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Abstract14

Climate feedbacks are vital in shaping the extent of global warming. While directly ob-15

serving climate feedbacks is hardly feasible, it is possible to establish a relationship be-16

tween them and top-of-the-atmosphere flux changes in response to natural fluctuations17

in surface temperature. In this study, we explore this method to potentially constrain18

climate feedbacks in climate models using observations. Our findings reveal significant19

correlations for longwave and shortwave feedbacks within a period of 14 years. This al-20

lows for utilizing satellite observations and reanalysis to show that models exhibiting mod-21

erate negative longwave and moderate positive shortwave internal variability feedbacks22

demonstrate better consistency with observations. The emergence of the relationship for23

the net feedback requires a longer time, about 60 years. Continuous satellite records need24

to be maintained minimum until the mid-2040s before estimates of observed net inter-25

nal variability feedback can be used to constrain net forced climate feedback, and thereby26

climate sensitivity.27

Plain Language Summary28

Climate feedbacks play a crucial role in determining global warming, but directly29

observing them is challenging. However, it is possible to establish a connection between30

these feedbacks and changes in the Earth’s energy balance at the top of the atmosphere31

caused by natural variations in surface temperature, namely internal variability feedbacks.32

In this study, we investigate this approach to reduce uncertainties in climate feedbacks33

from the latest generation of climate models, which are widely used for future climate34

projections. Our results show that relationships between climate feedbacks and inter-35

nal variability feedbacks exist in these models. We find significant correlations between36

longwave and shortwave feedbacks over a relatively short period of 14 years. Models with37

moderate negative longwave and moderate positive shortwave internal variability feed-38

backs align better with observations. However, establishing a significant relationship for39

the net feedback requires a longer period of around 60 years. This implies that contin-40

uous satellite records need to be maintained at least until the mid-2040s before using ob-41

served internal variability feedback to constrain net forced climate feedback and under-42

stand climate sensitivity more accurately.43

1 Introduction44

The increasing levels of atmospheric carbon dioxide have significant implications45

for the Earth’s climate system. Elevated carbon dioxide concentrations enhance the ab-46

sorption and emission of infrared radiation in the atmosphere, leading to a radiative im-47

balance at the Top of the Atmosphere (TOA) and subsequent warming of the troposphere48

(NRC, 1979). The long-term response of global temperatures to this radiative forcing49

is influenced by a complex interplay of feedback mechanisms, including temperature, wa-50

ter vapor, lapse rate, surface albedo, clouds, and biogeochemical processes. These feed-51

back mechanisms play a crucial role in either amplifying or mitigating the initial warm-52

ing signal and collectively determine the Equilibrium Climate Sensitivity (ECS), which53

quantifies the global temperature response to a doubling of atmospheric carbon dioxide54

concentrations relative to pre-industrial levels.55

Generally, in estimating forced climate feedbacks, tools such as theory, observations,56

climate models, and fine-scale simulations are commonly utilized (Sherwood et al., 2020).57

Climate models are particularly important as they are designed to solve the complex equa-58

tions governing the Earth’s climate system. However, climate models need to parame-59

terize unresolved processes by establishing empirical relationships with explicitly resolved60

variables (Williamson et al., 2021). While climate models share fundamental equations,61

the use of different parameterization approaches among models introduces variations in62

future projections, including forced climate feedbacks, leading to a range of model-estimated63
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ECS. Assessing how models represent forced climate feedbacks is challenging due to the64

absence of long-term global observations spanning decades or centuries. Consequently,65

reducing uncertainty in model-estimated forced climate feedbacks becomes a complex66

task. However, if a significant and physically explainable relationship emerges across cli-67

mate models between observable properties of the climate system and forced climate change,68

past climate observations can be employed to constrain these feedbacks.69

Several studies have identified relationships between various observables and forced70

climate feedbacks across different generations of models (Forster et al., 2021). For in-71

stance, elements of the present mean state have been utilized (e.g., Trenberth & Fasullo,72

2010; Brient et al., 2016), as well as past climate change (e.g., Hargreaves et al., 2012;73

Jiménez-de-la Cuesta & Mauritsen, 2019; Renoult et al., 2020) and internal variability74

(Dessler, 2013; Mauritsen & Stevens, 2015; Dessler et al., 2018; Dessler & Forster, 2018).75

Focusing specifically on tropical clouds, Loeb et al. (2018) identified a robust relation-76

ship between cloudy-sky flux on timescales of 2.5 to 3 years and ECS. However, they noted77

that 100 years of data are necessary for this relationship to become statistically robust.78

Using models from the Coupled Model Intercomparison Project phase 6 (CMIP6), Lutsko79

et al. (2021) found significant relationships between 50 years of cloud variability and re-80

gional forced climate cloud feedbacks across most regions, with the exception of a lat-81

itudinal band from 60°N to 90°N. Similarly, Uribe et al. (2022) employed CMIP6 mod-82

els and demonstrated that the strength of forced climate feedbacks is associated with TOA83

flux changes in response to natural variations of surface temperature (internal variabil-84

ity feedbacks) from 2001 to 2014. However, they found that this relationship did not hold85

for net feedback. Additionally, they concluded that uncertainty in simulated and observed86

internal variability feedbacks over this short period precludes the establishment of an emer-87

gent constraint on forced climate feedbacks.88

In this study, our primary objective is to contribute to the reduction of uncertain-89

ties in forced climate feedbacks by advancing our understanding of the use of observa-90

tions and the relationships between internal variability feedbacks and forced climate feed-91

backs in CMIP6 models. Building upon previous research, we specifically investigate the92

underlying reasons for the lack of a significant relationship between net internal variabil-93

ity and forced climate feedback, despite significant relationships being found for long-94

wave and shortwave feedback components in CMIP6 models. To achieve this, we focus95

on the period where historical simulations overlap with the available satellite data record.96

Furthermore, we explore whether the limitations encountered in using observations to97

constrain forced climate feedbacks persist when utilizing longer historical periods to es-98

timate internal variability.99

2 Materials and Methods100

We study the relationship between feedbacks arising from internal variability and101

external forcing in both coupled ocean-atmosphere (CMIP) and atmosphere-only (AMIP)102

models participating in CMIP6. To accomplish this, we utilize historical simulations and103

experiments where atmospheric carbon dioxide concentrations are abruptly quadrupled104

from pre-industrial levels and subsequently held constant (abrupt4xCO2). To capture105

the range of possible historical climate outcomes and obtain robust estimates of inter-106

nal variability feedbacks, we utilize up to 5 realizations of historical ensemble members107

(Table S1). This approach represents an advancement over the study conducted by Uribe108

et al. (2022), who only employed one ensemble member. By including multiple ensem-109

ble members, we can better account for differences in initial states and obtain a more110

comprehensive estimation of internal variability feedbacks.111

In order to quantify feedbacks, we use the planetary energy balance at TOA:112

R = F + λT (1)113
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where R is the net TOA radiative flux anomaly, F is the radiative forcing, λ is the ra-114

diative feedback parameter and T is the surface temperature anomaly (Gregory et al.,115

2004; Dessler et al., 2018).116

We calculate forced climate feedbacks using linear Ordinary Least Squares (OLS)117

regression coefficients between annual global averages of TOA flux anomalies and T , where118

the anomalies are calculated as the difference between abrupt4xCO2 and pre-industrial119

experiments. For the estimation of internal variability feedbacks, we adopt a distinct ap-120

proach to ensure robust results. We utilize detrended and deseasonalized monthly anoma-121

lies derived from various historical ensemble members. However, it is crucial to account122

for the presence of autocorrelation in the temperature time series within each individ-123

ual realization. This autocorrelation has the potential to impact the estimation of re-124

gression coefficients and standard errors when performing an OLS regression on the com-125

bined data. To address this concern, we employ Generalized Least Squares (GLS) instead126

of OLS. GLS is an extension of OLS that involves transforming the original data into127

a new set of weighted variables. These weights are determined by computing autocor-128

relation coefficients through fitting autoregression models of order one, which effectively129

capture the autocorrelation presence in the data. Subsequently, the transformed data130

is subjected to OLS regressions to estimate the regression coefficients. Finally, to deter-131

mine the uncertainty associated with the regression coefficients, we calculate 5-95% con-132

fidence intervals using a two-tailed t-test that takes into account the variability in the133

data and provides confidence intervals that encompass both positive and negative de-134

viations from the estimated regression coefficients.135

We conduct a comparison between model results and observed internal variabil-136

ity feedbacks using TOA fluxes from the Clouds and the Earth’s Radiant Energy Sys-137

tem (CERES) instruments, Energy Balanced and Filled (EBAF) dataset updated to Ed4.1138

(Loeb et al., 2018), and gridded temperature anomalies from HadCRUT version 5 (Morice139

et al., 2021). The comparison is performed during the overlapping period of the CERES-140

historical simulation (2001-2014). The objective is twofold: to identify models whose in-141

ternal variability feedback differs from observations, providing valuable insights into their142

representativeness of forced climate feedbacks, and to investigate the lack of significant143

relationships between net internal variability and net forced climate feedback despite the144

presence of significant relationships for the longwave and shortwave components, as re-145

ported in previous research (Uribe et al., 2022).146

Furthermore, to explore the evolution of the relationship between internal variabil-147

ity and forced climate feedbacks as well as observed and simulated internal variability148

uncertainties over a longer historical time period (1959 to 2014), we utilize TOA fluxes149

and sea surface temperatures derived from the ERA5 reanalysis data (Hersbach et al.,150

2020). Lastly, we assess the necessary conditions for a stable relationship to emerge be-151

tween net internal variability and net forced climate feedbacks. This information will pro-152

vide valuable insights into the time scale necessary for robust and reliable assessments153

of these relationships and will enhance our understanding of the complexities surround-154

ing the relationships between internal variability and forced climate feedbacks.155

3 Results156

3.1 Internal Variability and Forced Climate Feedbacks Relationship Dur-157

ing the CERES Period158

In order to be able to use internal variability to constrain long-term feedback there159

must exist a statistical relationship between these quantities. Indeed, during the over-160

lapping years of CERES satellite observations and historical CMIP6 simulations, there161

are high correlations between simulated internal variability and forced climate feedbacks162

(Figures 1a and 1b). Importantly, our results demonstrate a stronger correlation between163
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internal variability and forced climate feedbacks compared to the findings reported by164

Uribe et al. (2022). We attribute this improvement in correlation strength to two fac-165

tors: the inclusion of more models, allowing for a broader range of model representations166

and variations in internal variability to be captured, and the utilization of additional en-167

semble members, which enhances the robustness and representativeness of our internal168

variability feedbacks. These factors combine to provide a more comprehensive represen-169

tation of the relationship between internal variability and forced climate feedbacks.170

To assess the significance of the high correlations over this relatively short period,171

we conducted a Monte-Carlo test to determine the probability of obtaining correlation172

coefficients that are equal to or greater than those observed between internal variabil-173

ity and forced climate feedbacks. This analysis involved generating a probability distri-174

bution of correlation coefficients by randomly permuting the datasets 100000 times and175

calculating the correlation coefficients for each permutation. The results (Figure S1) re-176

veal a likelihood of less than 5% that the longwave and shortwave correlation coefficients177

would occur by chance alone and indicate a strong and meaningful relationship between178

the strength of longwave and shortwave forced climate feedbacks and their correspond-179

ing internal variability feedback. By considering these relationships, observations have180

the potential to constrain and limit the uncertainties associated with forced climate feed-181

backs. The comparison between simulated and observed internal variability feedbacks182

indicates that models exhibiting strong negative and weak negative internal variability183

longwave feedbacks, as well as models displaying both strong negative and strong pos-184

itive shortwave internal variability feedbacks, are less consistent with observed data (Fig-185

ure 2).186

In contrast, when combining the longwave and shortwave feedbacks to calculate the187

net feedback, we do not observe a statistically significant relationship between internal188

variability and forced climate feedback (Figures 1c and S1). The weak relationship be-189

tween net internal variability and net forced climate feedback is reflected in the small190

slope observed in the linear regression (dashed lines in Figure 1c), which indicates a lim-191

ited association between the two variables. The underlying cause of this weak relation-192

ship can be attributed to the relatively larger dispersion or variability in net internal vari-193

ability feedback compared to that of the net forced climate feedback (variance of 0.27194

W2 m−4 K−2 compared to 0.14 W2 m−4 K−2 for CMIP, and 0.42 W2 m−4 K−2 com-195

pared to 0.15 W2 m−4 K−2 for AMIP). The dispersion of the net internal variability feed-196

back can be largely attributed to the shortwave component, as the variance of the net197

internal variability feedback is the sum of the variances of the longwave and shortwave198

internal variability feedbacks (Figure S2). Further examination highlights that cloud ra-199

diative effects, in deep convective and stratocumulus regions, primarily influence the dis-200

persion of the shortwave internal variability feedback (compare top, center, and bottom201

panels in Figure 3). Moreover, it is generally observed that shortwave and longwave feed-202

backs exhibit a balancing effect, whereby positive shortwave feedback is typically coun-203

terbalanced by negative longwave feedback, and vice versa. To quantify the degree of bal-204

ancing, we calculated the correlation coefficient between longwave and shortwave feed-205

backs. The analysis indicates that internal variability feedbacks (r = −0.62) are less206

compensated compared to forced climate feedbacks (r = −0.75) and suggests that the207

interplay between shortwave and longwave feedbacks is less effective in offsetting each208

other within the internal variability context, as opposed to the forced climate feedbacks209

where the compensation is more pronounced.210

Thus, the lack of statistical significance for the net feedback can be attributed to211

two main factors. Firstly, the large dispersion observed in the shortwave internal vari-212

ability feedback, particularly in relation to cloud radiative effects in deep convective and213

subtropical stratocumulus regions. Secondly, the anti-correlation between longwave and214

shortwave feedbacks, which weakens the overall net signal. These combined factors con-215

tribute to the absence of a significant relationship in the net feedback analysis. In the216
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Figure 1. Abruptly quadrupled CO2 increases versus global internal variability feedbacks and

their linear regression (dashed lines) for longwave (left), shortwave (center) and net (right) over

CERES (a., b., c.) and ERA5 (d., e., f.) periods. Legends include the correlation coefficient, r,

between abrupt and internal variability feedbacks for coupled (blue) and atmosphere-only (red)

simulations. Grey shading and horizontal lines extend from 5% to 95% confidence intervals of the

observed/reanalysis and individual model internal variability feedback, respectively.

following, we aim to investigate whether extending the period used to estimate internal217

variability feedbacks can improve the potential for using observations to constrain forced218

climate feedbacks219

3.2 The Relationship Between Internal Variability and Forced Climate220

Feedbacks During the ERA5 Reanalysis Period221

Next, we utilize ERA5 reanalysis data as a surrogate for satellite observations. In222

a reanalysis, radiative fluxes are not directly constrained by observations but are derived223

from calculations based on the atmospheric state. While the distribution of temperature224

and water vapor in a reanalysis is relatively well-constrained, the representation of clouds225

is less constrained. Hence, to evaluate the extent to which ERA5 captures the patterns226

and variations observed in CERES data, we compare the detrended and deseasonalized227

TOA anomaly fluxes and internal variability feedbacks from ERA5 with those obtained228

from CERES over the overlapping time period 2001-2021 (Figures S3 and S4). In gen-229

eral, ERA5 captures the overall characteristics of the Earth’s energy balance reasonably230

well, although discrepancies in the representation of longwave and shortwave radiation231

suggest potential limitations or uncertainties in accurately capturing the variability of232

these fluxes at TOA (Figure S3). Consequently, the discrepancies in the representation233

of radiative fluxes between ERA5 and CERES result in less pronounced longwave and234

shortwave internal variability feedbacks in ERA5 compared to that observed in CERES235
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Figure 2. Probability of model uncertainty aligning with observed uncertainty, with the x-

axis representing the arrangement of models in ascending order of feedback values (shown in

parentheses).

Figure 3. Maps of all-sky (top), cloud radiative effects (center), and clear-sky (bottom) short-

wave internal variability variance for coupled (CMIP) and atmosphere-only (AMIP) models over

the CERES (2001-2014) and ERA5 (1959-2014) periods.
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data (Figure S4). Despite these disparities, the remarkable similarity between the reanal-236

ysis and the observed data indicates the potential value of the ERA5 for estimating in-237

ternal variability feedbacks in situations where satellite observations are not available,238

for example for filling in short data gaps in satellite records.239

We estimate reanalysis and simulated internal variability feedbacks focusing on their240

shared time period from 1959 to 2014. Note that here we use just historical coupled sim-241

ulations since the time length of historical atmosphere-only simulations is shorter (1979-242

2014). To ensure the exclusion of volcanic forcings from the analysis, we specifically re-243

moved the years 1982-1983 and 1991-1992 from the time series since these years corre-244

spond to the eruptions of the El Chichon and Pinatubo volcanoes, which resulted in sig-245

nificant and rapid changes in TOA fluxes. Extending the analysis to this longer period246

enables a more comprehensive assessment of internal variability feedbacks, leading to a247

reduction in the uncertainty associated with both observed and simulated data (com-248

pare the confidence intervals over the short period in Figures 1a., 1b., 1c. to the long pe-249

riod in Figures 1d., 1e., 1f., as well as in Figure S4). In line with the findings from the250

analysis using the CERES period, the relationship between longwave and shortwave forced251

climate feedbacks and internal variability remains robust and significant when consid-252

ering the ERA5 period (Figures 1d., 1e., and S1). This indicates that the relationship253

between longwave and shortwave internal variability and forced climate feedbacks is ro-254

bust and consistent over an extended time span and increases the level of confidence that255

models exhibiting moderate negative longwave internal variability feedbacks, as well as256

moderate positive shortwave internal variability feedbacks, align more closely with ob-257

servations (Figure 2). Nevertheless, the persistence of a large dispersion in the shortwave258

internal feedback (Figures S2 and 3) contributes to the absence of a significant relation-259

ship between net internal variability and net forced climate feedbacks (Figures 1f. and260

S1), which raises the question of whether such a relationship truly does not exist in CMIP6261

models.262

3.3 Emergence of the Relationship Between Net Internal Variability and263

Net Forced Climate Feedbacks264

While the relationships between longwave and shortwave internal variability and265

forced climate feedbacks hold consistently for both short (CERES) and longer (ERA5)266

periods, a significant relationship has not been found for the net feedback component.267

To determine the existence of a relationship between net internal variability and net forced268

climate feedbacks in CMIP6 models, we extend our analysis to longer time periods be-269

yond the limits of observational or reanalysis-based estimation of internal variability feed-270

backs.271

To this end, we compute the correlation coefficient between net internal variabil-272

ity and net forced climate feedbacks across various time-window sizes in CMIP6 simu-273

lations, as well as the p-value through a hypothesis test assuming that the feedbacks are274

independent and uncorrelated. The calculation starts by using a 14-year historical sim-275

ulation time window (2001-2014), and then extending the window by one year at a time276

until reaching the initial year of 1850 (1850-2014). The length of the historical simula-277

tions is 165 years; however, by excluding the years affected by volcanic eruptions (El Chi-278

chon, Pinatubo) as well as the years 1883 and 1884 (Krakatoa), the time series is reduced279

to 159 years.280

The results reveal that significant relationships between net internal variability and281

net forced climate feedbacks do emerge (Figure 4). Such significant relationships stabi-282

lize when the net internal variability feedback is estimated using a time window of at least283

60 years (1955-2014). However, due to the limited availability of observational data dur-284

ing this period, it is not possible to obtain an observational estimate of net internal vari-285

ability feedback to constrain net forced climate feedbacks. Therefore, given the current286
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Figure 4. Left: Correlation (red) and p-value (blue) between net internal variability feedback

estimated for the n - 2014 time window, and net forced climate feedback. Horizontal dashed lines

indicates a correlation of 0.5 and a p-value of 5%, while the vertical line denotes the initial time

window year when the relation approximately stabilizes. Grey area shows the period for which

ERA5 reanalysis data is available. Right: P-value frequency distribution for uncorrelation tests

between net internal variability and net forced climate feedbacks from CMIP6 coupled models

over all 60-year windows between 1850 and 2014.

limitations of the available observational records, it is not currently possible to derive287

a constraint on net forced climate feedback using net internal variability feedbacks.288

Combining the Earth Radiation Budget Experiment (ERBE) satellite record, which289

started in 1985, with the existing CERES data (Allan et al., 2014) would extend the avail-290

able observational period to 37 years, thus about 24 years of continuous observational291

data would still need to be collected to reach a 60-year period. To assess the likelihood292

of a significant relationship between net internal variability and net forced climate feed-293

backs in CMIP6 coupled models over a 60-year window, other than 1955-2014, we cal-294

culate the frequency distribution of p-values between net internal variability and forced295

climate feedbacks for all potential 60-year continuous periods between 1850 and 2014 (Fig-296

ure 4). The analysis reveals a high frequency of p-values below one percent, indicating297

a strong likelihood that, with an additional 24 years of satellite data, the use of observed298

net internal variability feedback as a constraint on net forced climate feedback would be299

highly feasible and reliable.300

4 Conclusions301

A study of the relationships between internal variability and forced climate feed-302

backs in models of the sixth generation of the Coupled Model Intercomparison Project303

is presented. Consistent with previous research (Uribe et al., 2022) we find evidence in-304

dicating that the strength of longwave and shortwave forced climate feedback relates to305

their internal variability feedback during the period of overlap between CERES data and306

historical simulations. Moreover, our results indicate that incorporating additional en-307

semble members in the estimation of internal variability feedbacks improves their robust-308

ness and representativeness, strengthening the relationship between internal variability309

and forced climate feedbacks.310

Nevertheless, when combining the longwave and shortwave feedback components311

to estimate the net feedback, the relationship breaks down. A detailed examination high-312

lighted that the presence of uncertainty in shortwave internal variability feedback, specif-313

ically related to cloud radiative effects in deep convective and subtropical stratocumu-314
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lus regions, as well as an inadequate compensation between shortwave and longwave in-315

ternal variability feedbacks, significantly contributed to the diminished relationship be-316

tween net internal variability and net forced climate feedbacks. On the other hand, the317

analysis of observed internal variability feedbacks based on satellite measurements in-318

dicates that models exhibiting strong and weak longwave feedbacks, as well as strong pos-319

itive and strong negative shortwave feedbacks demonstrate a lower degree of agreement320

with observational data.321

Further, we employed ERA5 reanalysis data to estimate internal variability feed-322

backs over an extended historical period spanning from 1959 to 2014. The analysis re-323

vealed a reduction in uncertainties associated with observed and simulated internal vari-324

ability and confirmed the persistence of the relationship between longwave and short-325

wave feedbacks. These findings provide support for the hypothesis that models display-326

ing moderate negative longwave feedbacks and moderate positive shortwave feedbacks327

are more consistent with observational data. Nevertheless, the relationship between net328

internal variability and net forced climate feedbacks remains weak.329

Finally, using models only, we find that a statistically significant relationship be-330

tween net internal and net forced climate feedbacks emerges when considering a period331

of at least 60 years. Given that the CERES record starts in 2000, our analysis suggests332

that it would be necessary to wait until approximately 2060 to accumulate 60 years of333

satellite observations. However, a possible solution to reduce this waiting time is to com-334

bine the CERES record with the Earth Radiation Budget Experiment (ERBE) satellite335

record (Allan et al., 2014), which could potentially shorten the time horizon to constraint336

to the mid-2040s.337

5 Open Research338

The CERES EBAF-TOA Ed4.1, data sets used for estimating observed TOA fluxes339

are available at the NASA Langley Research Center via https://ceres.larc.nasa.gov/340

data/. The Gridded temperature anomalies HadCRUT(5) data set used to estimate ob-341

served internal variability feedbacks can be obtained from the Met Office Hadley Cen-342

tre observations datasets at https://www.metoffice.gov.uk/hadobs/hadcrut5/. Used343

CMIP6 models can be found in Table S1 and are available from ESGF at https://esgf344

-node.llnl.gov. ERA5 reanalysis data can be downloaded from the Copernicus Cli-345

mate Change Service in https://doi.org/10.24381/cds.f17050d7.346
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