10

11

12

13

Data Assimilation Networks

Pierre Boudier', Anthony Fillion?, Serge Gratton?, Selime Giirol?, Sixin
Zhang?

INVIDIA / ANITI, Toulouse, France
2Université de Toulouse / ANITI, Toulouse, France
SCERFACS / ANITI, Toulouse, France

Key Points:

« We propose a general framework DAN based on an extended Elman Network for
Bayesian Data Assimilation.

+ We show that DAN can achieve optimal prior and posterior density estimations
by optimizing likelihood-based objective function.

e Numerically DAN can achieve comparable performance to the EnKF on Lorenz-
95 system, without tuning of localization or inflation.

*Partially supported by 3IA Artificial and Natural Intelligence Toulouse Institute, French “Investing for
the Future - PIA3” program under the Grant agreement ANR-19-PI3A-0004

Corresponding author: Sixin Zhang, sixin.zhang@irit.fr

15

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Abstract

Data assimilation (DA) aims at forecasting the state of a dynamical system by combining
a mathematical representation of the system with noisy observations taking into account
their uncertainties. State of the art methods are based on the Gaussian error statistics and
the linearization of the non-linear dynamics which may lead to sub-optimal methods. In
this respect, there are still open questions how to improve these methods. In this paper,
we propose a fully data driven deep learning architecture generalizing recurrent Elman net-
works and data assimilation algorithms which approximate a sequence of prior and posterior
densities conditioned on noisy observations. By construction our approach can be used for
general nonlinear dynamics and non-Gaussian densities. On numerical experiments based
on the well-known Lorenz-95 system and with Gaussian error statistics, our architecture
achieves comparable performance to EnKF on both the analysis and the propagation of
probability density functions of the system state at a given time without using any explicit
regularization technique.

Plain Language Summary

Data assimilation (DA) aims at forecasting the state of a dynamical system by combining
information coming from the model dynamics and noisy (sparse) observations based on their
error statistics. Bayesian data assimilation uses the random nature of both the physical and
observational error which can be described in terms of probability density functions. This is
formally accomplished by using Bayes’ Theorem, which requires calculation of the densities
that may be quite complex. Practical algorithms then perform linearization of nonlinear
operators which are optimal for Gaussian statistics and may use limited information due to
computational cost. This results in sub-optimal DA algorithms which requires then the use
of explicit regularization techniques to increase the performance of the algorithm or obtain
stable algorithms.

With the advances in Machine Learning (ML) and deep learning, there has been sig-
nificant increase in the research of using ML for data assimilation to decrease the compu-
tational cost, or to have better estimation of the state. In this paper, we propose a fully
data driven algorithm to learn the prior and posterior pdfs conditioned on the given obser-
vations. Our learning is based on the reference trajectories of the model and observations,
and loss function minimizes the information loss in the sense of the Kullback-Leibler (KL)
divergence. Numerical experiments show that we obtain comparable performance to that
of EnKF without the need of localisation and inflation techniques. These numerical results
shows the potential advantage of NN based algorithms when the used practical algorithms
are sub-optimal.

1 Introduction
1.1 Context

In Data assimilation (DA, (Asch et al., 2016)), the time dependent state of a system is
estimated using two models that are the observational model, which relates the state to
physical observations, and the dynamical model, that is used to propagate the state along
the time dimension. These models can be written as a Hidden Markov Model (HMM).

Observational and dynamical models are described using random variables that account
for observation and state errors. Hence DA algorithms are grounded on a Bayesian approach
in which observation realizations are combined with the above statistical models to obtain
state predictive and posterior density sequences. This estimation is done in two recursive
steps: the analysis updates a predictive density into a posterior one with an incoming

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7%

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

observation; and the propagation updates a posterior density into a the next cycle predictive
(or prior) density.

DA methods use additional assumptions or approximations to obtain closed expressions
for the densities so that they can be handled by computers. Historically in the Kalman
filter (KF, (Kalman, 1960)) approach, statistical models are supposed to be Gaussian and
operators linear. Hence, the propagation and analysis steps consist in updating mean and
covariance matriz of densities. In the Ensemble Kalman Filter (EnKF, (Evensen, 2009))
approach, these densities are represented by a set of sampling vectors. EnKF when used
with a small number of ensembles results in low-rank representation of the error covariance
matrices. This causes some spurious errors in the covariance matrix which are filtered
by using regularization techniques such as localization and inflation (Hamill et al., 2001;
Houtekamer & Mitchell, 2001; Asch et al., 2016). EnKF can be used for nonlinear dynamics,
however due to the truncation of the statistics up to the second order, in the limit of large
ensembles the EnKF filter solution differs from the solution of the Bayesian filter (Le Gland
et al., 2011), except for linear dynamics and Gaussian statistics. Hence, when using these
methods for non-linear and non-Gaussian setting there are still open questions in achieving
an optimal prediction error in the Bayesian setting.

In this paper, we propose a general supervised learning framework based on Recurrent
Neural Network (RNN) for Bayesian DA to approximate a sequence of prior and posterior
densities conditioned on noisy observations. Section 2 explains the sequential Bayesian DA
framework with an emphasis on the time invariant structure in the Bayesian DA which is
the key property for RNNs. The proposed approach, Data Assimilation Network (DAN), is
then detailed in Section 3 which generalizes both the Elman Neural Network and the Kalman
Filter. DAN approximates the prior and posterior densities by minimizing the log-likelihood
cost function based on the information loss, related to the cross-entropy. The details of the
cost function and the theoretical results for the optimal solution of the cost function are
presented in Section 3.4. The practical aspects of the DAN including the architecture and
computationally efficient training algorithm are given in Section 4. We then provide the
numerical results on the Lorenz-95 system in Section 5 which includes the stability analysis
also beyond the time-interval or the initial condition used in the training. Finally, we provide
the conclusions in Section 6.

1.2 Related work

With the advances in machine learning and deep learning, there has been significant
increase in the research of using ML to forecast the evolution of physical systems with a
data-driven approach (Brunton et al., 2016; Rudy et al., 2017; Raissi et al., 2019, 2017a,
2017b; Li et al., 2020; Jia et al., 2021). Recently, this research has its significant impact on
the design and use of advanced DA algorithms. We next outline three main directions that
are related to our research in the hybridization of DA and ML approaches.

In a first direction, one addresses the traditional DA problem where the goal is to
estimate the distribution of a state sequence x; conditioned on an observation sequence
Y, by using explicitly an underlying dynamical model M. Harter and de Campos Velho
(2012) propose to use Elman Neural Network to learn the analysis equation of KF type
algorithm where the dynamics are nonlinear. Their main aim is to reduce the computational
complexity without affecting the accuracy. McCabe and Brown (2021) focus on the learning
of the analysis equation within an EnKF framework. They propose the Amortized Ensemble
Filter which aims to improve existing EnKF algorithms by replacing the EnKF analysis
equations with a parameterized function in the form of a neural network.

In a second direction, one aims to learn an unknown dynamical model M from noisy
observations of y;. This direction is more ambitious compared to the first one as the dy-
namics to be learnt can be non-linear or even chaotic. Bocquet et al. (2019) propose to use
the Bayesian data assimilation framework to learn a parametric M from sequences of ob-

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

servations 1;. The dynamical model is represented by a surrogate model which is formalized
as a neural network under locality and homogeneity assumptions. Bocquet et al. (2020)
extends this framework to the joint estimation of the state x; and the dynamical model M
with a model error represented by a covariance matrix. They estimate the ensembles of the
state by using a traditional Ensemble Kalman Smoother based on Gaussian assumption,
and then with the given posterior ensemble they minimize for the dynamical model and its
error statistics. Similarly, Brajard et al. (2020) propose an iterative algorithm to learn a
neural-network parametric model of M. With a fixed M, it estimates the state x; using
the observations y;, and then uses the estimated state to optimize the parameters of M. A
related work is from Krishnan et al. (2015), which introduces a deep KF to estimate the
mean and the error covariance matrix in KF to model medical data, based on variational
autoencoder (Girin et al., 2021).

A third direction, which is what we consider in the present paper, is to estimate the
distribution of a state sequence z; conditioned on a observation sequence y;, without explic-
itly using the underlying dynamical model M in the propagation. This direction often uses
training data in a supervised form of (x¢,y;). For instance, Fablet et al. (2021) propose a
joint learning of the NN representation of the model dynamics and of the analysis equation
for the sub-problem albeit within a traditional variational data assimilation framework. A
related work to learn an implicit model is Revach et al. (2022), which proposes a parametric
KF to handle partially known model dynamics, replacing explicit covariance matrices by a
parametric NN to estimate the model error.

All these approaches consider improving the DA methodologies which are based on an
existing DA algorithm within sequential or variational framework. In this work, we propose
a fully data driven approach for Bayesian data assimilation without relying on any prior DA
algorithm that can be sub-optimal in case of non-Gaussian error statistics and non-linear
dynamics.

1.3 Notation

We denote a state random variable at time ¢t as x,; taking their values in some space
X = R" of dimension n. An observation random variable at time ¢ is denoted by y, taking its
values in some space Y of dimension d (often R?). We write a sequence of random variables
Ty, , Ty as 1. A joint probability density of two sequence of random variables 1., and
y,.; With respect to the Lebesgue measure on the finite dimensional Euclidean space X! x Y¢
is written as p(T1.¢,Y1:¢) = Pwy.ey,,, (T1:6,Y1:¢). The set of pdfs over X is denoted by Px. A
conditional pdf for x; given y, = y; is written as pg, |y, (-|y:) € Px.

2 Sequential Bayesian Data assimilation

In this section, we review the Bayesian optimal solution of sequential Bayesian data
assimilation for an observed dynamical system and use its repetitive time-invariant structure
to motivate the introduction of the DAN framework.

2.1 Sequential Bayesian Data assimilation

Data assimilation aims to estimate the state of a dynamical process which is modeled
by a discrete-time stochastic equation and observed via available instruments which can be
modeled by another stochastic equation (Asch et al., 2016). These equations are given by
the following system:

xy = M (xi-1) + 1y, (propagation equation) (1la)
Yy, = H(xs) + &, (observation equation) (1b)

where M(-) is the nonlinear propagation operator that acts on the model state random
variable vector at time ¢, x; € X and return the model state vector @;+1 € X. H() is the

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

nonlinear observation operator that acts on the state random variable x; and approximately
returns the observation random variable y, € Y at time t. Both of these steps may involves
errors and they are represented by an additive model error, n,, For example, the observa-
tion operator may involve spatial interpolations, physical unit transformations and so on,
resulting in measurement errors.

and an additive observation error, €;. We assume that these stochastic errors are
distributed according to the pdf p, and pe and they are are i.i.d. along time, independent
to the initial state x1. Using these assumptions DA problem can be interpreted as a Hidden
Markov Model (Carrassi et al., 2018).

Given such a dynamical model, sequential Bayesian DA aims at quantifying the un-
certainty over the system state each time an observation sample becomes available. Such
an analysis starts by rewriting, under suitable mathematical assumptions, the DA system
in terms of conditional probability density functions pg,|e,_, (-|7:—1) € Px which represents
(1a), and py, |z, (-|z¢) € Py which represents (1b). Using these densities, we can quantify
the uncertainty of the state as a function of the observations. This can be done in two steps
sequentially using the Bayesian framework: the analysis step and the propagation (forecast)
step. Let p? := Pw.|y,,,_, Pe the posterior distribution of ; given y,,_;, and pf := pg, |y, ,
be the posterior distribution of @x; given y,.,. The analysis step computes p¢(-|y1.;) € Px
from p?(-|y1.¢_1) € Px based on Bayes rule,

b
a Py, |z, (Yel) P7(Y1:0-1)
D Y1) = 2
t(| ' t) pyl:t—1(y1:t—1) ()

Here, py, |z, (y¢]-) is considered as a likelihood function of x;, and p,, ., is marginal distri-
bution of observations. Similarly, the propagation step computes p?_ ; (-|y1.¢) from pf(:|y1:1),

p?+1("y1:t> = /pmf+1\mt(|x)p?(‘r‘ylt>dm (3)

The analysis and forecast steps are then repeated within a given number of cycles (time
interval) in which the forecast step provides a prior density for the next cycle.

Performing the analysis and propagation steps in (2) and (3) with linear dynamics for
the propagation operator M(-) and the observation operator H(-), and using a Gaussian
assumption for the probabilities p and p, reduces to the well known Kalman filter (KF,
(Kalman, 1960)). The challenge is that the calculation of the pdfs become intractable with
nonlinear ODS or non-Gaussian pdfs of the error terms. When the dynamics are nonlinear,
ensemble type KFs such as Ensemble KF (Evensen, 2009) are widely used alternative meth-
ods, but when used with limited number of ensembles, they require additional techniques
(see Section 3.3 for further discussions).

2.2 Time-invariant structure in the BDA

We review the invariant structure of the BDA for the ODS defined in Section 2.1, which
is a key property to motivate the DAN framework. Following the i.i.d. assumptions that we
have made on the errors in (1a) and (1b), the conditional pdfs pg, |z, and py, |4, are time
invariant, in the sense that for t = 1,2, ...

pmt+1|mt (u|v) = pwg\wl (u|'U)
pyt|wt(y|v) = Py, |z (y|1))
for all u,v € X and y €Y.

As aresult, the conditional pdfs representing the ODS are time invariant in the following
sense. The analysis step (2) can then be considered as a time invariant function, a®P4,
which operates on the prior cpdf, p?(-|y1.;—1) € Px and a current observation, y; € Y, and

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

then return a posterior cpdf p¢(-|y1.¢) € Px:

p?('\ylzt) = B4 [p[t)('\ylzt—l)’yt] .
Similarly, according to (3), the propagation transformation can be considered as a time
invariant function, bPPA | that transforms a posterior pdf to a prior pdf,

P?+1('|y1:t) = pPPA [p?(k‘/lt)] :

This presentation of the sequential BDA allows us to see the DA cycle as the composition
of two time invariant transformations a®P* and bBPA | i.e. each transformation is produced
using the same update rule applied to the previous transformations. Exploiting this repetitive
time invariant structure, corresponding to a chain of events, leads to a general framework
named as the DAN based on recurrent neural networks (RNNs). We detail these ingredients
of the DAN in Section 3 and Section 4.

3 Data Assimilation Networks (DAN)

In section 3.1 we present a general framework for DAN which generalizes both tradi-
tional data assimilation algorithms described in Section 3.2 and 3.3. Thanks to the repetitive
structure of BDA, it allows one to address nonlinear model dynamics and non-Gaussian er-
ror distributions. Section 3.4 presents a key ingredient of DAN, which is the cost function
based on the log-likelihood, and its theoretical properties. Instead of calculating the poste-
rior pdfs analytically, DAN aims to learn these pdfs by using sequences of (x¢,y:) generated
from the ODS.

3.1 DAN framework

For a given set S, DAN is defined as a triplet of transformations such that

aeSxY—S, (analyzer) (4a)
beS—S, (propagater) (4b)
c € S — Px, (procoder) (4c)

The term “procoder” is a contraction of “probability coder” as the function c¢ transforms
an internal representation into an actual pdf over X. A representation of a DAN is given by
Figure la. When S = Px and c is identity, this framework encompasses the transformation of
aPPA and bBPA in the BDA as a special case. However, it includes also other DA algorithms
such as Kalman Filter and Ensemble Kalman Filter. Such connections are detailed in
Section 3.2 and 3.3.

One important ingredient of DAN as a general framework for cycled DA algorithms is
the use of memory to transform prior and posterior densities from one cycle to the next
one. In this respect, S can be interpreted as a memory space which is a finite-dimensional
vector space within the DAN framework. Considering DAN as a RNN with memory usage
naturally make the link with the well-known Elman Network. This connection is detailed
in Section 4.1.

As a recurrent neural network, we can unroll DAN into a sequence of transformations.
Given an initial memory s& € Sy, and an observation trajectory y1.r € Y7, a DAN recur-
sively outputs a predictive and a posterior sequence such that for 1 <t < T,

si’ =b (s?,l) , Sti=a (s?,yt)
a=c(s)), q =c(s}).

This recursive application is represented in Figure 1b. Note that {¢’}._; and {¢*}L
are candidate conditional densities. This means that for a given sequence of observations

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Yt
...’5?_14@_>8?4é>_~3t34...
a4 @ qa

(b) Scheme of a recursive DAN application

(a) Scheme of a DAN

Figure 1: Representation of a DAN: (a) scheme of a DAN (b) unrolled DAN along time
interval

Y1 = (Y1, -+ ,ye), we have ¢2(-|y1.t—1) € Px and ¢2(-|y1.¢) € Px. However, these candi-
date conditional densities are not required to be compatible by construction with a joint-
distribution over X7 x Y”. As a consequence, we do not assume that there is some joint
distribution ¢(z1.7, y1.7) which induces the ¢?(:|y1.+—1) and ¢¢(-|y1.¢). However, as we shall
see in Section 4, the construction of DAN using recurrent neural networks implicitly imposes
some relationships between these candidate conditional densities.

3.2 The Kalman Filter as a DAN

In the original Kalman filter (KF, (Kalman, 1960), the propagation operator M is
supposed affine with M as linear part and the observation operator H also affine with H as
linear part. In this case, the analysis and propagation transformations preserve Gaussian
pdfs that are easily characterized by their mean and covariance matrix. The analysis and
propagation transformations then simplify to algebraic expressions on these pairs as we shall
see in this section.

Suppose that the internal representation of a Gaussian pdf is formalized by the injective
transformation, cX¥ : Zyx — Gy,

¢ (s) = N (%),

where s = (4, X), p and ¥ being the mean and covariance matrix respectively and Zx is
the set of mean and covariance matrix pairs over X, Gx is the set of Gaussian pdfs over X.
The KF analysis transformation is the function that transforms such a prior pair in Zx and
an observation y in Y into the posterior pair in Zyx, i.e. a®F : Zx x Y — Zx, given by

a¥F (pP, =P, y) = (pu*, 2% (5)

iyl
with ¥* = (HYR™'H + (Eb) 1) = pP 4+ YrHTR! (y -H (,ub)). The mapping
diagram for the analysis step of the KF is given by the diagram in Figure 2a, which is a
commutative diagram.

As well, the KF propagation transformation is the function that transforms a posterior
pair in Zx into the next cycle prior in Zx, i.e. b¥F : Zx — Zx, given by
O () = (1", =P) (6)

with ¥ = M¥2MT 4+ Q, Q being the model error covariance matrix and u® = M (u*). The
mapping diagram for the propagation step of the KF is given by the diagram in Figure 2b,
which is a commutative diagram.

222

223

224

225

226

227

228

229

230

231

bB DA

_
oBDA Gx Gx

GXxY

Gx

bKF

KF Ly — Lx

Zx XY —— Z
x x (b) Commuting diagram for the KF propa-

(a) Commuting diagram for the KF analysis gation

Figure 2: Kalman filter mapping diagram

Unfortunately, operators linearity is rarely met in practice and covariance matrices may
not be easy to store and manipulate in the case of large scale problems. A popular dimension
reduction approach is the ensemble Kalman filter that has proven effective in several large
scale applications.

3.3 The Ensemble Kalman Filter as a DAN

In the Ensemble Kalman Filter (EnKF, (Evensen, 2009)), statistics (u,X) € Zx are
estimated from an ensemble matrix X € X = R"*™ having m columns with the empirical
estimators

p= Xu, (7a)
Y =XUXT, (7b)
where u = (%,...,%)T e R U = % € R™*™ and I,, € R™*™ is the identity

matrix. Thus, the algebra over mean and covariance matrices pairs can be represented by
operators on ensembles. In this approach nonlinear operators can be evaluated columnwise
on ensembles and ensembles with few columns may produce low-rank approximations of
large scale covariance matrices. Hence ensembles are an internal representation for the pdfs
that are transformed by the function into a Gaussian pdf, cE"K¥F : X™ — Gy,

FEE(X) = N (Xu, XUXT), (8)
when the error covariance matrix XU X7 is full-rank, for instance when m > n.

The EnKF analysis transformation is the function that transforms such a prior ensemble

X}, € X™ and an observation y € Y into the posterior ensemble X, € X™, a®*KF . X <y —
X™ given by

aPKE (X) = X, with X, =X, + K (Y - 1) (9)

where K = XbUYbT (YbUYbT + R)f1 € R"*4 is the ensemble Kalman gain, Y;, = H (X3,) €
Y™ and Y € Y™ (= R4™) is a column matrix with m samples of N (y, R).

As well, the EnKF propagation transformation is the function that transforms a pos-
terior ensemble X, € X™ into the next cycle prior ensemble X, € X™, pEoKEF . xm _y xm
given by

VIREE (X)) = X, with X, = M(X,)+ W (10)

where W € X™ is a column matrix consisting of m samples distributed according to the
Gaussian pdf N (0, Q).

23 In EnKF, as explained above the mean and the covariance matrix for the Gaussian pdf

233 are calculated through ensembles and propagation is performed through the ensembles using
234 nonlinear dynamics. For large-scale nonlinear systems, when one can use only a limited
235 number of ensembles, the error covariance matrix become a rank deficient matrix. This
236 leads to sub-optimal performance (Asch et al., 2016) and may introduce errors during the
237 propagation. For instance, spurious correlations may appear or ensembles may collapse. As
238 a result, for a stable EnKF regularization techniques like localization and inflation needs to
239 be applied (Hamill et al., 2001; Houtekamer & Mitchell, 2001; Gharamti, 2018). Localization
240 consists in filtering out the long-distance spurious correlations in the error covariance matrix.
211 It is not straightforward to find the optimal parameters for the localization, therefore some
212 tuning is required. This regularization technique also requires observations to be local, i.e.
213 an observation that can be attributed to one model grid point. After filtering out these
204 spurious correlations such that the analysis is updated by the local observations, there may
245 be still problem with the use of limited ensembles along the propagation. These small errors
246 may be problematic when they are accumulated through the cycles. This can still lead
247 to filter divergence. A common solution is to inflate the error covariance matrix by an
28 empirical factor slightly greater than one. The multiplicative inflation compensate errors
249 due to a small size of ensembles and the approximate assumption of Gaussian distribution
250 on the error statistics (Bocquet, 2011).

251 3.4 DAN log-likelihood cost function

252 In this section, we introduce a cost function which allows one to optimize the candidate
253 conditional densities, i.e. ¢* and ¢P, based on samples of x;.7 and y;..-. The distance
254 between the target conditional densities p? and p? and the candidate conditional densities
255 ¢% and ¢? are minimized in the sense of the information loss, related to cross-entropy (Cover

256 & Thomas, 2005).

Definition 1 (log-likelihood cost function). Assume q = (¢f,q?){—; € P = (L, Y'=! — Px) x
(HthlYt —]P’X) such that the following log-likelihood cost function is well-defined (i.e. for
each t > 1, the Lebesgue integral with respect to x1.+ and y1.4 exists)

VAU —/ g (ze|yn:e—1) + In g2 (24]y1:e)] P(T1:t, Y1) AT 1 dynse. (11)
The total log-likelihood cost function is defined as
1
J(q) = ftzzlﬂ(qf,q?)~ (12)
257 The following results shows that if ¢ € P, the global optima of 7 is the Bayesian prior

258 and posterior cpdf trajectories of the ODS.

259 Theorem 1. Let ¢ € argmingep J(q), then Vt € {1,--- T}, @(z|y1.t—1) = pl(@|y1:4-1)
260 for p2(-ly1.t—1)-a.e * € X and p-a.e y1.4—1 € Y=L Similarly, @ (z|y1.1) = pi(z|y1+) for
261 P2(-ly1:¢)-a.e € X and p-a.e y1.4 € Y.

262 Proof. According to (12), it is sufficient to derive the optimal solution of J;(¢?, ¢*) for each
263 t independently. The proof is an application of the KL-divergence (Kullback & Leibler,
264 1951) to conditional probability densities. For a function f(x) on a measurable space of X
265 with probability p, we say f(z) = 0 for p-a.e. = (p-almost everywhere shortly p-a.e.) if there
266 exists a measurable set A such that p(A) =1 and Vz € A, f(x) =0.

We re-write J;(q?, ¢2) as

—/111qf(ﬂ«”t|y1;t71)p?($t|y1:t71)p(y1:t71)dfﬂtdy1:t71 —/111Q?(wt\ylzt)p?(l’t|y1:t)P(y1:t)d$tdy1:t,
(13)

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

using the property p(as,y1.4-1) = pf(2elyr:1)p(y1e-1) and p(ze, y10) = pf(@elyre)p(yi:e)-
The first term in (13) can be written as conditional relative entropy by including a constant
conditional entropy term:

b €T ot
/ (/ In W??(ﬂfﬂylztl)d%) P(Y1:4-1)dyr:e-1 > 0. (14)

Qf($t|y1:t71)

We have equality in (14) if and only if ¢?(x|y1..-1) = p2(z|y1.4-1) for p2(-|y1.i-1)-a.e x, and
p-a.e. y14-1 (see a proof in (Kullback & Leibler, 1951, Lemma 3.1) and (Bogachev, 2007,
Corollary 2.5.4)). Thus, the minimal solution is given by ¢’ as stated in the theorem.
Similarly, the minimal solution of the second term (13) is given by the ¢@ in the statement.

O

The theoretical results in Theorem 1 can not be numerically computed without spec-
ifying a functional class of the candidate conditional pdfs ¢ = (¢?,¢*)Z_;. As a common
specific case, we can consider candidate conditional pdfs as the Gaussian pdfs which allows
one to match the correct mean and covariance of the target prior and posterior cpdf.

Let Gx be the set of Gaussian pdfs over X, and ¢ € G = (II_,Y'"™! = Gx) x
(ITZ.,Y* — Gx). For each Ji(¢, ¢f) in Definition 1 to be well-defined, it is necessary to
assume that the target prior and posterior distributions p?(-|y;.t—1) and p2(-|y1.¢) have first-
order and second-order moments. Under these assumptions, we have

Theorem 2. Let § € argmingeg J(q), then Vt € {1,--- T}, the mean and covariance of
@ (-|y1:4-1) equals to the mean and covariance of pP(-|yi.t—1) for p-a.e y1.4—1 € Y=L, Sim-
ilarly, the mean and covariance of q¢(-|y1.+) equals to the mean and covariance of p¢(-|y1.+)
for p-a.e y1.; € Y°.

Proof. We shall only provide a proof for g (-|y1.t—1) as the proof is similar for g(-|ys.;). Let
72 (+|y1.4—1) be the Gaussian distribution which has the mean and covariance of p?(:|y1.4—1).
Following the proof of Theorem 1, we can rewrite the first term, up to a constant, in (13)

into
P (z G
/ </ In ng(xﬂyl:t—ﬂdxt) P(Y1:6—1)dyi:4—1 (15)

@2 (ze|yr0-1)

This is an equivalent minimization problem because we have added a term of ¢ which does
not depend on ¢?. By definition, ¢*(-|y1.4—1) € Gx, @ (-|y1.t—1) € Gx, the logarithm term in
(15) is a quadratic function of z;. As a consequence, we can rewrite (15) as

/ (/ln Wp?(xﬂymﬂdxt) p(y1:e—1)dy1.4—1 > 0. (16)

Q?($t|y1:t71

where we have replaced the density p? by p? because they have the same first and second
order moments. Note that the inner integral in (16) is the KL divergence between p? and
¢%, so its minimal solution G’(-|y1.;—1) equals almost surely to p°(-|y1.+—1). Therefore the
mean and covariance of @ (-|y1.+—1) and p?(-|yi.+—1) match for p-a.e. y1.4_1. O

4 DAN construction and training algorithm

Having specified the cost function in the previous section, we are now going to discuss
how to construct the components of a,b,c¢ in DAN in order to fit training data samples.
To motivate the DAN construction, we first review its connection with the classical Elman
network in Section 4.1. We then specify the construction of the DAN using recurrent neural
networks in Section 4.2. Section 4.3 and 4.4 describe how to efficiently train the network.

—10-

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

4.1 Connection with Elman network

DAN can be interpreted as an extension of an Elman network (EN) (Elman, 1990)
which is a basic structure of recurrent network. An Elman network is a three-layer network
(input, hidden and output layers) with the addition of a set of context units. These context
units provide memory to the network. Both the input units and context units activate the
hidden units; the hidden units then feed forward to activate the output units (Elman, 1990).
A representation of a EN is given in Figure 3a.

Yt

’Input Units (Y) ‘
i -~-*5t71—@—>ft_1 St —> o

’ Hidden Units (S) g Context Units (C) ‘

!

’ Output Units (W) ‘

Wt—1 Wy
(a) Scheme of a Elman Network
(b) Scheme of a recursive Elman application

Figure 3: Representation of a Elman Network: (a) scheme of a EN (b) unrolled EN along
time interval

The context units make the Elman network able to process variable length sequences
of inputs to produce sequences of outputs as shown in Figure 3b. Indeed, given a new input
1y € Y in the input sequence, the function a updates a context memory from ¢, 1 € C to
a hidden state memory s; = a (¢4—1,y:) € S. And the function ¢ decodes the hidden state
memory into an output w; = ¢ (s¢) € W in the output sequence. The updated hidden state
memory is transferred to the context unit via function b. In a way, the context memory
of an Elman network is expected to gather relevant information from the past inputs to
perform satisfactory predictions. The training process in machine learning will optimally
induce how to manipulate the memory from data.

The similarity between DAN and EN can be made explicit with the analogy that the
hidden layer is connected to the context units by the function b, which includes time prop-
agation for DAN. In DAN the hidden unit memory S is considered as the same set as
the context unit memory C, and ¢ function decodes both the hidden and the context unit
memory into a probability density function.

The EN can not perform DA operations in all its generality. For instance, EN can
not make predictions without observations, that is estimating strict future states from past
observations. This is because the function a performs both the propagation and the analysis
at once. In a way, the EN only produces posterior outputs and no prior outputs while the
DAN produces prior or posterior outputs by applying the procoder ¢ before or after the
propagater b (see Figure 1b and Figure 3b). DAN can also produce strict future predic-
tions without observations by applying the propagater b multiple times before applying the
procoder c¢. Second, the DAN provides a probabilistic representation of the state i.e. an
element in Px instead of an element in X. Also, note that the compositions of b and ¢ make
a generalized propagation operator as it propagates in time probabilistic representations of
the state rather than punctual realizations.

—11-

326

327

328

329

330

331

332

333

334

335

336

337

338

339

4.2 Construct DAN using Recurrent Neural networks (RNN)

We propose to use neural networks to construct a parameterized family of DANs. Let
0 denote all the weights in neural networks, and the memory space S be a finite-dimensional
Euclidean space. The parametric family of the analyzers and propagators are L-layer fully
connected neural networks:

ag: SxY—.---—>SxY—=S, (17a)
L times
bp: S—--- =S, (17b)
L ti

The construction of ag is built upon L fully-connected layers with residual connections.
It is based on the LeakyReLU activation function and the ReZero trick (Bing et al., 2015;
Bachlechner et al., 2020) to improve the trainability when L is large. For layer ¢, the input
vp—1 € S XY is transformed into v, € S X Y by

vg = vp—1 + ayLeakyReLU (Wyvs—1 + By) . (18)

An extra linear layer is then applied to the output vy, in order to compute a memory state as
the output of ag. The trainable parameters of ag are (ay, Wy, B¢)e<r, and the weight and bias
in the linear layer. As illustrated in Figure 1b, the input ay at time ¢ is a concatenation of
s? and y;, i.e. vo = (s2, ;). Similarly, the by is constructed from the same L fully-connected
layers as in (18) by using a different set of trainable parameters. The input of by at time ¢
is set to s¢.

The procoder cg is specified with respect to the pdf choice of candidate conditional
densities. For instance, for the Gaussian case studied in Theorem 2, ¢y can be defined as:

n(n+1)

co: S— RV 5 Gx (19)
. . . n(n+1) .
which is a linear layer from S to R 5 , followed by a function that transforms the
n + % dimension vector into the mean and the covariance of a Gaussian distribution.
This transformation is detailed in Appendix A.

4.3 Training and test loss from unrolled RNN

In order to train a DAN, we will unroll the RNN defined by (ag, by, cg) so as to define
the training computing from I i.i.d trajectories of (@1.7,y,.7). We also define the test loss
for training performance evaluation.

To be clear on how the states s and sf depend on ag, by and a given trajectory yi.;, we
will denote the state (memory) at time ¢ informed by the data up to time ¢ -1 and generated

. . . b,0 . .
using a f-parametric function as 84j¢-1- Then we can rewrite s? and s more explicitly as:

bo a0 a0 _ b,0
S4ie-1 = o (St—1|t—1) ,and sy = ag (St\t—l’yt)) (20)

where sgig = Sp is an initial memory of RNN independent of 6. The procoder ¢y outputs
the pdf

b0 b,0 0 0
@/p1 Clyr:e—1) = co (%m) ,and gy, (lyie) = co (8?“) . (21)

To define the training loss computed from the I trajectories, we introduce a trajectory-
dependent loss function which will be needed to define our online training strategy. Let

(xgl)T, yY)T) be the i-th trajectory, we write the loss function for the i-th trajectory as:

7 b,0 a,f b,60 i % a,0 i i
Jt() (qt|t—1’qt\t) = —log Qyfy-1 ((pg)|y§:271> —log Gy (;L'E)|y§i))

—12—

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

The training loss is defined accordingly as a function of 6,

I

T
1 @) [b6 a0
TI Zth (qt|t—1’qt\t> (22)

t=1 i=1

We define the test loss J(6), as in (22), by using another I independent trajectories of
(x1.7,y,.7)- It allows one to evaluate how well the DAN learns the underlying dynamics of
ODS beyond the training trajectories.

4.4 Online training algorithm: TBPTT

Direct optimization of the training loss in (22) is impractical for large-scale problems
since the gradient backpropagation through time generates a large computational graph that
consumes a lot of memory (Jaeger, 2002). This limits the time length 7" and batch size I
which, in turn, might lead to overfitting due to limited data. A workaround is to resort to
gradient descent with truncated backpropagation through time (TBPTT, (Williams & Peng,
1990; Williams & Zipser, 1995)). It is commonly used in the machine learning community
to train recurrent neural networks (Tang & Glass, 2018; Aicher et al., 2020).

Starting from 6y, the TBPTT is an online method which generates a sequence of model
parameters 0, for k =1,2,--- ,T. Each 6y is obtained from 6;_; based on the information
of I training trajectories {(9321)73/;(61))}@1 on-the-fly.

More precisely, given the initial memories {Egi)}ig 1 and 6y, we update the memory

51(;) = a9k71(b0k71(gl(clzl)’yl(;))’ k=1

and then we perform the following gradient update,

I
1 . G i .
Or = Ok — ey D Vodily(co - bo(sy”). o - an(bo(sy”). yi11)) oo, (23)
i=1
where 7, is the learning rate. The gradient is computed over the I training trajectories at
time k 4+ 1. As a result, the optimization is not anymore limited in time due to computer
memory constraints.

To adjust the learning rate 7 adaptively, we apply the Adam optimizer (Kingma &
Ba, 2014) to the gradient in (23). This simultaneously adjusts the updates of 6 based on
an average gradient computed from the gradients at previous steps.

5 Numerical experiments

In this section, we present results of DAN on the Lorenz-95 system (Lorenz, 1995)
using the Gaussian conditional posteriors presented in Theorem 2. We first explain Lorenz
dynamics in Section 5.1, and provide experimental details in Section 5.2. Then, Section 5.3
evaluates the effectiveness of the online training method TBPTT to minimize the test loss
(defined in Section 4.3). Section 5.4 compares standard rmses performance of DAN to a
state-of-the-art DA method IEnKF-Q using a limited ensemble memory. We further study
the robustness of DAN in terms of its performance on future sequences beyond the horizon
T of the training sequences, as well as its sensitivity to the initial distribution of .

5.1 The Lorenz-95 system

The Lorenz-95 system introduced by Lorenz (1995) contains n variables z;,i =1,...,n
and is governed by the n equations:
dx;
dtl = —Tj_2%i—1 + Ti—1Tiqy1 — T; + F. (24)

—13—

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

402

403

404

405

406

407

In Eq. (24) the quadratic terms represent the advection that conserves the total energy, the
linear term represents the damping through which the energy decreases, and the constant
term represents external forcing keeping the total energy away from zero. The n variables
may be thought of as values of some atmospheric quantity in n sectors of a latitude circle.

In this study, we take n = 40 and F' = 8 which results in some chaotic behaviour. The
boundary conditions are set to be periodic, i.e., g = 409, T_1 = T39 and x4; = x1. The
equations are solved using the fourth-order Runge-Kutta scheme, with At = 0.05 (a 6 hour
time step).

5.2 Experiment setup

We study the performance of DAN when trained to map to Gaussian posteriors, i.e. the
procoder ¢ function is given by (19). This is compared to a state-of-art method of EnKF.
For comparison, we implemented the Iterative EnKF with model error (IEnKF-Q (Sakov et
al., 2018)), which handles non-linearities better and accepts additive model error.

A batch of I trajectories of x € R0 is simulated from the resolvant (propagation
operator) M : R — R*" of the 40 dimensional Lorenz-95 system. To start from a stable
regime, we use a burning phase which propagates an initial batch of states {scl(flzt}is 1 for
a fixed number of cycles. The initial states are drawn independently from N (3 X 149, I40)-
The operator M is then applied 10® times (burning time) to the given initial batch of
states (Sakov et al., 2018). The resulting states are taken as the initial state xgl).

After the burning phase, the Gaussian propagation errors {ni}, sampled independently
from N (049,0.01 x I4p), are added each subsequent propagation to get the state trajectories

$§21 =M (mi“) + nt(i),
Then the Gaussian errors 5%21, sampled independently from N (049, I49), are added to the
observation operator evaluations to get a training batch of observation trajectories

yt(21 =H (35&21) + 5;21-

In the numerical experiments we assume that the system is fully observed, i.e. H is taken
to be an identity operator.

The functions a and b in the cost function of DAN are constructed by L = 20 fully
connected layers with residual connections (as detailed in Section 4). We consider different
number of ensembles for EnKF, i.e. m € {5, 10,20, 30}, which requires m-by-n memory size.
To make DAN comparable to EnKF we chose the memory space, i.e. S = R™*"™,

Across all these m, DAN is trained with a batch size of I = 1024 of training samples
for T = 6 x 10° cycles. The initial learning rate 1y for the TBPTT is set to be 10~%. The
initial memory sg of the RNN is set to be zero, while the initial parameter 6y of the RNN is
mostly set to be random. More precisely, we use the standard random initialization for the
weights (W, b) of each linear layer implemented in the Pytorch software. The initial weight
ay in (18) is set to zero for each £.

5.3 Training performance of TBPTT

To show the effectiveness of the training method TBPTT specified in (23), we evaluate
the test loss J(f) using I = 1024 i.i.d samples, on a sub-sequence of . This allows one to
access whether the online method is effective to minimize the total loss J(q) in (12).

The test loss J(6y)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>