References
Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. 2015. “On
Pixel-Wise Explanations for Non-Linear Classifier Decisions by
Layer-Wise Relevance Propagation.”PloS One 10 (7):
e0130140.
Barnes, Elizabeth A., Kirsten Mayer, Benjamin Toms, Zane Martin, and
Emily Gordon. 2020. “Identifying Opportunities for Skillful Weather
Prediction with Interpretable Neural Networks.”arXiv
[physics.ao-Ph]. arXiv.
http://arxiv.org/abs/2012.07830.
Dasgupta, Panini, Abirlal Metya, C. V. Naidu, Manmeet Singh, and M. K.
Roxy. 2020. “Exploring the Long-Term Changes in the Madden Julian
Oscillation Using Machine Learning.”Scientific Reports 10
(1): 18567.
Gagne, David John, Amy McGovern, and Ming Xue. 2014. “Machine Learning
Enhancement of Storm-Scale Ensemble Probabilistic Quantitative
Precipitation Forecasts.”Weather and Forecasting29 (4): 1024–43.
Ham, Yoo-Geun, Jeong-Hwan Kim, and Jing-Jia Luo. 2019. “Deep Learning
for Multi-Year ENSO Forecasts.”Nature 573 (7775):
568–72.
Hendon, Harry H., and Murry L. Salby. 1994. “The Life Cycle of the
Madden–Julian Oscillation.”Journal of the
Atmospheric Sciences 51 (15): 2225–37.
Hendon, Harry H., Chidong Zhang, and John D. Glick. 1999. “Interannual
Variation of the Madden–Julian Oscillation during Austral Summer.”Journal of Climate 12
(8): 2538–50.
Hersbach, Hans, Bill Bell, Paul Berrisford, Shoji Hirahara, András
Horányi, Joaquín Muñoz‐Sabater, Julien Nicolas, et al. 2020. “The ERA5
Global Reanalysis.”Quarterly Journal of the
Royal Meteorological Society 146 (730): 1999–2049.
Kang, In-Sik, and Hye-Mi Kim. 2010. “Assessment of MJO Predictability
for Boreal Winter with Various Statistical and Dynamical Models.”Journal of Climate 23
(9): 2368–78.
Kikuchi, Kazuyoshi, Bin Wang, and Yoshiyuki Kajikawa. 2012. “Bimodal
Representation of the Tropical Intraseasonal Oscillation.”Climate Dynamics 38
(9-10): 1989–2000.
Kiladis, George N., Juliana Dias, Katherine H. Straub, Matthew C.
Wheeler, Stefan N. Tulich, Kazuyoshi Kikuchi, Klaus M. Weickmann, and
Michael J. Ventrice. 2014. “A Comparison of OLR and Circulation-Based
Indices for Tracking the MJO.”Monthly Weather Review142 (5): 1697–1715.
Kim, H., Y. G. Ham, Y. S. Joo, and S. W. Son. 2021. “Deep Learning for
Bias Correction of MJO Prediction.”Nature Communications12 (1): 1–7.
Kim, Hyemi, Frédéric Vitart, and Duane E. Waliser. 2018. “Prediction of
the Madden–Julian Oscillation: A Review.”Journal of Climate 31
(23): 9425–43.
Lagerquist, Ryan, Amy McGovern, and Travis Smith. 2017. “Machine
Learning for Real-Time Prediction of Damaging Straight-Line Convective
Wind.” Weather and
Forecasting 32 (6): 2175–93.
Liebmann, Brant, and Catherine A. Smith. 1996. “Description of a
Complete (Interpolated) Outgoing Longwave Radiation Dataset.”Bulletin of the American
Meteorological Society 77 (6): 1275–77.
Lim, Yuna, Seok-Woo Son, Andrew G. Marshall, Harry H. Hendon, and
Kyong-Hwan Seo. 2019. “Influence of the QBO on MJO Prediction Skill in
the Subseasonal-to-Seasonal Prediction Models.”Climate Dynamics,
March, 1–15.
Love, Barnaby S., and Adrian J. Matthews. 2009. “Real-Time Localised
Forecasting of the Madden-Julian Oscillation Using Neural Network
Models.” Quarterly
Journal of the Royal Meteorological Society 135 (643): 1471–83.
Madakumbura, Gavin D., Chad W. Thackeray, Jesse Norris, Naomi Goldenson,
and Alex Hall. 2021. “Anthropogenic Influence on Extreme Precipitation
over Global Land Areas Seen in Multiple Observational Datasets.”Research Square, April.
https://doi.org/10.21203/rs.3.rs-227967/v2.
Madden, Roland A., and Paul R. Julian. 1971. “Detection of a 40–50 Day
Oscillation in the Zonal Wind in the Tropical Pacific.”Journal of the
Atmospheric Sciences 28 (5): 702–8.
Madden, Roland A., and Paul R. Julian. 1972. “Description of
Global-Scale Circulation Cells in the Tropics with a 40–50 Day
Period.” Journal of the
Atmospheric Sciences 29 (6): 1109–23.
Mamalakis, Antonios, Imme Ebert-Uphoff, and Elizabeth A. Barnes. 2021.
“Neural Network Attribution Methods for Problems in Geoscience: A Novel
Synthetic Benchmark Dataset.”arXiv
[physics.geo-Ph]. arXiv.
http://arxiv.org/abs/2103.10005.
Marshall, Andrew G., Harry H. Hendon, and Debra Hudson. 2016.
“Visualizing and Verifying Probabilistic Forecasts of the Madden-Julian
Oscillation.”Geophysical Research
Letters 43 (23): 12,278–12,286.
Marshall, Andrew G., Harry H. Hendon, Seok Woo Son, and Yuna Lim. 2017.
“Impact of the Quasi-Biennial Oscillation on Predictability of the
Madden–Julian Oscillation.”Climate Dynamics 49
(4): 1365–77.
Martin, Zane, Seok-Woo Son, Amy Butler, Harry Hendon, Hyemi Kim, Adam
Sobel, Shigeo Yoden, and Chidong Zhang. 2021. “The Influence of the
Quasi-Biennial Oscillation on the Madden–Julian Oscillation.”Nature Reviews Earth &
Environment, June, 1–13.
Mayer, Kirsten J., and Elizabeth A. Barnes. 2021. “Subseasonal
Forecasts of Opportunity Identified by an Explainable Neural Network.”Geophysical Research
Letters, May.
https://doi.org/10.1029/2020gl092092.
McGovern, Amy, Kimberly L. Elmore, David John Gagne, Sue Ellen Haupt,
Christopher D. Karstens, Ryan Lagerquist, Travis Smith, and John K.
Williams. 2017. “Using Artificial Intelligence to Improve Real-Time
Decision-Making for High-Impact Weather.”Bulletin of the American
Meteorological Society 98 (10): 2073–90.
McGovern, Amy, Ryan Lagerquist, David John Gagne, G. Eli Jergensen,
Kimberly L. Elmore, Cameron R. Homeyer, and Travis Smith. 2019. “Making
the Black Box More Transparent: Understanding the Physical Implications
of Machine Learning.”Bulletin of the American
Meteorological Society 100 (11): 2175–99.
Meehl, Gerald A., Jadwiga H. Richter, Haiyan Teng, Antonietta Capotondi,
Kim Cobb, Francisco Doblas-Reyes, Markus G. Donat, et al. 2021.
“Initialized Earth System Prediction from Subseasonal to Decadal
Timescales.” Nature
Reviews Earth & Environment, April, 1–18.
Montavon, Grégoire, Alexander Binder, Sebastian Lapuschkin, Wojciech
Samek, and Klaus-Robert Müller. 2019. “Layer-Wise Relevance
Propagation: An Overview.” InExplainable AI:
Interpreting, Explaining and Visualizing Deep Learning, edited by
Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and
Klaus-Robert Müller, 193–209. Cham: Springer International Publishing.
Newman, Matthew, Prashant D. Sardeshmukh, and Cécile Penland. 2009.
“How Important Is Air–Sea Coupling in ENSO and MJO Evolution?”Journal of Climate 22
(11): 2958–77.
Poli, Paul, Hans Hersbach, Dick P. Dee, Paul Berrisford, Adrian J.
Simmons, Frédéric Vitart, Patrick Laloyaux, et al. 2016. “ERA-20C: An
Atmospheric Reanalysis of the Twentieth Century.”Journal of Climate 29
(11): 4083–97.
Rasp, Stephan, Peter D. Dueben, Sebastian Scher, Jonathan A. Weyn,
Soukayna Mouatadid, and Nils Thuerey. 2020. “WeatherBench: A Benchmark
Data Set for Data‐driven Weather Forecasting.”Journal of Advances in
Modeling Earth Systems 12 (11).
https://doi.org/10.1029/2020ms002203.
Reynolds, Richard W., Thomas M. Smith, Chunying Liu, Dudley B. Chelton,
Kenneth S. Casey, and Michael G. Schlax. 2007. “Daily
High-Resolution-Blended Analyses for Sea Surface Temperature.”Journal of Climate 20
(22): 5473–96.
Roundy, Paul E., Carl J. Schreck, and Matthew A. Janiga. 2009.
“Contributions of Convectively Coupled Equatorial Rossby Waves and
Kelvin Waves to the Real-Time Multivariate MJO Indices.”Monthly Weather Review137 (1): 469–78.
Samek, Wojciech, Grégoire Montavon, Alexander Binder, Sebastian
Lapuschkin, and Klaus-Robert Müller. 2016. “Interpreting the
Predictions of Complex ML Models by Layer-Wise Relevance Propagation.”arXiv [stat.ML].
arXiv.
http://arxiv.org/abs/1611.08191.
Straub, Katherine H. 2013. “MJO Initiation in the Real-Time
Multivariate MJO Index.”Journal of Climate 26
(4): 1130–51.
Toms, Benjamin A., Elizabeth A. Barnes, and Imme Ebert‐Uphoff. 2020a.
“Physically Interpretable Neural Networks for the Geosciences:
Applications to Earth System Variability.”Journal of Advances in
Modeling Earth Systems 12 (9): 1.
Toms, Benjamin A., Karthik Kashinath, Prabhat, and Da Yang. 2020b.
“Testing the Reliability of Interpretable Neural Networks in Geoscience
Using the Madden-Julian Oscillation.” Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2020-152.
Ventrice, Michael J., Matthew C. Wheeler, Harry H. Hendon, Carl J.
Schreck, Chris D. Thorncroft, and George N. Kiladis. 2013. “A Modified
Multivariate Madden–Julian Oscillation Index Using Velocity
Potential.” Monthly
Weather Review 141 (12): 4197–4210.
Vitart, F., C. Ardilouze, A. Bonet, A. Brookshaw, M. Chen, C. Codorean,
M. Déqué, et al. 2017. “The Subseasonal to Seasonal (S2S) Prediction
Project Database.”Bulletin of the American
Meteorological Society 98 (1): 163–73.
Vitart, Frédéric. 2014. “Evolution of ECMWF Sub-Seasonal Forecast Skill
Scores.” Quarterly
Journal of the Royal Meteorological Society 140 (683): 1889–99.
Vitart, Frédéric. 2017. “Madden-Julian Oscillation Prediction and
Teleconnections in the S2S Database.”Quarterly Journal of the
Royal Meteorological Society 143 (706): 2210–20.
Waliser, Duane 2012. “Predictability and Forecasting.” InIntraseasonal
Variability in the Atmosphere-Ocean Climate System, edited by William
K-M Lau and Duane E. Waliser, 433–76. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Wang, S., M. K. Tippett, A. H. Sobel, Z. K. Martin and F. Vitart, 2019.
“Impact of the QBO on Prediction and Predictability of the MJO
Convection.” Journal of Geophysical Research: Atmospheres .
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD030575
Weyn, Jonathan A., Dale R. Durran, and Rich Caruana. 2019. “Can
Machines Learn to Predict Weather? Using Deep Learning to Predict
Gridded 500‐hPa Geopotential Height from Historical Weather Data.”Journal of Advances in
Modeling Earth Systems 11 (8): 2680–93.
Wheeler, Matthew C., and Harry H. Hendon. 2004. “An All-Season
Real-Time Multivariate MJO Index: Development of an Index for Monitoring
and Prediction.”Monthly Weather Review132 (8): 1917–32.
Zhang, Chidong. 2005. “Madden-Julian Oscillation.”Reviews of Geophysics43 (2).
https://doi.org/10.1029/2004rg000158.
Zhang, Chidong, and Min Dong. 2004. “Seasonality in the Madden–Julian
Oscillation.” Journal
of Climate 17 (16): 3169–80.