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Key Points:

e This work provides a new method for tracking the onset of inelastic defor-
mation in aquifer systems.

e In less than two decades, the Abarkuh Plain saw a rapid expansion of
areas experiencing inelastic deformation due to groundwater extraction.

¢ InSAR time series post-processing enables isolating various sources con-
tributing to the ground deformation and their relative importance.

Abstract

Tracking the onset of inelastic (permanent) deformation is critical to quantify-
ing the stress experienced by an aquifer system so that the effects of current
groundwater extraction practices are put in the context of the sedimentary and
geological histories of a region. However, the pre-consolidation stress is rarely
known due to the lack of multi-decadal ground-based data. In this paper, we
propose a new approach to track the onset and spatial evolution of inelastic
deformation based on a 2003-2020 multi-sensor Interferometric Synthetic Aper-
ture Radar time series analysis. Our study reveals that in central Iran, many
locations that used to experience elastic (recoverable) deformation just a few
years ago, are now deforming inelastically, leading to irreversible lowering of
the ground surface and irreversible loss of aquifer storage. Lithologic data re-
veals that the total thickness of the drained clay layers controls the extent and
timing of the observed inelastic deformation, while groundwater data confirms
that the multi-decadal lowering of groundwater levels is driving the long-term
compaction. These results highlight that we are now at or near a tipping point
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in time between sustainability and permanent damage to our underground wa-
ter resources, emphasizing the fact that current decisions have the potential to
change the natural resources landscape permanently.

Plain Language Summary

Unsustainable extraction of groundwater is accompanied by irreversible land
subsidence, the lowering of the ground surface elevation. Tracking the onset
of inelastic (permanent) deformation is critical to isolating a tipping point in
time between sustainability and permanent damage to our underground water
resources. In this work, we present a new method based on space geodesy that
enables quantifying the onset and spatial evolution of the inelastic ground de-
formation. Our study reveals that in central Iran, many locations that used to
experience elastic (recoverable) ground deformation just a few years ago, are
now deforming inelastically, leading to irreversible lowering of the ground sur-
face and irreversible loss of aquifer storage. We find that while irreversible com-
paction is associated with multi-decadal groundwater levels decline, the nature
and thickness of sediments in the subsurface relative to the local groundwater
elevation control its timing. These results highlight the fact that recent and
current groundwater management decisions have the potential to change the
natural resources landscape permanently in central Iran.

1 Introduction

Interferometric Synthetic Aperture Radar (InSAR) is used to quantify ground
deformation over small to very large areas worldwide (tens to thousands of
square kilometers) with a high- spatial resolution (tens of meters) Pepe and
Calo, 2017(). Ground deformation linked to subsurface and solid-earth processes
has been precisely measured with InSAR and explored to gain insights into the
physical and hydro-mechanical processes at play (e.g., Biirgmann et al. (2000)).
InSAR has been broadly applied to the field of hydrology to derive the properties
of aquifer systems and to guide water-storage management plans Amelung et
al., 1999Chaussard et al., 2021Ezquerro et al., 2014Lu and Danskin, 2001 Miller

In an aquifer system, both inelastic (irreversible) and elastic (recoverable) de-
formation take place Wilson and Gorelick, 1996(), relating to hydraulic head
fluctuations, properties of deforming sediment layers, and the aquifer’s com-
paction history Poland and Ireland, 1988(). As long as the hydraulic head
remains above the previous lowest level (i.e., the effective stress is less than
the pre-consolidation stress), elastic deformation happens in the semi-permeable
(sandy) layers. In contrast, when the hydraulic head falls below its previous low-
est level, inelastic compaction takes place through the rearrangement of solid
grains in clays Guzy and Malinowska, 2020(), which have an elastic compress-
ibility one to three orders of magnitude lower than that the aquifers Pavelko,
2004Riley, 1998(; ). Since inelastic and elastic processes often simultaneously
happen at the same place, their separation is a challenging task without rely-
ing upon hydrological models Hoffmann et al., 2003(). However, quantifying



these deformation components is essential to define sustainable pumping rates
for resources management and to potentially relocate infrastructures from areas
experiencing inelastic deformation Shi et al., 2012().

Ojha et al. (2019) studied vertical land motion in the Central Valley, CA,
with 2015-2017 InSAR time series and used a functional curve fitting to iso-
late elastic from inelastic contributions, assuming the elastic component to be
seasonal. Chaussard et al. (2014) and Chaussard et al. (2017) explored land
deformation in the Santa Clara aquifer, CA, and showed that elastic deforma-
tion can be spatiotemporally complex and reach amplitudes of centimeters each
year. Using an Independent Component Analysis (ICA) of Sentinel-1 InSAR
time series, Mirzadeh et al. (2021) and Chaussard et al. (2021) highlighted the
details of inelastic and elastic deformation signals in the Yazd-Ardakan Plain,
Iran and in Mexico City, respectively. At both sites, deformation was shown
to be dominantly inelastic and controlled by the thickness of clay-layers that
compact as water levels drop below previous lowest stands. Gualandi and Liu
(2021) applied a variational Bayesian ICA (vbICA) to 2015-2019 Sentinel-1 time
series spanning the Central San Andreas Fault and southern Central Valley to
isolate the contributions of deep and shallow aquifer deformation to the surface
displacements and to separate tectonic loading from seasonal signals.

Since historical SAR missions (ERS1&2, Envisat, and ALOS-1) have a lower
temporal sampling (35 to 46 days repeat) than the currently operating the
Sentinel-1 satellite (6 to 12 days repeat), previous studies of elastic and inelastic
deformations have mostly relied on the Sentinel-1 dataset, which limits the anal-
ysis to the short-term deformation (2014-now). Here, we introduce a method to
extract the time-dependent evolution of inelastic deformation through consid-
eration of a multi-sensor time series analysis of the historical and current SAR
data combined with an ICA. We applied this method to InSAR time series of
land deformation in the Abarkuh Plain (AP), Iran and resolved the primary con-
trol(s) by the geological and hydrological parameters to the spatially variable
onset of inelastic deformation.

2 Abarkuh Plain

The AP is a desert extending from 52.67 to 53.72 E longitude and 30.68 and
31.50 N latitude. Its elevation ranges from 1439 m in the Abarkuh Playa in the
southeast to 3277 m in the mountains to the west (Figure la). According to
1967-2011 data, the AP has an average annual rainfall of ~ 464.6 million m3
and an annual evaporation of ~ 377.78 million m3 TAMAB, 2004(). The AP
unconfined aquifer covers an area of 929.12 km” (Figure 1a) and has suffered
from an average yearly decline of groundwater levels of ~ 0.62 m between 1983
and 2017 TAMAB, 2004(). The long-term (1981-2011) groundwater balance in
the AP aquifer indicates that the main recharge arises from the infiltration and
return of wastewater from the agricultural sector at 61.1 million m> per year.
Drawing by springs, qanats, and pumping wells account for 173.7 million m?
per year, with the largest usage stemming from the agricultural sector with



168.1 million m? per year (Tables S1 and S2). The net yearly storage loss of
32.4 million m? has led the local government to label the AP aquifer as the
second-most imperiled aquifer in the Yazd province TAMAB, 2004().

Figure 1a illustrates the geology of the AP. Quaternary sediments cover much of
the area, consisting of alluvium (clays, silts, and sand along with gypsum) and
salt flats. These Quaternary layers are overlaying Tertiary to Permian limestone
and dolomite units (Figure 1b).
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Figure 1. (a) Geological map of the AP. Black outlines denote the unconfined aquifer boundary. Green and r

3 Datasets and Methods
3.1. Datasets



3.1.1. SAR Data

Our analysis is based on 12 Envisat ASAR images of the AP acquired in
StripMap (SM) mode, 14 ALOS-1 PALSAR images acquired in Fine Beam
Single Polarization (FBS) and Fine Beam Double Polarization (FBD) modes,
and 243 Sentinel-1 images acquired in Interferometric Wide-swath (IW) mode
(Figure 1a). The Envisat descending, ALOS-1 ascending, and Sentinel-1 ascend-
ing and descending datasets were acquired with spatial resolutions of 8 x 4 m,
8 X 3m, and 5 x 20 m (Range x Azimuth), respectively (Tables S3 and S4).

3.1.2. Hydrogeological and Weather Data

We use monthly data from 28 borehole piezometers to quantify groundwater
level (GWL) variations from March 2003 to March 2020 (Figure la). We rely
on an Inverse Distance Weighted (IDW) Shepard, 1968() interpolation method
to generate multi-annual GWL change maps (Figure S10). Logs of several explo-
ration wells (Figure la; TAMAB (2004)) are used to derive lithological informa-
tion from the upper approximately 100 m (Figure S8). Stratigraphic data of the
AP are also derived from the geological map at a scale of 1:100,000 Geological
Survey of Iran, 1997().

We generate time series of monthly precipitation relying on the total precipita-
tion parameter of the ECMWEF Reanalysis v5 (ERA5)-Land hourly data (from
the ERAD climate reanalysis) to constrain weather data over the last decades
at a resolution of 0.1 x 0.1 (Figure Sla; Muiioz Sabater (2019)). We com-
pute the cumulative precipitation departure (CPD) to enable comparisons with
groundwater level changes (Figure Sla; Hanson et al. (2004)). We derive a
time series of Land Surface Temperature (LST) using the MODIS/Terra prod-
uct MOD11__ L2 swath that includes LST values and daily emissivity on a 1200
km x 1200 km grid with a resolution of 1 km (Figure S1b).

3.2. Methods
3.2.1. InSAR Approach

To track ground deformation over the period covered by each SAR data, we
use the InSAR Computing Environment (ISCE) software and Small BAseline
Subset (SBAS) time series method Berardino et al., 2002() implemented in the
Miami INsar Time-series software in PYthon (MintPy) Yunjun et al., 2019().
We rely on the 1-arcsec Digital Elevation Model (DEM) of the Shuttle Radar
Topography Mission (SRTM; Jarvis et al. (2008)) to exclude topographical
contributions. We resample the interferograms to 90 m for the Envisat and
ALOS-1, and 30 m for the Sentinel-1 datasets to reduce the speckle noise and use
SNAPHU for phase unwrapping Chen and Zebker, 2003(). We use mean spatial
coherence thresholds of 0.7 and 0.8 (Figure S2) to eliminate outliers caused by
unwrapping errors for the Envisat descending and ALOS-1 ascending datasets,
respectively Tizzani et al., 2007(). We use the Python based Atmospheric Phase
Screen (PyAPS) Jolivet et al., 2014Jolivet et al., 2011(; ) and the ERA-5 weather
model data with a spatial resolution of 31 km Hersbach et al., 2020() to decrease



tropospheric phase delay. We remove short-frequency signals in the form of a
linear ramp to mitigate orbital and ionospheric artifacts. Finally, all datasets
are referenced to a single stable point that presents high coherence (cross in
Figure 2).

Assuming minimal contributions of horizontal motions to the line-of-sight (LOS)
displacements, as confirmed with the Sentinel-1 ascending and descending
datasets (Figure S6), we convert the LOS InSAR velocity maps (d,og) into the
vertical motions (dy,) using the mean incidence angle value 6 of each satellite
(dy = m). We convert the LOS InSAR velocity standard deviation maps

COs
(Stdy,og) into the vertical deformation standard deviation maps (Stdy, = Stfo%)
to derive spatially variable uncertainties (Figure S4). Temporal uncertainties
are calculated by averaging a window of 13 x 13 pixels at the reference point

for each epoch of time series (Figure S5; Mirzadeh et al. (2021)).
3.2.2. Separation of Sources from Independent Component Analysis

To constrain the hydrological and geological control(s) on the spatiotemporal
changes and the transition from elastic to inelastic deformation in the AP, we use
an ICA-based approach. First, we resample the vertical time series of displace-
ment derived from the Envisat descending, ALOS-1 ascending, and Sentinel-1
ascending and descending dataset into 90m grids and apply the method proposed
by Chaussard and Farr (2019). We use a Principal Component Analysis (PCA)
to define how many independent components (ICs) can retain the signal and also
their order of importance Cattell, 1966(). We use 254,550 samples per date and
12, 14, 129, and 114 epochs for the Envisat descending, ALOS-1 ascending, and
Sentinel-1 ascending and descending datasets, respectively. Based on the PCA
results, a single component explains 94.6%, 92.8%, 94.9%, and 97.2% of the
eigenvalues for each dataset, respectively (increasing to 98.9%, 98.3%, 97.3%,
and 98.6% when including the four components). Results for each IC are rep-
resented as an eigenvalue time series to display the signal’s magnitude at each
epoch and a score map scaled by the contribution of the retained components
to the original data, showing the pixels experiencing the observed eigenvalue
time series (Figure S7). We consider the 2-sigma spatiotemporal uncertainties
of the InSAR results (2 X maximum of spatiotemporal uncertainties; see section
3.2.1) as the threshold for all datasets to extract the spatial extent of significant
deformation. This threshold is then converted from cm/yr to eig/yr for each
dataset:

eig/yr __ threshold®™/¥"
threshold m " Scaled_Score,, (]‘)

where Scaled Score,, is a maximum score scaled with % eigenvalues explained
by the dominant IC for dataset m. These thresholds are used to mask the score
maps so that changes in the extent of deformation over time can be isolated
(score values lower than the threshold are masked). This approach is applied



to the score map of the dominant component (IC1), which captures inelastic
deformation, to highlight the time-dependent extent of the area affected by
inelastic deformation.

4 Results and Analysis
4.1 Overview of Deformation
4.1.1 Spatio-temporal Patterns and Rates of Deformation

The multi-temporal analysis of deformation in the AP allows us to see the tem-
poral changes in the patterns and rates of deformation. Figure 2 shows the mean
vertical velocity maps converted from the mean LOS velocities (Figure S3), and
reveals three major subsidence features in the AP. In terms of subsidence rates,
the most significant feature is an elongated northwest-southeast zone referred
to as the Main Subsidence Zone (MSZ), which covers an initial area of 37.4
km® with a rate 1.2 cm/yr (three-sigma maximum spatiotemporal uncertain-
ties; Figure S4-5) in the Envisat dataset. The MSZ spatially expanded between
the Envisat (2003-2005) and ALOS-1 (2006-2010) and Sentinel-1 (2015-2020)
datasets and reaches 135 km® in Sentinel-1 ascending and descending datasets.
In addition to the MSZ, a new deformation area appears in the ALOS-1 and
Sentinel-1 datasets northwest of Abarkuh city (dark circle in Figure 2b-d) with
a subsidence rate of 1.3 cm/yr. The profile A-A’ (Figure 2) highlights the ex-
pansion of the MSZ toward the northwest between 2 and 8 km in both the
ALOS-1 and Sentinel-1 datasets compared to the Envisat data. In the center of
the MSZ, we observe an increase followed by a decrease in the subsidence rates
by 3 & 2 cm/yr, respectively, between 9.5 and 15 km (shaded areas in Figure
3a). Figure 3b displays the subsidence rates and changes in the spatial extent
of the zones of deformation north of Abarkuh city along the profile B-B’.
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Figure 2. Annual mean vertical velocity maps, derived from the (a) Envisat, (b) ALOS-1, and (c)-(d) Sentine

4.1.2 Uncertainties and Consistency Assessment

We investigate the uncertainties and consistency of the mean vertical velocities
from the Envisat, ALOS-1, and Sentinel-1 ascending and descending datasets.
Figure S4 shows that spatial uncertainties of velocity are mostly less than 4
mm/yr over the entire study area with means of 1.1 and 1.6 mm/yr for the
Envisat and ALOS-1 datasets, respectively. In the Sentinel-1 ascending and
descending data, spatial uncertainties are less than 1 mm/yr with respective
means of 0.4 and 0.3 mm/yr. Figure S5 shows that the majority of epochs
have uncertainties < 2 mm in all datasets, with the exception for three epochs
(Figure S5b-c), likely contaminated by atmospheric turbulences Yunjun et al.,
2019().
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Mean deformation rate uncertainties along the profiles are shown in the inset
of Figures 3a & 3b. Sentinel-1 has the smallest mean uncertainties (1.1 mm/yr)
in both ascending and descending datasets. Envisat and ALOS-1 have mean
uncertainties of approximately 3.4 and 5.7 mm/yr along the B-B’ profile, re-
spectively but the same mean uncertainty of approximately 5.1 mm/yr along
the A-A’ profile (see Figure S4 for maps of estimated sigma uncertainties).

We compare the mean vertical velocities derived for resampled common points in
a 90 m grid within the MSZ (pink dashed-lines in Figure 2a) from the four time
series with the Sentinel-1 descending dataset being used as reference (Figure
3c-e). Correlation coefficients between the displacement rates of the Sentinel-1
descending and other datasets range between 0.86 and 0.99, demonstrating a
good consistency. The agreement between Sentinel-1 ascending and descend-
ing data supports the assumption of no significant horizontal motion in the
MSZ. Envisat data show the lowest correlation to the Sentinel-1 descending
data (0.86), likely due to the different temporal coverage of the datasets and
temporal changes in the subsidence rates. Specifically, significantly different
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subsidence rates are also observed between 9.5 and 15 km, at the MSZ bound-
ary on the A-A’ profile (Figure 3b) when comparing the Envisat and Sentinel-1
data.

4.2 Multi-Temporal Inelastic Compaction

Groundwater pumping lowers water levels and decreases pore water pressure
in an aquifer system, increasing the effective stress. When the hydraulic head
drops below the previous lowest level, inelastic deformation happens due to
permanently collapsing pore spaces, especially in fine grained aquitards which
are more compressible than coarse-grained aquifer layers Meade, 1964Wilson
and Gorelick, 1996(; ). Since pumping rate is spatiotemporally inhomogeneous
and sediment properties vary spatially, elastic and inelastic contributions of
deformation change spatially over time. To explore the time and space variations
of inelastic and elastic deformations, we apply the ICA to the time series derived
from the Envisat, ALOS-1 and Sentinel-1 ascending and descending (Figure S7).

The first component (IC1) retains 94.6%, 92.8%, 94.9%, and 97.2% of the
eigenvalues for the Envisat, ALOS-1, and Sentinel-1 ascending and descend-
ing datasets, respectively, and displays a spatial pattern similar to the mean
deformation rate maps of all datasets (Figures 2 and S7). Each of its eigenval-
ues time series shows a nearly linear trend with slopes of -0.55, -0.85, -0.61, and
-0.65 eigenvalues/year (-9.12, -10.22, -6.42, and -6.67 in cm/yr) for the Envisat,
ALOS-1, and the Sentinel-1 ascending and descending datasets, respectively
(Figures 4e-h and S7).

Together, the other components (IC2-4) explain 4.3%, 5.5%, 2.3%, and 1.4%
of the eigenvalues for the Envisat, ALOS-1, and Sentinel-1 ascending and de-
scending datasets, respectively. IC2 shows positive score values limited to the
northeast of the MSZ for the ALOS-1 data and a noisy signal (mix of positive
and negative scores) within the MSZ for the Envisat data. IC2 explains 2.5%,
2.6%, 0.9%, and 0.8% of the eigenvalues and has an eigenvalues time series with
a slight descending trend and slopes of -0.01, -0.09, -0.09, and -0.18 (in eigen-
values/year) for the Envisat, ALOS-1, and Sentinel-1 ascending and descending
datasets, respectively. IC3 shows no clear pattern in the score maps for the
ALOS-1, and Sentinel-1 ascending and descending datasets, but has positive
score values north of the MSZ in the Envisat data (retaining retains 1.3% of
the eigenvalues), with the eigenvalues time series slope of -0.22 (in eigenval-
ues/year). The fourth component (IC4) score map shows a correlated zone in
the northeastern zone of subsidence in the Envisat and ALOS-1 datasets and in
the northwestern zone of the subsidence in the Sentinel-1 ascending and descend-
ing dataset with eigenvalues time series with slight downward trends with slopes
of -0.16, -0.07, -0.18, and -0.07 eig/yr for the Envisat, ALOS-1, and Sentinel-1
ascending and descending datasets, respectively.

Based on its linear eigenvalue time series (Figure S7), we consider that the
IC1 highlights inelastic deformation. The other components (IC2-4) show long-
wavelength spatial signals with low-amplitude eigenvalues, suggesting that they
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are likely to capture the noise, possibly reflecting orbital errors and ionospheric
delays.

Figure 4 shows the spatiotemporal patterns of the IC1 (score maps) that high-
light inelastic deformation. The growth in the extent of the IC1 positive score
over time is clearly visible around the MSZ and two additional zones to the
north between the Envisat and Sentinel-1 periods. As shown in Figures 4e-
h and S7, the eigenvalues time series of the IC2 component, derived from all
datasets, reveal no clear signal of seasonal elastic deformation during the study
period, suggesting that the inelastic deformation captured by IC1 dominates.
The eigenvalues time series results also reveal that the rate of the IC1 compo-
nent decreases between the Envisat and Sentinel-1 observation periods, with a
peak occurring during the 2006-2010 period imaged by ALOS-1 (Figure 4b and
4f).
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4.3 Potential Causes
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GWL changes in the aquifer over 33 years (1984-2016) (Figure 5¢) manifest a
mean 20 m drop with ~ 1147 million cubic meters (MCM) of groundwater lost.
This shows the severe stress has been imposed on the groundwater system, re-
sulting in storage depletion and driving inelastic deformation in the fine-grained
sediments layers (see Figures 1b and S8) Iran’s WRM Co., 2014().

To evaluate the controls on the inelastic deformation pattern, we combine the
score maps of the IC1 component (Figure 4a-d) assuming that the recovery
process from inelastic deformation cannot happen in a short period (e.g., 2-3
years) but areas with elastic deformation can transition to experiencing inelastic
deformation Ireland et al., 1984(). We also rely on the spatiotemporal behavior
of GWL changes (Figure S10) and the lithology data from the exploration wells
(Figure S8) located inside the boundary of the inelastic deformation (see the
locations in Figure 5a). Figure 5a shows the overlap of the IC1 score maps from
different datasets. Red colors highlight areas of long-term inelastic deformation
during all three observation periods. Light-blue colors highlight the growth in
the extent of inelastic deformation (IC1) captured by the Envisat to ALOS-1
data, referred to as Expansion(A). Dark blue colors highlight the expansion of
the zone of inelastic deformation between the ALOS-1 to Sentinel-1 periods,
referred to as Expansion(S).

Over time, the inelastic deformation has expanded to areas outside of the MSZ
to the north of the AP. The maximum expansion in inelastic deformation is
Expansion(A) (light-blue in Figure 5a) with 119 km®. The zone of long-term
inelastic deformation (red in Figure 5a) and Expansion(S) (dark-blue in Figure
ba) are estimated at 90.4 and 24.2 km2, respectively. Figure 5b displays time
series of the meanvariance (mean — 2 x standard deviation) of GWL changes
determined from piezometers (Figure S10) across (1) the area of long-term in-
elastic deformation (red in Figure 5a), (2) the zones of Expansion(A), and (3)
the area of Expansion(S). The slope of the meanvariance of the GWL changes
of Expansion(A) (light-blue curve in Figure 5b) is 25% greater than the long-
term slope (red in Figure 5b), suggesting that more fine-grained sediments (clay
layers) have been drained (Figure S8c-d). Figure 5b also shows that since 2014,
the slope of Expansion(S) (blue curve) is 26% greater than the long-term trend
(red curve), suggesting a larger drop in the GWL in the Expansion(S) area than
the long-term inelastic deformation.

The lithology data from the four explorations wells is shown in Figure S8. To
simplify interpretations, we rely on wells located in the long-term inelastic defor-
mation zones (P2), the Expansion(A) zone (P3 and P4) and the Expansion(S)
zone (P1). At P2, thick (>63 m) drained clays are observed, likely accom-
modating the inelastic deformation observed during the Envisat, ALOS-1, and
Sentinel-1 periods despite GWL seasonality (Figure S9b). At P3 and P4, 3 m
of clays have been drained during the Envisat period (Figure S8c-d) due to an
acceleration in the GWL decline (light blue curve in Figure 5b), which likely
initiated the inelastic deformation observed in the ALOS-1 data. Finally, at P1,
while gravel and sands layers likely continue to deform elastically, the clay layers
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is drained by an additional 5 m between the Envisat and Sentinel-1 time period
(29 to 34 m), likely initiating inelastic deformation once a stress threshold is
reached in the clay.
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Figure 5. (a) Spatial extent of inelastic deformation in the AP derived from the Envisat, ALOS-1, and Sentin

4.4 “Hidden” Short-Term Elastic Deformation

A slight seasonality in IC1 eigenvalues time series of Sentinel-1 ascending and
descending datasets, especially after 2017 (Figure 4g-h), suggests the potential
existence of elastic component mixed with the inelastic deformation. We probe
the characteristics of this seasonality by (1) fitting a linear regression to the IC1
eigenvalues time series and (2) applying Singular Spectrum Analysis (SSA) to
the residuals (Figures 6b and S11b) Vautard et al., 1992(). The residuals of
Sentinel-1 ascending and descending dataset (Figure 6¢ and S1lc) are in phase
with each other but have time-variable amplitude. In contrast, a one-month
time lag is observed between this seasonal signal in IC1 time series and average
groundwater level changes (AGLC), estimated with autocorrelation in Hydro-
logic and Climatic Analysis Toolkit (HydroClimATe; Dickinson et al. (2014))
(Figure 6e). Water level changes occurring one month in advance of the sea-
sonal deformation suggest that the seasonal fluctuations in groundwater level
induce the residual seasonal deformation observed in IC1. This suggests that
even with inelastic deformation dominating, the aquifer system is still reacting
to fluctuating seasonally-driven pumping rates at wells (Table S2). Elastically
deforming coarse-grained layers are responsible for this seasonal deformation
signal in response to fluctuating extraction rates, which occurs collocated and
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concurrent with inelastic deformation in clay layers.
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Figure 6. (a) IC1 eigenvalues time series of the Sentinel-1 ascending dataset. The red dash line show the best

5 Discussion

To develop sustainable aquifer protection plans and assess the impact of cur-
rent pumping practices, it is critical to quantify the spatially-variable onset of
inelastic deformation. In the AP, the majority of the land subsidence currently
observed is inelastic (irrecoverable) and captured by a single component (IC1).
The low-frequency spatial signals observed in other components (IC2-4) suggest
that they capture noise, including ionospheric delay and orbital errors. The ex-
tent of the areas experiencing inelastic deformation has significantly increased
over the past two decades, highlighting that we are now at or near a tipping
point in time between sustainability and permanent damage to our underground
water resources.

Lithologic and hydrologic data suggest that the temporal evolution of the extent
of the area affected by inelastic compaction is controlled by the thickness of the
drained clays. These results are similar to those reported in the Salmas Plain.,
Iran Shahbazi et al., 2022() where the relationship between an acceleration
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in depletion of aquifer storage and inelastic subsidence driven by compaction
of fine-grained units was discovered. Time series of the GWL changes across
the area experiencing inelastic deformation show an acceleration in the rate of
groundwater decline, which causes the growth of the areas affected by inelastic
deformation over time. Once groundwater levels reach a new low, inelastic
deformation is initiated, driven by the stress in the drained clay layers exceeding
the pre-consolidation stress.

The Singular Spectrum Analysis (SSA) applied to the Sentinel-1 IC1 eigenvalue
time series suggests that the deformation has a modest elastic response to sea-
sonal fluctuations in pumping rates even when inelastic deformation dominates.
These observations show that geodetic data capture the sum of the deformation
processes occurring from the surface to the stable substrate at a given location,
and elastic deformation may concurrently happen in the coarse-grained sed-
iments layers while inelastic deformation occurs in the fine-grained sediments
layers. Therefore, decomposition of the resulting deformation signal is necessary
to isolate each process.

Our work highlights (1) the need to revise current pumping practice to protect
groundwater resources in Central Iran, (2) the potential of using InSAR to evalu-
ate the sustainability of such current practices, and (3) the necessity to consider
the spatial and temporal correlation of processes causing ground deformation
when interpreting InSAR mean velocity maps.

6 Conclusions

A 2003-2020 InSAR multi-sensor time series analysis shows an elongated
northwest-southeast zone of land subsidence in the AP with covering a
maximum area of ~ 135.1 km®. The ICA of the InSAR dataset reveals that
the majority of the observed subsidence is inelastic and therefore irreversible.
The areas experiencing inelastic deformation have substantially expanded over
time as a result of groundwater levels locally reaching new lows, which result
in clays experiencing stress exceeding the pre-consolidation stress. The high
temporal sampling of the Sentinel-1 dataset (6 days) enables detecting small
magnitude seasonal deformation, which shows that the aquifer reacts elastically
to fluctuations in the groundwater levels. These observations confirm that
elastic deformation may occur concurrently to inelastic deformation and the
observed surface deformation is the result of multiple processes occurring at the
same place at the same time. Our results highlight that we are near a tipping
point in time between sustainability and permanent damage to our underground
water resources in Iran, emphasizing the fast that current decisions have the
potential to change the natural resources landscape permanently.

Data Availability Statement

The geological and hydrogeological data (i.e., piezometers, logs of exploration
wells, and pumping wells) are accessible by contacting the Geological Survey
and Mineral Explorations of Iran (GSI) and the Regional Water Company
of Yazd, respectively. The Envisat and Sentinel-1 datasets are copyrighted
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by the European Space Agency (ESA) and freely available through the ESA
archive and the Alaska Satellite Facility (ASF) archive. The ERA5 and Shuttle
Radar Topography Mission (SRTM) DEM datasets are provided through the
Copernicus Climate Data Store and the NASA’s Land Processes Distributed
Active Archive Center (LP DAAC), located at USGS Earth Resources Obser-
vation and Science (EROS) Center, respectively. LST dataset are accessible
from the Data Catalog of the Google Earth Engine. The InSAR Computing
Environment (ISCE) software, Miami INsar Time-series software in PYthon
(MintPy), and Python 3 Atmospheric Phase Screen (PyAPS) are available
in (https://github.com/isce-framework/isce2), (https://github.com/ins
arlab/MintPy), and (http://earthdef.caltech.edu/#), respectively. The In-
SAR results of the work, including the time series of deformation and mean
velocity maps, are accessed in a public repository through the following link
(https://doi.org/10.5281 /zenodo.5972151).
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