
 
 

1 
 

 
Earth’s Future 

Supporting Information for: 

Water Sustainability, Drought, Relic Groundwater and Lithium Resource 
Extraction in an Arid Landscape 

 
B. J. Moran1 0000-0002-9862-6241, D. F. Boutt1 0000-0003-1397-0279, S. V. 
McKnight1 0000-0002-6013-193X, J. Jenckes2 0000-0002-1811-3076, L. A. Munk2 0000-
0003-2850-545X, Daniel Corkan1 0000-0001-6168-8281, Alexander Kirshen1 0000-
0003-2015-4085 
1Department of Geosciences, University of Massachusetts Amherst 

2Department of Geological Sciences, University of Alaska Anchorage 

Corresponding author: Brendan Moran, bmoran@geo.umass 

 
Contents of this file  
 

Text S1 
Text S2 
Text S3 
Table S1 
Table S2 
Figure S1 
Figure S2 
Figure S3 
Figure S4 

Introduction 

The supporting information contained in this section includes additional details on the 

methodologies used in this work including analytical methods description, assessment of 

remotely sensed data, and detailed descriptions of water budget calculations and 

groundwater level changes. 
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Text S1. Expanded Methods 
 

Expanded Remotely Sensed Data Collection Methods 

The JRC imagery dataset is constructed using Landsat imagery compiled from 

1984 through 2020; we accessed and extracted these data using Google Earth Engine 

(GEE) (Gorelick et al., 2017). The JRC imagery defines each pixel as either containing 

water or not containing water. We defined a polygon that encompassed the Region of 

Interest (ROI); these ROIs were then used to clip the JRC dataset. To create a time series 

of monthly water extents we looped through the JRC Monthly Water History and 

summed the number of pixels within the ROI that were categorized as water. The pixels 

were then summed into a geographic area using a set of off-the-shelf functions provided 

by the GEE API. 

To assess changes in vegetation cover we utilized the Normalized Difference 

Vegetation Index (NDVI) which is calculated from spectral imagery using the formula:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑅𝑅𝑅𝑅𝑅𝑅

 

where NIR is the reflection in the near-infrared spectrum and RED is the reflection in the 

red range of the spectrum (Tucker, 1979). NDVI is designed to assess the density of 

vegetation at a given location at a given time. It provides a single band with a range of -

1.0 to 1.0 where negative values are clouds, water, and snow; values close to 0 up to 0.1 

are rocks and bare soil. Different types of vegetation are classified in values greater than 

~0.1. In this case, to be conservative and to be sure we are assessing only living 

vegetation (not water, soil, or potential errors at the upper boundary of the index) we 

extracted the pixels whose values were between 0.2 and 0.9 (NASA, 2000; USGS, 2018). 

 

Expanded Remotely Sensed Precipitation Analysis 

Through an extensive analysis of available high resolution remotely sensed and 

gridded precipitation datasets including TRMM-3B43, GPM-IMERG, CHIRPS, ERA5, 

PERSIANN-CDR, and Cr2Met, we determined that TerraClimate most closely matched 

both the trends and magnitudes of precipitation observed at terrestrial meteorological 
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stations in the SdA basin and predicted the most reasonable values of precipitation in 

ungauged areas based on estimates of elevation-precipitation relationships (e.g. Houston, 

2009; Boutt et al., 2021). As noted by Salio et al. (2015), Schween et al. (2020), and 

Condom et al., (2020), satellite microwave observations such as those utilized by TRMM 

and GPM tend to overestimate precipitation, particularly in arid areas and over complex 

topography where these errors can be up to two orders of magnitude. Our analysis of 

these products showed overestimations at terrestrial stations of generally greater than one 

order of magnitude. Gridded interpolation products such as CHIRPS and PERSIANN 

also appear to be overestimating precipitation in the region. Since these products rely on 

rain gauges for calibration and interpolation of infrared remotely sensed precipitation 

data and since all the gauges at SdA are below 3,250 m.a.s.l., large areas of this vast 

basin are ungauged, particularly the high elevations. As a result, it appears the issues with 

interpolation likely stem from misrepresentations of these ungauged areas. CHIRPS 

performed somewhat better than PERSIANN at estimating precipitation values at 

meteorological stations perhaps due to its higher resolution, however, they both 

consistently overestimated precipitation by a factor of 2-3. Even the Cr2Met gridded 

dataset produced by the Chilean Center for Climate and Resilience Research appears to 

systematically overestimate precipitation amounts at ground-based meteorological 

stations in the basin. Another recent study with data from 2016-2019 at two 

meteorological stations on the eastern slope of SdA at 3,060 and 4,090 m.a.s.l. recorded 

average annual precipitation of 122 mm and 150 mm respectively, agreeing quite well 

with the TerraClimate estimates (Eshel et al., 2021). Though we do observe 

overestimates and underestimates in the TerraClimate dataset compared to station data, 

the magnitude is commonly less than other products we assessed and therefore we 

believe it is the best basin-scale reflection of precipitation for the region available. This is 

also supported by recent work by Dubey et al. (2021) that outlines the strengths of this 

dataset. 

 

Expanded Water Sample Analyses Method 

Tritium activity in water samples was measured at the Dissolved and Noble Gas 

Laboratory, University of Utah. Samples were collected in 1 L HDPE bottles with 
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minimal headspace. In the lab, 0.5 L aliquots were distilled to remove dissolved solids. 

These water samples were then degassed in stainless steel flasks until <0.01% of 

dissolved gas remained and sealed to ingrow helium. 3H concentrations were measured 

by helium ingrowth (Clarke et al., 1976); 6–12 weeks is typically adequate to ingrow 

sufficient 3He from the decay of 3H (t1/2 = 12.32 yr.; Lucas & Unterweger, 2000) for 

analysis. 3He concentrations were then measured on a MAP215-50 magnetic sector mass 

spectrometer using an electron multiplier to measure low abundance 3He, which was 

directly correlated with the amount of 3H decayed. Data are reported in tritium units (TU) 

on the date of sampling, where one TU is equivalent to one tritium atom per 1018 

hydrogen atoms (3H/H*1018) (Kendall & Caldwell, 1998). Several duplicate analyses of 

the same sample were conducted to confirm important values, and the reproducibility for 

these samples is of the same order as the precision of the measurement. The analytical 

error associated with each sample is reported along with the results in Table S1. 

Water samples were analyzed for δ2H and δ18O using wave-length scanned cavity 

ring-down spectroscopy (Picarro L-1102i); samples were vaporized at 120°C (150°C for 

higher salt content waters) in the Stable Isotope Laboratory at the University of Alaska – 

Anchorage. International reference standards (IAEA, Vienna, Austria) were used to 

calibrate the instrument to the VSMOW-VSLAP scale and working standards (USGS45: 

δ2H = -10.3‰, δ18O = -2.24‰ and USGS46: δ2H = -235.8‰, δ18O = -29.8‰) were used 

with each analytical run to correct for instrumental drift. Long-term mean and standard 

deviation records of a purified water laboratory internal QA/QC standard (δ2H = -

149.80‰, δ18O = -19.68‰) yield an instrumental precision of 0.93‰ for δ2H and 0.08‰ 

for δ18O.  

Water samples analyzed for chloride compositions were filtered through 0.45 μm 

filters using a plastic 60 mL syringe and were stored in clean HDPE bottles. They were 

analyzed using a consistent, standardized procedure across two laboratories. Samples 

collected between 2011 and 2018 were analyzed at the University of Alaska Anchorage 

using an ion chromatograph (Dionex ICS 5000+) and those collected in 2021 were 

analyzed at the University of Massachusetts Amherst using high-pressure ion 

chromatography (Dionex Integrion HPIC). Waters with relatively high TDS were diluted 

volumetrically before analysis. Quantification was performed using seven external 
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calibration standards ranging from 0.1 to 100 ppb. An IonPac AS15 2×250mm column 

was used for anion separation using 38mM KOH as eluent and ASRS 300 zero reagent 

suppressor. The sample injection volume was 10 μL and quantification was performed 

using five external calibration standards ranging from 0 ppm to 10 ppm. Calibration 

verification standards and blanks were run every 10th analysis for anions. Anion analysis 

was verified with a secondary anion standard (Anion II Std Dionex). Samples that 

exceeded the calibration by 120% were diluted and re-analyzed. A charge balance 

assessment of these data was also done and only samples having less than 10% error were 

included. 

 

Expanded Water Use Qualification Method 

The ‘lithium & potash mining’ category was determined using SQM and 

Albemarle freshwater pumping data from 2014, as they are the only lithium companies 

using freshwater in the basin. We calculated the ‘other mining’ category using 2014 

Minera Escondida Limitada and Compania Minera Zaldivar data. The total allocated 

freshwater for these two companies based on the DGA database is 2,148.7 L⸱s-1. Of that 

allocation, 1,493 L⸱s-1 was used in 2014, which is a ratio of 0.69. We further differentiate 

lithium & potash mining from other mining activities given the history of copper mining 

in the basin. Additional ‘other mining’ permits comprise 22.8 L⸱s-1. Because no pumping 

data is available for these users, the above ratio of 0.69 was applied to these allocations 

for an estimated actual use of 15.8 L⸱s-1. The only exceptions to this estimate are four 

concessions currently owned by the Wealth Minerals company, which are in the northern 

area of the salar and which, as confirmed through local experts, have never been utilized; 

thus, we negated the estimated use for those allocations (600 L⸱s-1). We rely on previous 

estimations of non-industrial freshwater use reported by DGA because of their relatively 

undocumented activities. The most recent estimates for actual use of allocated water 

extraction for domestic, tourism, and agricultural use are 75%, 75%, and 40%, 

respectively. 

 

Text S2. Water Budget Calculations 
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We compare water budgets from two primary sources, the water budget currently 

in use by the DGA to manage water use within the SdA basin (DGA, 2013), and a revised 

conceptualization of the water budget (Boutt et al., 2021). We then incorporate 

anthropogenic water use estimates from this study into these water budgets. In the DGA 

water budget (Figure 9a), Precipitation (P) and Evapotranspiration from the salar (Es) 

estimates are derived from DGA calculations (DGA, 2013). Based on stable isotope 

analyses (Godfrey et al., 2003), surface water flux (SW) and groundwater flux (GW) is 

estimated to be 1/3 and 2/3 of Es, respectively. In the revised water budget (Figure 9c), P, 

P recharge to SW and GW, net storage flux (S), and Es are from the most current 

understanding of the water budget for the basin (Boutt et al., 2021). For both the DGA 

and revised water budgets, the remainder of P that does not become modern recharge is 

assumed to become infiltration losses due to evaporation (Ei). 

In the post-development scenarios for both the DGA (Figure 9b) and revised 

(Figure 9d) conceptualizations, anthropogenic freshwater withdrawals (Wf) and brine 

withdrawals (Wb) are applied to the water budget. The Wf flux from SW and GW is the 

estimated actual freshwater use in 2014, presented in Section 4.2 and Figure 4. We 

assume that any diversion of SW or GW flux to Wf results in an equal decrease in SW or 

GW flux to Es, and the Es is reduced accordingly for both post-development scenarios.  

We assume that all Wb flux results in a corresponding net storage flux from the brine 

body (Sb). 

 

Text S3. Groundwater Storage Changes 

We compiled groundwater level measurements from the SQM environmental 

monitoring database, Comité de Minería No Metálica CORFO (AMPHOS21, 2018), and 

Minera Escondida Ltda (MEL, 2017) to establish a record of groundwater level 

measurements from 94 monitoring points collected between September 1986 and March 

2021. For each of the monitoring points, we performed a seasonal Mann-Kendall trend 

analysis (Hirsch et al., 1982) using pyMannKendall (Hussain et al., 2019) to assess 

groundwater levels from December 2007 through December 2016. This represents the 

longest period of continuous groundwater level records for the 94 monitoring points. We 

used the seasonal Sen’s slope (Hipel & McLeod 1994) for the seasonal Mann-Kendall 
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trend to estimate the mean change in groundwater elevation for the period from 

December 2007 through December 2016 at each well. We then grouped the wells by the 

major SdA basin watershed zones (Munk et al., 2018), specified as Diffuse North East 

gw (n=7), Diffuse North Tumisa gw (n=16), Diffuse South Tumisa gw (n=3), Peine 

(n=1), and Monturaqui/Negrillar/Tilopozo (MNT) (n=8). In addition, wells located in the 

salar nucleus were grouped into the West Nucleus (n=24) and East Nucleus (n=35), 

separated by approximate location of the salar fault system (Jordan et al., 2007, Rubilar et 

al., 2018). We then calculated the geometric mean of the hydraulic head changes within 

each zone to estimate the mean for the whole watershed or nucleus zone. Using the mean 

change in hydraulic head estimates, we calculated the change in groundwater storage for 

each watershed or nucleus zone assuming a specific yield of 0.25 and using the geodesic 

area of the zone. 
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Figure S1. The percent modern water content of all samples presented in this work 
(n=106). Each circle represents one sample. 
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Figure S2. Pie charts of allocated freshwater permits (a); estimated actual freshwater use 
from 2014 (b); and estimated actual freshwater use from 2020 (c). With additional pie 
charts representing the percent of surface water (light blue) and groundwater (dark blue). 
Pie charts in (d) show estimated actual freshwater use from 2020 (L/s) within each sub-
watershed zone divided by water use type: lithium mining (black), other mining (grey), 
agriculture (green), domestic (blue), tourism (purple), and other (orange). Percentages 
under 1% are not included. 
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Figure S3. Estimated change in groundwater storage for watershed zones Diffuse North 
East gw (DNE), Diffuse North Tumisa gw (DTN), Diffuse South Tumisa gw (DTS), 
Peine (PE), and MNT, as well as nucleus zones East Nucleus (NE) and West Nucleus 
(NW) in the SdA basin. (a) Violin plot showing the distribution of mean change in the 
hydraulic head (dh) for monitoring wells located in each watershed or nucleus zone. The 
method used to obtain these results is provided in Text S3. 
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Figure S4. GLDAS v2.2 Land Surface Model output for daily terrestrial water storage 
change in the Salar de Atacama basin to compare with analysis by Liu & Agusdinata 
(2020). 
 
Table S1. Summary of geochemical data and results used in this work. 
 
Table S2. Piston-flow physical transit model calculations and results to compare with 3H 
tracer-based observations of transit times. 


