCL
OpenCLC Code

BLAS/LAPACK MKL
C++ data-parallel PM

Kokkos: Kokkos-kernels
SYCL: OneAPI

Vendor PM
CUDA: cuBLAS, cuSparse
HIP:rocBLAS, rocSPARSE

GPU

Front-end PETSc vector and matrix arrays
are shared with user programming language/model

Application code
Using PETSc API

C, C++, Fortran
CPU Compiler Directives

OpenMP, OpenACC
C++ Lambda PM

Kokkos, SYCL, RAJA
Vendor PM
CUDA, HIP

GPU

ROCm

Application

PETSc

Kokkos

MKL

HIP CUDA

cuLIB

OpenMPK Kernels

RAJA

SYCL

App

Kokkos

CUDA

cuLIB

PETSc

App

HIP

ROCm

OpenMPPETSc

Figure 5: PETSc application developers are able to use a variety of programming models for GPUs
independently of PETSc’s internal programming model. At left is a conceptual diagram illustrating the
separation between supported GPU programming models for user code and the PETSc backends. At right
are examples of PETSc usage with Kokkos-cuLIB-CUDA, OpenMP-ROCm-HIP, and all combinations.
Here cuLIB indicates the cuBLAS and cuSPARSE libraries from NVIDIA.

• We have made a small set of modifications to PermonSVM and PermonQP (adding84 lines of code) to allow the types of all Mat and Vec objects to be set via PETSc’sruntime database.
• PETSc’s GPU back-ends can thus be used by simply specifying appropriatecommand-line options when invoking the PermonSVM driver.
• Testing with the PermonQP MPGP solver and the TAO BQNLS and BLMVM solversindicates that approximately 100% of the floating-point operations in the solve stepare executed on the GPU when CUDA Mat and Vec types are used on machinesequipped with NVIDIA GPUs

4. Computational Experiments

We have experimented with the Alaska (2004) and California data sets (using a largerdata set of the 2016–2020 data, as well as a smaller one from 2020 only) on Summit,the IBM AC922 system at Oak Ridge National Laboratory (ORNL). Our SVM modelperformance has already been described in section 2. Here, we focus on a discussion ofour selection of the underlying optimization solvers and on observed computational per-formance on Summit. Because our interest is in working with large data sets by scalingacross HPC resources, we work with the largest data set we had available (Californiafor years 2016–2020), although this is actually a relatively small dataset for Summitnodes (we aim to eventually use much larger data sets).
4.1 Hardware platform: Summit IBM AC922 system at ORNLOne of the reasons that we have chosen Summit is that its GPU-centric design re-flects a trend we expect to continue in upcoming supercomputers, both large and small:NERSC Perlmutter, OLCF Frontier, and ALCF Aurora all feature a similar node designwith several extremely powerful GPUs. And very powerful GPUs have also become amainstay of workstations used for data science.

Summit System totals• ∼ 200 PFlop/s theoretical peak143 PFlop/s LINPACK—#2 in TOP500• 4,608 compute nodesNode configuration• Compute:
– Two IBM Power9 CPUs, each 22 with cores,0.5 DP TFlop/s
– Six NVIDIA Volta V100 GPUs, each with 80SMs–32 FP64 cores/SM, 7.8 DP TFlop/s• Memory:
– 512 GB DDR4 memory
– 96 (6 × 16) GB high-bandwidth GPU memory
– 1.6 TB nonvolatile RAM (I/O burst buffer)

Almost all compute power is in GPUs!
4.2 SVM Training performance on Summit

4.2.1 Solver selection• We explored three optimization solvers, MPGP from PermonQP and two quasi-Newton methods, BQNLS and BLMVM, from PETSc/TAO:
– MPGP is the Modified Proportioning with (reduced) Gradient Projections algo-rithm
– BQNLS is the Bounded Quasi-Newton Line Search method for nonlinear mini-mization with bound constraints; it approximates the action of the inverse-Hessianwith a limited memory quasi-Newton formula.
– BLMVM is the Bounded Limited Memory Variable Metric; it solves the Newtonstep Hkdk = −gk using an approximation Bk in place of Hk , where Bk is composedusing the BFGS update formula• MPGP’s convergence for our data sets was too slow to be practical, requiring morewall-clock time for convergence than the queue limits on Summit allow.• BQNLS and BLMVM are both able to use the GPU back-ends in PETSc for all oftheir FLOPs, as their limited-memory formulations consist of many vector operationsthat can be offloaded to GPU.• BQNLS convergence was fragile for our problems, often determining that it had sat-isfied the convergence criteria in very few iterations, but then producing very poorquality SVM model performance scores; we therefore use BLMVM for the resultspresented here.

4.2.2 Selection of MPI rank count per GPUFor several technical and design reasons, PETSc does not directly use multithread-ing in its CPU code; CPU parallelism is leveraged using an MPI-only model. Usingmore MPI ranks may enable greater parallelism in code that executes on CPUs, buthaving many MPI ranks sharing a GPU can incur significant overhead; conversely,using too few CPU cores may make it difficult to feed the powerful GPUs enoughwork to keep them busy. We investigated the number of MPI ranks to use per Sum-mit node and determined that 24 ranks (4 per GPU) was optimal for our workloads.

 0.032

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 5 10 15 20 25 30 35 40 45

Ti
m

e
 p

e
r

B
LM

V
M

 I
te

ra
ti

o
n
 (

s)

Number of MPI ranks used

Effect of Number of MPI Ranks on Per-Node GPU Performance

Figure 6: A study to determine the optimal number of MPI ranks per Summit node (or
MPI ranks per GPU—there are 6 GPUs per node).

4.2.3 Strong Scalability on SummitFigure 7 displays our preliminary performance observations with the 2016–2020 Cali-fornia data set (5.6 GB in size).• Using the GPUs results in approximately 2.35X speedup (vs. CPU only) when thereis enough work per node to keep the GPUs busy.• As the number of nodes increases, eventually the problem size per node becomestoo small to fully utilize the GPUs. (This is expected behavior in strong-scalingscenarios, as GPUs require enough work to hide high kernel cost latencies and tokeep the many processing elements busy).• We believe that the 2.35X GPU speedup we observe in these preliminary results hasconsiderable room for improvement.

– Even though PETSc supports it, we ended up not utilizing GPU-aware MPI, socommunication between GPUs here requires copying data from GPU to CPU onsend, and from GPU to GPU on receive
– Our experiments using GPU-aware MPI resulted in pathologically poor perfor-mance; we believe this is related to some known performance bugs in IBM’s Spec-trum MPI. Using a different MPI implementation may solve this issue.
– Although almost 100% of the BLMVM solver FLOPs are executed on GPU, thePETSc performance logs show more communicationn between CPU and GPU thanmight be necessary.
– There are avenues for improving BLMVM performance on GPUs (see section 5).

 0.001

 0.01

 0.1

 1

 0.25 0.5 1 2 4 8 16

Ti
m

e
 p

e
r

It
e
ra

ti
o
n
 (

s)

Number of full Summit nodes used

Time per BLMVM Iteration, GPU vs. CPU (lower is better)

GPU only (24 MPI ranks, 6 gpus per node)
CPU only (42 MPI ranks per node)

Figure 7: A strong-scalability study (i.e., input data size is fixed while number of
parallel resources is increased) using the 2016–2020 California data set (5.6 GB) on
Summit, comparing CPU-only with GPU-enabled runs. Note the use of log-log axes.
The leftmost points correspond to 1/6 of a node, i.e., 7 CPU cores and one GPU, and
performance is studied out to 16 nodes, or 672 CPU cores and 96 GPUs.

5. Summary and Future Directions

We consider this a preliminary study, with much work to be done, but so far• SVM models constructed with PermonSVM show good performance for wildfire clas-sification with MODIS data.• Scalability across nodes is good; it appears that PermonSVM can scale to very largetraining datasets, ones impractical to work with on single workstations.• The Bounded Limited Memory Variable Metric (BLMVM) quasi-Newton solver inPETSc/TAO displays good convergence properties for these problems.• With only small code changes, we have been able to leverage GPU back-ends inPETSc to offload nearly all FLOPS in SVM training to GPUs• Initial GPU speedup is modest but encouraging; we have good reason to believe thatthis can be improved.Future work will focus on two areas: Improving GPU utilization in SVM training, andimproving the training data sets for wildfire classification.
5.1 Improvements to GPU Utilization
• The BLMVM quasi-Newton solver displays good convergence and has proved ableto make moderate use of GPU resources on our problems.• PETSc/TAO developer Alp Dener has done some initial work (https://alp.
dener.me/files/slides/siam-pp20.pdf) on a new compact dense refor-mulation that can better leverage fast matrix-vector products on GPUs at the costof some additional storage, while also reducing required FLOP counts. We willcontinue this line of development.• Communication efficiency should be improved if we can use an implementation ofGPU-aware MPI (which PETSc already supports)

5.2 Improvements to Wildfire ClassificationOne focus of future work on data preparation for model development will be on cre-ating an approach that takes into account regions of the state that vary by climateor ecoregion. Figure 8 illustrates a quantitative division of the state of Alaska into10 ecoregions based on clustering of climate data. We believe that model performancemay be significantly improved by constructing separate SVM models for each ecoregion,rather than for the entire state, and a next step is to explore this approach.

Figure 8: Alaska ecoregions based on Hoffman et al. (2013), showing each ecoregion
a different random color.

American Geophysical Union Fall Meeting, New Orleans, LA and Online Virtual, December 13–17, 2021. Parts of this research were supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. Some work was supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

