References
Allen, G.H., and Pavelsky, T., 2018, Global extent of rivers and
streams: Science, v. 361, p. 585–588, doi:10.1126/science.aat063.
Altenau, E.H., Pavelsky, T.M., Durand, M.T., Yang, X., Frasson, R.P. de
M., and Bendezu, L., 2021, The Surface Water and Ocean Topography (SWOT)
Mission River Database (SWORD): A Global River Network for Satellite
Data Products: Water Resources Research, v. 57, p. 1–15,
doi:10.1029/2021WR030054.
Biancamaria, S., Dennis Lettenmaier, B.P., and Tamlin Pavelsky, B.M.,
2016, The SWOT Mission and Its Capabilities for Land Hydrology: Surveys
in Geophysics, v. 37, p. 307–337, doi:10.1007/s10712-015-9346-y.
Boruah, S., Gilvear, D., Hunter, P., and Nayan, S., 2008, QUANTIFYING
CHANNEL PLANFORM AND PHYSICAL HABITAT DYNAMICS ON A LARGE BRAIDED RIVER
USING SATELLITE DATA—THE BRAHMAPUTRA, INDIA SANCHITA: River Research
and Applications, p. 650–660, doi:10.1002/rra.
Brandt, S.A., 2000, Classification of geomorphological effects
downstream of dams: Catena, v. 40, p. 375–401,
doi:10.1016/S0341-8162(00)00093-X.
Constantine, J.A., Dunne, T., Ahmed, J., Legleiter, C., and Lazarus,
E.D., 2014, Sediment supply as a driver of river meandering and
floodplain evolution in the Amazon Basin: Nature Geoscience, v. 7, p.
899–903, doi:10.1038/ngeo2282.
Donovan, M., Belmont, P., Notebaert, B., Coombs, T., Larson, P., and
Souffront, M., 2019, Accounting for uncertainty in remotely-sensed
measurements of river planform change: Earth-Science Reviews, v. 193, p.
220–236, doi:10.1016/j.earscirev.2019.04.009.
East, A.E., and Sankey, J.B., 2020, Geomorphic and Sedimentary Effects
of Modern Climate Change: Current and Anticipated Future Conditions in
the Western United States: Reviews of Geophysics, v. 58,
doi:10.1029/2019RG000692.
Evette, A., Labonne, S., Rey, F., Liebault, F., Jancke, O., and Girel,
J., 2009, History of bioengineering techniques for erosion control in
rivers in western europe: Environmental Management, v. 43, p. 972–984,
doi:10.1007/s00267-009-9275-y.
Florsheim, J.L., Mount, J.F., and Chin, A., 2008, Bank Erosion as a
Desirable Attribute of Rivers: BioScience, v. 58, p. 519–529,
doi:10.1641/b580608.
Flügel, T.J., Eckardt, F.D., and Cotterill, F.P.D., 2015, The Present
Day Drainage Patterns of the Congo River System and their Neogene
Evolution, in Geology and resource potential of the Congo basin,
Springer, p. 315–337, doi:10.1201/9781315161808-4.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and
Moore, R., 2017, Google Earth Engine: Planetary-scale geospatial
analysis for everyone: Remote Sensing of Environment,
doi:10.1016/j.rse.2017.06.031.
Goward, S.N., Masek, J.G., Williams, D.L., Irons, J.R., and Thompson,
R.J., 2001, The Landsat 7 mission: Terrestrial research and applications
for the 21st century: Remote Sensing of Environment, v. 78, p. 3–12,
doi:10.1016/S0034-4257(01)00262-0.
Grill, G. et al., 2019, Mapping the world’s free-flowing rivers: Nature,
v. 569, p. 215–221, doi:10.1038/s41586-019-1111-9.
Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., and
Van De Bund, W., 2017, Human pressures and ecological status of European
rivers: Scientific Reports, v. 7, p. 1–11,
doi:10.1038/s41598-017-00324-3.
Hooke, J.M., 1980, Magnitude and distribution of rates of river bank
erosion.: Earth Surface Processes, v. 5, p. 143–157,
doi:10.1002/esp.3760050205.
Ielpi, A., and Lapôtre, M.G.A., 2020, A tenfold slowdown in river
meander migration driven by plant life: Nature Geoscience, v. 13,
doi:10.1038/s41561-019-0491-7.
Ikeda, S., Parker, G., and Sawai, K., 1981, Bend theory of river
meanders. Part 1. Linear development: Journal of Fluid Mechanics, v.
112, p. 363–377, doi:10.1017/S0022112081000451.
Isikdogan, F., Bovik, A., and Passalacqua, P., 2017, RivaMap: An
automated river analysis and mapping engine: Remote Sensing of
Environment, v. 202, p. 88–97, doi:10.1016/j.rse.2017.03.044.
James, R.D., 2019, Civil Works Budget of the U.S. Army Corps of
Engineers.:
Jarriel, T., Swartz, J., and Passalacqua, P., 2021, Global rates and
patterns of channel migration in river deltas: Proceedings of the
National Academy of Sciences of the United States of America, v. 118,
doi:10.1073/pnas.2103178118.
Jordahl, K. et al., 2021, Geopandas:, doi:10.5281/zenodo.4569086.
Kondolf, G.M., Piégay, H., and Landon, N., 2002, Channel response to
increased and decreased bedload supply from land use change: Contrasts
between two catchments: Geomorphology, v. 45, p. 35–51,
doi:10.1016/S0169-555X(01)00188-X.
Kronvang, B., Andersen, H.E., Larsen, S.E., and Audet, J., 2013,
Importance of bank erosion for sediment input, storage and export at the
catchment scale: Journal of Soils and Sediments, v. 13, p. 230–241,
doi:10.1007/s11368-012-0597-7.
Kyzivat, E.D. et al., 2019, A high-resolution airborne color-infrared
camera water mask for the NASA ABoVE campaign: Remote Sensing, v. 11,
doi:10.3390/rs11182163.
Lane, S.N., Widdison, P.E., Thomas, R.E., Ashworth, P.J., Best, J.L.,
Lunt, I.A., Sambrook Smith, G.H., and Simpson, C.J., 2010,
Quantification of braided river channel change using archival digital
image analysis: Earth Surface Processes and Landforms, v. 35, p.
971–985, doi:10.1002/esp.2015.
Leuven, J.R.F.W., van Maanen, B., Lexmond, B.R., van der Hoek, B. V.,
Spruijt, M.J., and Kleinhans, M.G., 2018, Dimensions of fluvial-tidal
meanders: Are they disproportionally large? Geology, v. 46, p. 923–926,
doi:10.1130/G45144.1.
Messager, M.L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.,
2016, Estimating the volume and age of water stored in global lakes
using a geo-statistical approach: Nature Communications, v. 7, p. 1–11,
doi:10.1038/ncomms13603.
Monegaglia, F., Zolezzi, G., Güneralp, I., Henshaw, A.J., and Tubino,
M., 2018, Automated extraction of meandering river morphodynamics from
multitemporal remotely sensed data: Environmental Modelling & Software,
v. 105, p. 171–186.
Mutton, D., and Haque, C.E., 2004, Human Vulnerability, Dislocation and
Resettlement: Adaptation Processes of River-bank Erosion-induced
Displacees in Bangladesh: Disasters, v. 28, p. 41–62,
doi:10.1111/j.0361-3666.2004.00242.x.
Nagel, G.W., de Moraes Novo, E.M.L., Martins, V.S., Campos-Silva, J.V.,
Barbosa, C.C.F., and Bonnet, M.P., 2022, Impacts of meander migration on
the Amazon riverine communities using Landsat time series and cloud
computing: Science of the Total Environment, v. 806, p. 150449,
doi:10.1016/j.scitotenv.2021.150449.
Nanson, G.C., and Hickin, E.J., 1986, A statistical analysis of bank
erosion and channel migration in western Canada.: Geological Society of
America Bulletin, v. 97, p. 497–504,
doi:10.1130/0016-7606(1986)97<497:ASAOBE>2.0.CO;2.
Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E.C., Abad, J.D., Lauer,
J.W., Paola, C., Dietrich, W.E., and Voller, V.R., 2011, A new framework
for modeling the migration of meandering rivers: Earth Surface Processes
and Landforms, v. 36, p. 70–86, doi:10.1002/esp.2113.
Peixoto, J.M.A., Nelson, B.W., and Wittmann, F., 2009, Spatial and
temporal dynamics of river channel migration and vegetation in central
Amazonian white-water floodplains by remote-sensing techniques: Remote
Sensing of Environment, v. 113, p. 2258–2266,
doi:10.1016/j.rse.2009.06.015.
Pekel, J.F., Cottam, A., Gorelick, N., and Belward, A.S., 2016,
High-resolution mapping of global surface water and its long-term
changes: Nature, v. 540, p. 418–422, doi:10.1038/nature20584.
Pickens, A.H., Hansen, M.C., Hancher, M., Stehman, S. V., Tyukavina, A.,
Potapov, P., Marroquin, B., and Sherani, Z., 2020, Mapping and sampling
to characterize global inland water dynamics from 1999 to 2018 with full
Landsat time-series: Remote Sensing of Environment, v. 243, p. 111792,
doi:10.1016/j.rse.2020.111792.
De Rose, R.C., and Basher, L.R., 2011, Measurement of river bank and
cliff erosion from sequential LIDAR and historical aerial photography:
Geomorphology, v. 126, p. 132–147, doi:10.1016/j.geomorph.2010.10.037.
Rowland, J.C., and Schwenk, J., 2019, Global meta-analysis of published
river bank erosion and migration rates:, doi:10.15485/1571181.
Rowland, J.C., Shelef, E., Pope, P.A., Muss, J., Gangodadamage, C.,
Brumby, S.P., and Wilson, C.J., 2016, A morphology independent
methodology for quantifying planview river change and characteristics
from remotely sensed imagery: Remote Sensing of Environment, v. 184, p.
212–228, doi:10.1016/j.rse.2016.07.005.
Schwenk, J., Khandelwal, A., Fratkin, M., Kumar, V., and
Foufoula-Georgiou, E., 2017, High spatiotemporal resolution of river
planform dynamics from landsat: The rivMAP toolbox and results from the
Ucayali river: Earth and Space Science, v. 4, p. 46–75,
doi:10.1002/2016EA000196.
Shields, F.D., Simon, A., and Steffen, L.J., 2000, Reservoir effects on
downstream river channel migration: Environmental Conservation, v. 27,
p. 54–66, doi:10.1017/S0376892900000072.
Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., and Green, P., 2005,
Impact of Humans on the Flux of Terrestrial Sediment to the Global
Coastal Ocean: Science, v. 308, p. 376–381.
Walling, D.E., 1999, Linking land use, erosion and sediment yields in
river basins: Hydrobiologia, v. 410, p. 223–240,
doi:10.1023/A:1003825813091.
Yang, X., Pavelsky, T.M., Allen, G.H., and Donchyts, G., 2020,
RivWidthCloud: An Automated Google Earth Engine Algorithm for River
Width Extraction from Remotely Sensed Imagery: IEEE Geoscience and
Remote Sensing Letters, v. 17, p. 217–221,
doi:10.1109/LGRS.2019.2920225.