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Text S1. Sensitivity Tests 24 

In developing both the regression and classification ANN architectures, we conducted 25 

many tests exploring sensitivity to the processing of the input data, the ANN architectures, and the 26 

nature of model output. We show results from some of these sensitivity tests in Figures S1-S5 27 

below: here we provide additional methodological detail regarding those tests. All tests below are 28 

shown for models during winter and, unless noted, for models that input OLR and zonal wind at 29 

850 and 200 hPa. 30 

In Figure S1, we compare the regression and classification ANN skill in a model trained 31 

using all-year data evaluated over winter and summer periods, versus the models trained in winter 32 

and summer respectively. While changes are modest, we found season-specific training to be 33 

somewhat advantageous in improving skill. 34 

In Figure S2, we show the sensitivity to a change in how the regression ANN is trained. 35 

Rather than training the regression ANN on all winter days, we instead train the model on all active 36 

MJO days and a random subset of inactive MJO days such that weak MJO days are 1/9 of the 37 

overall training datasets. This is analogous to how the classification model is trained (see Section 38 

3.1.1), and provides the regression ANN with more strong MJO samples at all lead times. While 39 

it marginally improves the accuracy of the regression model when active MJO days are considered 40 

(Fig. S2), it does not have a large change on the overall accuracy or the BCC; the regression model 41 

still shows poor performance forecasting active MJO events at leads longer than a few days. 42 

In Figure S3 we show accuracy over active MJO days from the classification ANN at lead 43 

times of 0, 2, 5, 10, 15, and 20 days from a range of sensitivity tests. For the “control” test, the 44 

model is the same as that discussed in Section 4.1, with the range across 10-member ANN 45 
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ensemble shown to capture spread due to random initial ANN weights. For the sensitivity tests 46 

only one ANN was trained at each lead time.  47 

The first set of sensitivity tests shown in Figure S3 are slight changes to the ANN 48 

architecture. For the “high_ridge” test the ridge regression penalty was increased from 0.25 to 1, 49 

and for the “low_ridge” test the penalty was decreased from 0.25 to 0.1. For the “wide_net” test 50 

the number of nodes in the hidden layer was increased from 16 to 64, and in the “deep_net” the 51 

single, 16 node single layer was replaced with 2 fully connected layers of 16 nodes each. Note 52 

across these tests, large changes relative to the control are not observed, and typically fall within 53 

the control spread (Fig. S3a). 54 

The second set of tests explore changes to the model input. The “30NS” and “15NS” 55 

experiments alter the latitude bands over which the input data is retained. The “lat_avg” model 56 

takes the 15N-15S average of the input before feeding it into the neural network, such that the 57 

input is a function only of longitude (e.g. a vector of length 144 per variable). Further, in the 58 

“lat_avg” model the learning rate is increased to 0.001 from the 0.0005 value used in the control. 59 

The “prior_days” test includes not only the variables from forecast day 0 in the input, but also 60 

includes forecast day -5, doubling the size of the input vector.  61 

Model performance in all of these tests lies within the range of the control, with the 62 

exception of the latitudinal averaging at lead times of less than 5 days, which shows notably higher 63 

accuracy. Because the RMM index takes 15N-15S averaged variables as input, this increase in 64 

accuracy at short leads is likely due to the fact that the input is more closely associated with the 65 

output (i.e. how the RMM is computed), making it easier for the ANN to learn the relationship 66 

between the latitudinally-averaged input and the RMM phase. The fact that this increase relative 67 

to the control fades at longer lead times suggests, consistent with the discussion in Section 4.2, 68 
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that identifying the MJO at short leads is a different task than predicting MJO behavior. Because 69 

the improvement is only seen at short leads, and because we are interested in how the 2-D structure 70 

of input variables informs the ANN (e.g. for in the LRP plot in Figures 9 and 10), we prioritize the 71 

2-D input approach. Many additional sensitivity tests were performed during model development, 72 

and similar tests were performed for the regression model, but for brevity are not shown here, as 73 

results are comparable to those discussed. 74 

A third sensitivity test, shown in Figure S4, quantifies sensitivity to training the regression 75 

ANN using a longer training dataset than NOAA OLR and ERA5 data allow. For this, we use ERA 76 

20th century reanalysis daily OLR and zonal wind at 850 and 200 hPa data (Poli et al. 2016), which 77 

we obtained over the full period of availability from January 1, 1901 to October 31, 2010. ERA-78 

20C input data is processed identically to the input for ERA-5 described in Section 2.1. The RMM 79 

index is calculated from ERA-20C using the method described in Wheeler and Hendon (2004); 80 

over the period in which the ERA-20C data overlaps with the observed RMM index, we found the 81 

correlation between our calculated ERA-20C RMM1/2 and the observed RMM1/2 values to be 82 

approximately .89, indicating good agreement in how the RMM index is formed. 83 

We train a regression ANN with an architecture identical to that discussed in Section 3.1.1 84 

but using ERA-20C data instead of ERA-5 data. The validation period is January 1, 2001 to 85 

October 31, 2010. We explored varying the training dataset to see whether model performance 86 

improved if much more training data was included. For lead times of 0, 5, 10, and 15 days we 87 

trained separate models for 11 different training periods. All training periods end December 31, 88 

1999, but start dates vary across June 1 of: 1994, 1989, 1984, 1979, 1974, 1969, 1959, 1949, 1929, 89 

1909, and 1901. To facilitate comparison to ERA5, we trained an additional model on 90 
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NOAA/ERA5 data from June 1979 to December 1999, and validated on NOAA/ERA5 data from 91 

January 1, 2001 to October 31, 2010.  92 

Results in Figure S4 show generally comparable performance between ERA5 and ERA20C 93 

when the same period is used for validation and training. For reasons that we did not explore in 94 

depth, the ERA20C model shows higher BCC values at 0 and 5 days than NOAA/ERA5, 95 

comparable performance at 10 days, and worse performance at 15 days. More importantly, Figure 96 

S4 indicates that training the simple ANN on ERA20C with significantly more data does not lead 97 

to substantial improvement in the BCC at any lead time after between 120 and 200 months. Further 98 

tests with wider or deeper ANNs using the full 1901-1999 period of training also did not show 99 

improved performance.  100 

The final sensitivity test, shown in Figure S5, explores sensitivity to including four or more 101 

additional input variables, following the same procedure as described in the manuscript in Section 102 

4.2. Legend conventions in Figure S5 follow Figure 8, except “d” denotes divergence. Overall, no 103 

substantial increase in skill is seen in models with four or more variables.  104 

 105 

 106 

  107 
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Supplemental Figures. 108 

 109 

Figure S1 Regression ANN (panel a) and classification ANN (panel b) performance, similar to 110 

Figures 4 and 6, for ANNs trained specifically on winter and summer seasons (solid lines) versus 111 

a model trained on all seasons and evaluated separately in summer and winter (dashed line). The 112 

shading shows the seasonal model range across 10 ensemble models; for the annual model only 113 

one ensemble is considered. 114 

 115 

  116 
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 117 

Figure S2 Winter regression ANN skill (panel a as in Figure 4) or accuracy of MJO phase (right; 118 

similar to Figure 6) for regression ANNs trained on all MJO days (lines) versus ANNs trained 119 

using fewer weak MJO days (as described in Supplemental Text S1; dots or x’s). In the panel (b), 120 

black curves/dots are regression model accuracy evaluated over all MJO days, and red curves/x’s 121 

are regression model accuracy evaluated only for active MJO days. Note the poor performance for 122 

active days, caused by the inability of the regression model to predict strong amplitude events. 123 

 124 

  125 
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 126 

Figure S3 Model accuracy over active MJO days for sensitivity tests varying the architecture or 127 

hyperparameters of the ANN (panel a) and varying the model input (panel b). Tests are indicated 128 

by the legend as described in Supplemental Text S1. For the control, a 5 ANN ensemble was used. 129 

  130 
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 131 

Figure S4 Winter regression ANN skill at lead times of 0, 5, 10, and 15 days (colors), trained 132 

using ERA-20C data. Models are trained using larger amounts of training data (dots; see 133 

Supplemental Text S1), and the x-axis shows the number of months in the training data period. 134 

Shading shows the range across 5 ANNs with different random starting weights. Stars show results 135 

using ERA5/NOAA winds and OLR data, as described in Supplemental Text S1. 136 
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  141 

Figure S5 Similar to Figures 8 and S3, but for a series of tests with 4, 5, or 6 input variables. The 142 

blue “olr+u850+200” model is the same as in Figure 8c; other models have only 1 ensemble 143 

member.  144 


