References 
Allen, G.H., and Pavelsky, T., 2018, Global extent of rivers and streams: Science, v. 361, p. 585–588, doi:10.1126/science.aat063.
Altenau, E.H., Pavelsky, T.M., Durand, M.T., Yang, X., Frasson, R.P. de M., and Bendezu, L., 2021, The Surface Water and Ocean Topography (SWOT) Mission River Database (SWORD): A Global River Network for Satellite Data Products: Water Resources Research, v. 57, p. 1–15, doi:10.1029/2021WR030054.
Biancamaria, S., Dennis Lettenmaier, B.P., and Tamlin Pavelsky, B.M., 2016, The SWOT Mission and Its Capabilities for Land Hydrology: Surveys in Geophysics, v. 37, p. 307–337, doi:10.1007/s10712-015-9346-y.
Boruah, S., Gilvear, D., Hunter, P., and Nayan, S., 2008, QUANTIFYING CHANNEL PLANFORM AND PHYSICAL HABITAT DYNAMICS ON A LARGE BRAIDED RIVER USING SATELLITE DATA—THE BRAHMAPUTRA, INDIA SANCHITA: River Research and Applications, p. 650–660, doi:10.1002/rra.
Brandt, S.A., 2000, Classification of geomorphological effects downstream of dams: Catena, v. 40, p. 375–401, doi:10.1016/S0341-8162(00)00093-X.
Constantine, J.A., Dunne, T., Ahmed, J., Legleiter, C., and Lazarus, E.D., 2014, Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin: Nature Geoscience, v. 7, p. 899–903, doi:10.1038/ngeo2282.
Donovan, M., Belmont, P., Notebaert, B., Coombs, T., Larson, P., and Souffront, M., 2019, Accounting for uncertainty in remotely-sensed measurements of river planform change: Earth-Science Reviews, v. 193, p. 220–236, doi:10.1016/j.earscirev.2019.04.009.
East, A.E., and Sankey, J.B., 2020, Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States: Reviews of Geophysics, v. 58, doi:10.1029/2019RG000692.
Evette, A., Labonne, S., Rey, F., Liebault, F., Jancke, O., and Girel, J., 2009, History of bioengineering techniques for erosion control in rivers in western europe: Environmental Management, v. 43, p. 972–984, doi:10.1007/s00267-009-9275-y.
Florsheim, J.L., Mount, J.F., and Chin, A., 2008, Bank Erosion as a Desirable Attribute of Rivers: BioScience, v. 58, p. 519–529, doi:10.1641/b580608.
Flügel, T.J., Eckardt, F.D., and Cotterill, F.P.D., 2015, The Present Day Drainage Patterns of the Congo River System and their Neogene Evolution, in Geology and resource potential of the Congo basin, Springer, p. 315–337, doi:10.1201/9781315161808-4.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R., 2017, Google Earth Engine: Planetary-scale geospatial analysis for everyone: Remote Sensing of Environment, doi:10.1016/j.rse.2017.06.031.
Goward, S.N., Masek, J.G., Williams, D.L., Irons, J.R., and Thompson, R.J., 2001, The Landsat 7 mission: Terrestrial research and applications for the 21st century: Remote Sensing of Environment, v. 78, p. 3–12, doi:10.1016/S0034-4257(01)00262-0.
Grill, G. et al., 2019, Mapping the world’s free-flowing rivers: Nature, v. 569, p. 215–221, doi:10.1038/s41586-019-1111-9.
Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., and Van De Bund, W., 2017, Human pressures and ecological status of European rivers: Scientific Reports, v. 7, p. 1–11, doi:10.1038/s41598-017-00324-3.
Hooke, J.M., 1980, Magnitude and distribution of rates of river bank erosion.: Earth Surface Processes, v. 5, p. 143–157, doi:10.1002/esp.3760050205.
Ielpi, A., and Lapôtre, M.G.A., 2020, A tenfold slowdown in river meander migration driven by plant life: Nature Geoscience, v. 13, doi:10.1038/s41561-019-0491-7.
Ikeda, S., Parker, G., and Sawai, K., 1981, Bend theory of river meanders. Part 1. Linear development: Journal of Fluid Mechanics, v. 112, p. 363–377, doi:10.1017/S0022112081000451.
Isikdogan, F., Bovik, A., and Passalacqua, P., 2017, RivaMap: An automated river analysis and mapping engine: Remote Sensing of Environment, v. 202, p. 88–97, doi:10.1016/j.rse.2017.03.044.
James, R.D., 2019, Civil Works Budget of the U.S. Army Corps of Engineers.:
Jarriel, T., Swartz, J., and Passalacqua, P., 2021, Global rates and patterns of channel migration in river deltas: Proceedings of the National Academy of Sciences of the United States of America, v. 118, doi:10.1073/pnas.2103178118.
Jordahl, K. et al., 2021, Geopandas:, doi:10.5281/zenodo.4569086.
Kondolf, G.M., Piégay, H., and Landon, N., 2002, Channel response to increased and decreased bedload supply from land use change: Contrasts between two catchments: Geomorphology, v. 45, p. 35–51, doi:10.1016/S0169-555X(01)00188-X.
Kronvang, B., Andersen, H.E., Larsen, S.E., and Audet, J., 2013, Importance of bank erosion for sediment input, storage and export at the catchment scale: Journal of Soils and Sediments, v. 13, p. 230–241, doi:10.1007/s11368-012-0597-7.
Kyzivat, E.D. et al., 2019, A high-resolution airborne color-infrared camera water mask for the NASA ABoVE campaign: Remote Sensing, v. 11, doi:10.3390/rs11182163.
Lane, S.N., Widdison, P.E., Thomas, R.E., Ashworth, P.J., Best, J.L., Lunt, I.A., Sambrook Smith, G.H., and Simpson, C.J., 2010, Quantification of braided river channel change using archival digital image analysis: Earth Surface Processes and Landforms, v. 35, p. 971–985, doi:10.1002/esp.2015.
Leuven, J.R.F.W., van Maanen, B., Lexmond, B.R., van der Hoek, B. V., Spruijt, M.J., and Kleinhans, M.G., 2018, Dimensions of fluvial-tidal meanders: Are they disproportionally large? Geology, v. 46, p. 923–926, doi:10.1130/G45144.1.
Messager, M.L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O., 2016, Estimating the volume and age of water stored in global lakes using a geo-statistical approach: Nature Communications, v. 7, p. 1–11, doi:10.1038/ncomms13603.
Monegaglia, F., Zolezzi, G., Güneralp, I., Henshaw, A.J., and Tubino, M., 2018, Automated extraction of meandering river morphodynamics from multitemporal remotely sensed data: Environmental Modelling & Software, v. 105, p. 171–186.
Mutton, D., and Haque, C.E., 2004, Human Vulnerability, Dislocation and Resettlement: Adaptation Processes of River-bank Erosion-induced Displacees in Bangladesh: Disasters, v. 28, p. 41–62, doi:10.1111/j.0361-3666.2004.00242.x.
Nagel, G.W., de Moraes Novo, E.M.L., Martins, V.S., Campos-Silva, J.V., Barbosa, C.C.F., and Bonnet, M.P., 2022, Impacts of meander migration on the Amazon riverine communities using Landsat time series and cloud computing: Science of the Total Environment, v. 806, p. 150449, doi:10.1016/j.scitotenv.2021.150449.
Nanson, G.C., and Hickin, E.J., 1986, A statistical analysis of bank erosion and channel migration in western Canada.: Geological Society of America Bulletin, v. 97, p. 497–504, doi:10.1130/0016-7606(1986)97<497:ASAOBE>2.0.CO;2.
Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E.C., Abad, J.D., Lauer, J.W., Paola, C., Dietrich, W.E., and Voller, V.R., 2011, A new framework for modeling the migration of meandering rivers: Earth Surface Processes and Landforms, v. 36, p. 70–86, doi:10.1002/esp.2113.
Peixoto, J.M.A., Nelson, B.W., and Wittmann, F., 2009, Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques: Remote Sensing of Environment, v. 113, p. 2258–2266, doi:10.1016/j.rse.2009.06.015.
Pekel, J.F., Cottam, A., Gorelick, N., and Belward, A.S., 2016, High-resolution mapping of global surface water and its long-term changes: Nature, v. 540, p. 418–422, doi:10.1038/nature20584.
Pickens, A.H., Hansen, M.C., Hancher, M., Stehman, S. V., Tyukavina, A., Potapov, P., Marroquin, B., and Sherani, Z., 2020, Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series: Remote Sensing of Environment, v. 243, p. 111792, doi:10.1016/j.rse.2020.111792.
De Rose, R.C., and Basher, L.R., 2011, Measurement of river bank and cliff erosion from sequential LIDAR and historical aerial photography: Geomorphology, v. 126, p. 132–147, doi:10.1016/j.geomorph.2010.10.037.
Rowland, J.C., and Schwenk, J., 2019, Global meta-analysis of published river bank erosion and migration rates:, doi:10.15485/1571181.
Rowland, J.C., Shelef, E., Pope, P.A., Muss, J., Gangodadamage, C., Brumby, S.P., and Wilson, C.J., 2016, A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery: Remote Sensing of Environment, v. 184, p. 212–228, doi:10.1016/j.rse.2016.07.005.
Schwenk, J., Khandelwal, A., Fratkin, M., Kumar, V., and Foufoula-Georgiou, E., 2017, High spatiotemporal resolution of river planform dynamics from landsat: The rivMAP toolbox and results from the Ucayali river: Earth and Space Science, v. 4, p. 46–75, doi:10.1002/2016EA000196.
Shields, F.D., Simon, A., and Steffen, L.J., 2000, Reservoir effects on downstream river channel migration: Environmental Conservation, v. 27, p. 54–66, doi:10.1017/S0376892900000072.
Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., and Green, P., 2005, Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean: Science, v. 308, p. 376–381.
Walling, D.E., 1999, Linking land use, erosion and sediment yields in river basins: Hydrobiologia, v. 410, p. 223–240, doi:10.1023/A:1003825813091.
Yang, X., Pavelsky, T.M., Allen, G.H., and Donchyts, G., 2020, RivWidthCloud: An Automated Google Earth Engine Algorithm for River Width Extraction from Remotely Sensed Imagery: IEEE Geoscience and Remote Sensing Letters, v. 17, p. 217–221, doi:10.1109/LGRS.2019.2920225.