References
Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. 2015. “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.”PloS One 10 (7): e0130140.
Barnes, Elizabeth A., Kirsten Mayer, Benjamin Toms, Zane Martin, and Emily Gordon. 2020. “Identifying Opportunities for Skillful Weather Prediction with Interpretable Neural Networks.”arXiv [physics.ao-Ph]. arXiv. http://arxiv.org/abs/2012.07830.
Dasgupta, Panini, Abirlal Metya, C. V. Naidu, Manmeet Singh, and M. K. Roxy. 2020. “Exploring the Long-Term Changes in the Madden Julian Oscillation Using Machine Learning.”Scientific Reports 10 (1): 18567.
Gagne, David John, Amy McGovern, and Ming Xue. 2014. “Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts.”Weather and Forecasting29 (4): 1024–43.
Ham, Yoo-Geun, Jeong-Hwan Kim, and Jing-Jia Luo. 2019. “Deep Learning for Multi-Year ENSO Forecasts.”Nature 573 (7775): 568–72.
Hendon, Harry H., and Murry L. Salby. 1994. “The Life Cycle of the Madden–Julian Oscillation.”Journal of the Atmospheric Sciences 51 (15): 2225–37.
Hendon, Harry H., Chidong Zhang, and John D. Glick. 1999. “Interannual Variation of the Madden–Julian Oscillation during Austral Summer.”Journal of Climate 12 (8): 2538–50.
Hersbach, Hans, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz‐Sabater, Julien Nicolas, et al. 2020. “The ERA5 Global Reanalysis.”Quarterly Journal of the Royal Meteorological Society 146 (730): 1999–2049.
Kang, In-Sik, and Hye-Mi Kim. 2010. “Assessment of MJO Predictability for Boreal Winter with Various Statistical and Dynamical Models.”Journal of Climate 23 (9): 2368–78.
Kikuchi, Kazuyoshi, Bin Wang, and Yoshiyuki Kajikawa. 2012. “Bimodal Representation of the Tropical Intraseasonal Oscillation.”Climate Dynamics 38 (9-10): 1989–2000.
Kiladis, George N., Juliana Dias, Katherine H. Straub, Matthew C. Wheeler, Stefan N. Tulich, Kazuyoshi Kikuchi, Klaus M. Weickmann, and Michael J. Ventrice. 2014. “A Comparison of OLR and Circulation-Based Indices for Tracking the MJO.”Monthly Weather Review142 (5): 1697–1715.
Kim, H., Y. G. Ham, Y. S. Joo, and S. W. Son. 2021. “Deep Learning for Bias Correction of MJO Prediction.”Nature Communications12 (1): 1–7.
Kim, Hyemi, Frédéric Vitart, and Duane E. Waliser. 2018. “Prediction of the Madden–Julian Oscillation: A Review.”Journal of Climate 31 (23): 9425–43.
Lagerquist, Ryan, Amy McGovern, and Travis Smith. 2017. “Machine Learning for Real-Time Prediction of Damaging Straight-Line Convective Wind.” Weather and Forecasting 32 (6): 2175–93.
Liebmann, Brant, and Catherine A. Smith. 1996. “Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset.”Bulletin of the American Meteorological Society 77 (6): 1275–77.
Lim, Yuna, Seok-Woo Son, Andrew G. Marshall, Harry H. Hendon, and Kyong-Hwan Seo. 2019. “Influence of the QBO on MJO Prediction Skill in the Subseasonal-to-Seasonal Prediction Models.”Climate Dynamics, March, 1–15.
Love, Barnaby S., and Adrian J. Matthews. 2009. “Real-Time Localised Forecasting of the Madden-Julian Oscillation Using Neural Network Models.” Quarterly Journal of the Royal Meteorological Society 135 (643): 1471–83.
Madakumbura, Gavin D., Chad W. Thackeray, Jesse Norris, Naomi Goldenson, and Alex Hall. 2021. “Anthropogenic Influence on Extreme Precipitation over Global Land Areas Seen in Multiple Observational Datasets.”Research Square, April. https://doi.org/10.21203/rs.3.rs-227967/v2.
Madden, Roland A., and Paul R. Julian. 1971. “Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific.”Journal of the Atmospheric Sciences 28 (5): 702–8.
Madden, Roland A., and Paul R. Julian. 1972. “Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period.” Journal of the Atmospheric Sciences 29 (6): 1109–23.
Mamalakis, Antonios, Imme Ebert-Uphoff, and Elizabeth A. Barnes. 2021. “Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset.”arXiv [physics.geo-Ph]. arXiv. http://arxiv.org/abs/2103.10005.
Marshall, Andrew G., Harry H. Hendon, and Debra Hudson. 2016. “Visualizing and Verifying Probabilistic Forecasts of the Madden-Julian Oscillation.”Geophysical Research Letters 43 (23): 12,278–12,286.
Marshall, Andrew G., Harry H. Hendon, Seok Woo Son, and Yuna Lim. 2017. “Impact of the Quasi-Biennial Oscillation on Predictability of the Madden–Julian Oscillation.”Climate Dynamics 49 (4): 1365–77.
Martin, Zane, Seok-Woo Son, Amy Butler, Harry Hendon, Hyemi Kim, Adam Sobel, Shigeo Yoden, and Chidong Zhang. 2021. “The Influence of the Quasi-Biennial Oscillation on the Madden–Julian Oscillation.”Nature Reviews Earth & Environment, June, 1–13.
Mayer, Kirsten J., and Elizabeth A. Barnes. 2021. “Subseasonal Forecasts of Opportunity Identified by an Explainable Neural Network.”Geophysical Research Letters, May. https://doi.org/10.1029/2020gl092092.
McGovern, Amy, Kimberly L. Elmore, David John Gagne, Sue Ellen Haupt, Christopher D. Karstens, Ryan Lagerquist, Travis Smith, and John K. Williams. 2017. “Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather.”Bulletin of the American Meteorological Society 98 (10): 2073–90.
McGovern, Amy, Ryan Lagerquist, David John Gagne, G. Eli Jergensen, Kimberly L. Elmore, Cameron R. Homeyer, and Travis Smith. 2019. “Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning.”Bulletin of the American Meteorological Society 100 (11): 2175–99.
Meehl, Gerald A., Jadwiga H. Richter, Haiyan Teng, Antonietta Capotondi, Kim Cobb, Francisco Doblas-Reyes, Markus G. Donat, et al. 2021. “Initialized Earth System Prediction from Subseasonal to Decadal Timescales.” Nature Reviews Earth & Environment, April, 1–18.
Montavon, Grégoire, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert Müller. 2019. “Layer-Wise Relevance Propagation: An Overview.” InExplainable AI: Interpreting, Explaining and Visualizing Deep Learning, edited by Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller, 193–209. Cham: Springer International Publishing.
Newman, Matthew, Prashant D. Sardeshmukh, and Cécile Penland. 2009. “How Important Is Air–Sea Coupling in ENSO and MJO Evolution?”Journal of Climate 22 (11): 2958–77.
Poli, Paul, Hans Hersbach, Dick P. Dee, Paul Berrisford, Adrian J. Simmons, Frédéric Vitart, Patrick Laloyaux, et al. 2016. “ERA-20C: An Atmospheric Reanalysis of the Twentieth Century.”Journal of Climate 29 (11): 4083–97.
Rasp, Stephan, Peter D. Dueben, Sebastian Scher, Jonathan A. Weyn, Soukayna Mouatadid, and Nils Thuerey. 2020. “WeatherBench: A Benchmark Data Set for Data‐driven Weather Forecasting.”Journal of Advances in Modeling Earth Systems 12 (11). https://doi.org/10.1029/2020ms002203.
Reynolds, Richard W., Thomas M. Smith, Chunying Liu, Dudley B. Chelton, Kenneth S. Casey, and Michael G. Schlax. 2007. “Daily High-Resolution-Blended Analyses for Sea Surface Temperature.”Journal of Climate 20 (22): 5473–96.
Roundy, Paul E., Carl J. Schreck, and Matthew A. Janiga. 2009. “Contributions of Convectively Coupled Equatorial Rossby Waves and Kelvin Waves to the Real-Time Multivariate MJO Indices.”Monthly Weather Review137 (1): 469–78.
Samek, Wojciech, Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, and Klaus-Robert Müller. 2016. “Interpreting the Predictions of Complex ML Models by Layer-Wise Relevance Propagation.”arXiv [stat.ML]. arXiv. http://arxiv.org/abs/1611.08191.
Straub, Katherine H. 2013. “MJO Initiation in the Real-Time Multivariate MJO Index.”Journal of Climate 26 (4): 1130–51.
Toms, Benjamin A., Elizabeth A. Barnes, and Imme Ebert‐Uphoff. 2020a. “Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability.”Journal of Advances in Modeling Earth Systems 12 (9): 1.
Toms, Benjamin A., Karthik Kashinath, Prabhat, and Da Yang. 2020b. “Testing the Reliability of Interpretable Neural Networks in Geoscience Using the Madden-Julian Oscillation.” Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-152.
Ventrice, Michael J., Matthew C. Wheeler, Harry H. Hendon, Carl J. Schreck, Chris D. Thorncroft, and George N. Kiladis. 2013. “A Modified Multivariate Madden–Julian Oscillation Index Using Velocity Potential.” Monthly Weather Review 141 (12): 4197–4210.
Vitart, F., C. Ardilouze, A. Bonet, A. Brookshaw, M. Chen, C. Codorean, M. Déqué, et al. 2017. “The Subseasonal to Seasonal (S2S) Prediction Project Database.”Bulletin of the American Meteorological Society 98 (1): 163–73.
Vitart, Frédéric. 2014. “Evolution of ECMWF Sub-Seasonal Forecast Skill Scores.” Quarterly Journal of the Royal Meteorological Society 140 (683): 1889–99.
Vitart, Frédéric. 2017. “Madden-Julian Oscillation Prediction and Teleconnections in the S2S Database.”Quarterly Journal of the Royal Meteorological Society 143 (706): 2210–20.
Waliser, Duane 2012. “Predictability and Forecasting.” InIntraseasonal Variability in the Atmosphere-Ocean Climate System, edited by William K-M Lau and Duane E. Waliser, 433–76. Berlin, Heidelberg: Springer Berlin Heidelberg.
Wang, S., M. K. Tippett, A. H. Sobel, Z. K. Martin and F. Vitart, 2019. “Impact of the QBO on Prediction and Predictability of the MJO Convection.” Journal of Geophysical Research: Atmospheres . https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD030575
Weyn, Jonathan A., Dale R. Durran, and Rich Caruana. 2019. “Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500‐hPa Geopotential Height from Historical Weather Data.”Journal of Advances in Modeling Earth Systems 11 (8): 2680–93.
Wheeler, Matthew C., and Harry H. Hendon. 2004. “An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction.”Monthly Weather Review132 (8): 1917–32.
Zhang, Chidong. 2005. “Madden-Julian Oscillation.”Reviews of Geophysics43 (2). https://doi.org/10.1029/2004rg000158.
Zhang, Chidong, and Min Dong. 2004. “Seasonality in the Madden–Julian Oscillation.” Journal of Climate 17 (16): 3169–80.