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Key Points: 35 

 Top-down emissions are generally within the range of bottom-up inventories and exhibit 36 

a similar level of uncertainty, or even less in regions such as China.  37 

 In China, the U.S. and Europe emission trends in the last decade from SSP126 match 38 

most closely actual trends from bottom-up and top-down estimates. 39 

 In Western Africa and India recent emission trends from low pollution control scenarios 40 

(SSP460 and SSP370, respectively)  match most closely actual trends. 41 

 42 

 43 
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Abstract 45 

This study compares recent CO, NOx, NMVOC, SO2, BC and OC anthropogenic emissions from 46 

several state-of-the-art top-down estimates to global and regional bottom-up inventories and 47 

projections from five SSPs in several regions. Results show that top-down emissions exhibit 48 

similar uncertainty as bottom-up inventories in most regions, and even less in some such as 49 

China. In general, for all species the largest discrepancies are found outside of regions such as 50 

the U.S., Europe and Japan where the most accurate and detailed information on emissions is 51 

available. In some regions such as China, which has undergone dynamical economic growth and 52 

changes in air quality regulations during the last several years, the top-down estimates better 53 

capture recent emission trends than global bottom-up inventories. These results show the 54 

potential of top-down estimates to complement bottom-up inventories and to aide in the 55 

development of emission scenarios, particularly in regions where global inventories lack the 56 

necessary up-to-date and accurate information regarding regional activity data and emission 57 

factors such as Africa and India. Areas of future work aimed at quantifying and reducing 58 

uncertainty are also highlighted. A regional comparison of recent CO and NOx trends in the five 59 

SSPs indicate that SSP126, a strong-pollution control scenario, best represents the trends from 60 

the from top-down and regional bottom-up inventories in the U.S., Europe and China, while 61 

SSP460, a low-pollution control scenario, lies closest to actual trends in West Africa. This 62 

analysis can be a useful guide for air quality forecasting and near-future pollution 63 

control/mitigation policy studies. 64 

1 Introduction 65 

Anthropogenic activities such as energy production, industrial processes, transportation, 66 

agriculture and waste management are responsible for the emissions of gaseous and particulate 67 

pollutants which can both modify the climate and reduce air quality, leading to adverse impacts 68 

on the environment and human health. Accurate and up-to-date emission inventories are essential 69 

to understand the contribution of various human activities, model and predict the related changes 70 

in atmospheric composition, and design cost-effective mitigation strategies. Despite their 71 

paramount importance, large uncertainties and limitations exist in current state-of-the-art global 72 

and regional emission inventories (Crippa et al., 2018). Based on emission estimates from 73 

inventories, along with information regarding socio-economic, environmental, and technological 74 
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trends, future emission scenarios such as the Shared Socioeconomic Pathways (SSPs) are created 75 

and used by atmospheric and chemistry models to generate future climate and pollutant 76 

concentration projections. As such, uncertainties associated with current emission estimates are 77 

directly propagated into future scenarios of emission trajectories, model climate projections and 78 

air quality forecasts.  79 

 80 

For a given chemical compound, emission inventories rely on the definition of key socio-81 

economic sectors (i.e. road traffic) involving certain technologies (i.e. car engine) characterized 82 

by specific emission factors (i.e. CO emissions per unit of fuel used per km). This information is 83 

then scaled up using geographically distributed information of the corresponding activities (e.g. 84 

car traffic intensity map) to create large-scale gridded inventories. The complexity of emission 85 

modelling lies in the diversity of chemical species, as well as in the characterization and 86 

quantification of emission factors and sector activities, all of which are highly variable and 87 

influenced by socio-economic and environmental factors.  Country-level indicators used to build 88 

global emission inventories and projections often lack up-to-date regional specific information, 89 

especially in developing regions. These inventories are largely created using emission factors 90 

(EF) that are representative of conditions in developed countries, such as Europe and North 91 

America.  Although often an EF is selected that represents a low technology level, the origin of 92 

the EF data is from developed countries, thereby introducing large errors and uncertainties into 93 

the emission estimates for developing countries.  Furthermore, the collection of data for all 94 

countries throughout the world takes considerable time; by the time the inventories are updated 95 

there is thus often a significant lag from the present day. 96 

 97 

Alternatively, inverse modelling techniques, which constrain atmospheric models by 98 

observations to estimate surface emissions, have been used to derive emissions for various air 99 

pollutants (e.g. Miyazaki et al. 2017; Stavrakou et al. 2012; Müller et al. 2005; Arellano et al. 100 

2004).  A main advantage of these estimation techniques is their high spatial coverage, in 101 

particular when spaceborne atmospheric data are used as constraints. Another benefit is that they 102 

can provide more timely emission estimates than traditional bottom-up inventories, which are 103 

generally delayed by a few years. Inverse modelling has the potential to reduce uncertainty in air 104 

quality and chemistry climate models by providing more constrained emission data, especially in 105 
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regions of the world where bottom-up estimates are believed to be deficient. Nevertheless, 106 

inverse modelling has its limitations and uncertainties that should be addressed and quantified. 107 

Notably, uncertainties are associated with the use of atmospheric models, in particular their 108 

representation of transport and chemical processes (e.g. Jiang et al., 2013; Stavrakou et al., 109 

2013). Another source of uncertainties is related to the observations used to constrain the models. 110 

For example, satellite data intercomparison studies revealed large differences between different 111 

retrievals of the same compound as well as significant biases against well-calibrated validation 112 

data, reaching up to a factor of two (Zhu et al., 2016; Zhu et al., 2019b). Therefore, before 113 

inverse modelling estimates can be used to supplement bottom-up emission inventories, an 114 

assessment of their reliability and associated uncertainty over diverse regions is needed. 115 

The main goal of this study is to provide a comprehensive, systematic comparison of emission 116 

estimates derived from inverse modelling techniques for various species (CO, NOx, NMVOC, 117 

SO2, BC, and OC) to current state-of-the-art emission inventories for several regions of the 118 

world.   To this end, we compiled estimates of anthropogenic emissions from eleven different 119 

sources based on various inverse methods. These estimates are compared to the most widely 120 

used global inventories EDGARv4.3.2 (Crippa et al., 2018) and CEDS (Hoesly et al., 2018), as 121 

well as to recent regional inventories for Europe (CAMS-REG-AP, Granier et al. 2019), Africa 122 

(DACCIWA, https://www.eccad3.sedoo.fr) and China (MEICv1.3: http://www.meicmodel.org, 123 

Zheng et al., 2018).  124 

 125 

https://www.eccad3.sedoo.fr)/
http://www.meicmodel.org/
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Another objective is to compare the trends in the projected emissions of the Shared 126 

Socioeconomic Pathways (SSPs) developed for the sixth Climate Model Intercomparison Project 127 

(CMIP6) (Riahi et al. 2017; Kreigler et al. 2012) to the current best estimates of emission trends 128 

for the recent past in selected regions. We aim to evaluate which narrative describes best the 129 

direction taken by the different regions in terms of emissions.  Assessing how well the scenarios 130 

capture recent emission trends will be useful for determining their suitability for studies that 131 

evaluate emissions in the recent past and near future, such as pollution control/mitigation impact 132 

studies and air quality forecasting. Furthermore, we compare CO and NOx emissions from the 133 

SSPs to those of the Representative Concentration Pathways (RCPs) that were used in the fifth 134 

Climate Model Intercomparison Project (CMIP5) (Moss et al. 2010; van Vuuren et al, 2011) for 135 

several world regions. While a comprehensive overview of the SSP emissions and comparison 136 

with the RCPs is presented in Gidden et al. (2019), we are focused on the regional scale, and 137 

intend to aid in the interpretation and analysis of regional climate change studies. 138 

2 Materials and Methods 139 

This study compares 10 different top-down emission estimates to several state-of-the-art global 140 

and regional bottom-up inventories for CO, NOx, NMVOC, SO2, OC and BC. A description of 141 

each of the top-down estimates is provided below. Details and references for each of the top-142 

down and bottom-up inventories are also given in Tables 1 and 2, respectively. We focus on the 143 

following 12 regions as defined by the IMAGE2.4 26 regions (Bouwman et al., 2006):  China, 144 

the Middle East, Western Africa, the United States, Western and Central Europe, South America, 145 

India+, Southeast Asia, Indonesia+, Oceania and Southern Africa.  Note that India+ includes 146 

neighbouring countries such as Pakistan, Afghanistan, Nepal, and Bangladesh. A map of the 147 

regions is shown in Figure 1. These regions were selected based their economic and geographic 148 

diversity, as well as on the availability of top-down and bottom-up regional inventories. The 149 

regional averages for all datasets are calculated on their native grids. 150 
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 151 

Figure 1: This study focuses on the following 11 regions as defined by Bouwman et al. (2006), 152 

the Middle East, Western Africa, the United States, Western and Central Europe, South America, 153 

India+, Southeast Asia, Indonesia+, Oceania and Southern Africa, plus China which only 154 

includes the national boundaries. 155 

 156 

2.1 Calculation of trends and percent differences 157 

 158 

We evaluate recent trends in emissions from the five SSPs based on the years 2010-2020. The 159 

trends are derived from ordinary linear regression and expressed in units of percent change per 160 

year relative to the mean over the data period. The SSP trends are compared to trends which are 161 

based on the emissions from the inventories and inversion estimates. These trend estimates are 162 

calculated by averaging the trends from all available inventories for a particular region, including 163 

all inverse modelling estimates and bottom-up inventories which are available from 2010 until at 164 

least 2015 which are statistically significant (p > 0.05). A list of the individual trends is provided 165 

in supplementary material. Note that MACCity and CAMS-GLOB-ANT are excluded because 166 

their recent years are based on projections of past trends from inventories and are therefore not 167 

considered independent. Unless otherwise specified, percentage differences in the range of 168 

emission estimates are calculated based on the average between the highest and lowest values. 169 

 170 

 171 

3 Data 172 

3.1 Top-down Emissions 173 
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Global  174 

 175 

Chen et al. (2019): Global daily carbonaceous aerosol (OC and BC) emissions for the period 176 

2006-2011 are derived using the GEOS-Chem adjoint model (Henze et al., 2007) at a spatial 177 

resolution of 2.5°x2° (Chen et al., 2019). OC and BC emission sources are constrained using 178 

retrievals of aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD) (Chen et 179 

al. 2018, 2019) from the multi-angular and polarimetric POLDER/PARASOL (Polarization & 180 

Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) 181 

measurements retrieved via  the GRASP (General Retrieval of Atmosphere and Surface 182 

Properties) algorithm (www.grasp-open.com) (Dubovik et al., 2011, 2014). Note that the 183 

anthropogenic contribution of the total derived black and organic carbon emissions is estimated 184 

based on a ratio which is applied in the GEOS-Chem (v10-1) model. 185 

 186 

Jiang et al (2017): Global CO emissions are constrained over the period 2001-2015 by 187 

assimilating multi-spectral CO measurements from MOPITT (version 6) using the 4D-Var data 188 

assimilation system (adjoint) in the GEOS-Chem model at a spatial resolution of 5°x4°. The 189 

initial conditions and land boundary conditions (CO concentrations) are optimized using a 190 

sequential sub-optimal Kalman filter. Here we include two of the inversions described in Jiang et 191 

al. (2017), one in which emissions are constrained using MOPITT CO profiles and another using 192 

total CO columns.  Anthropogenic CO emissions are separated from other sources using a single 193 

scaling factor, based on the a priori emissions, to adjust all emissions in a grid. 194 

 195 

Tropospheric Chemistry Reanalysis (TCR-2): Global NOx and SO2 emissions are constrained 196 

over the period of 2005-2018 by assimilating multiple satellite data sets for multiple species 197 

(NO2, CO, O3, SO2) using the global CTM (Chemistry Transport Model) MIROC-Chem 198 

(Watanabe, et al., 2011) based on the ensemble Kalman filter (EnKF) technique performed at 199 

1.125 × 1.125 resolution in the TCR-2 framework (Miyazaki et al. 2017, 2019, 2020a, 2020b). 200 

The assimilated measurements were obtained from OMI (the Ozone Monitoring Instrument), 201 

GOME-2 (Global Ozone Monitoring Experiment–2) and SCIAMACHY (SCanning Imaging 202 

Absorption SpectroMeter for Atmospheric CHartography) for NO2, TES for O3, MOPITT for 203 

CO, and MLS for O3 and HNO3, and OMI for SO2.  204 

http://www.grasp-open.com)/
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 205 

Müller et al. (2018): Global CO emissions for 2013 are derived at 2° × 2.5° resolution based on 206 

the adjoint of the IMAGESv2 model constrained by satellite IASI CO column data. The model 207 

uses prescribed OH fields constrained by methylchloroform measurements. An ensemble of top-208 

down simulations is carried out and the top-down emissions are compared with various 209 

independent CO observations and evaluated. The inversion adopting the lowest average OH level 210 

in the Northern Hemisphere provides the best agreement with all tested independent observation 211 

data sets, and the corresponding top-down emissions are used in our study. Emissions are derived 212 

for three categories (anthropogenic, biogenic and biomass burning) using a technique which 213 

relies on the spatio-temporal patterns of the a priori emissions, through assumed correlations 214 

between a priori emission errors. In essence, the inversion tries to preserve the patterns of the a 215 

priori. The strength of that constraint is determined by the assumed correlations.  216 

 217 

 218 

Zheng et al. (2019):  Global CO emissions for the period 2000-2017 are derived using the global 219 

3-D transport model of the Laboratoire de Météorologie Dynamique (LMDz) coupled with a 220 

simplified chemistry module, Simplified Atmospheric Chemistry assimilation System (SACS) 221 

based on a multi-species atmospheric Bayesian inversion approach (Zheng et al., 2018a, 2018b) 222 

at a spatial resolution of 3.75°×1.9°. Zheng et al. (2019) perform the following three global 223 

inversions which are used in this study: (i) an inversion   constrained only by CO total column 224 

data from the MOPITT version 7 over 2000-2017 (inversion 1); (ii) an inversion also constrained 225 

by HCHO column data from Ozone Monitoring Instrument (OMI) version 3 on the basis of 226 

inversion 1 for the period 2005-2017(inversion2); (iii) an inversion further constrained by 227 

column-averaged dry air mole fractions of CH4 (XCH4) from Greenhouse gases Observing 228 

SATellite (GOSAT) on the basis of inversion 2 for the period 2010-2017 (inversion 3).  229 

Emissions are derived for four categories (anthropogenic, biomass burning, biogenic and 230 

oceanic) by multiplying the optimized 8-daily surface CO total fluxes by the proportion of each 231 

sector in each model grid cell as given by the prior. 232 

 233 

Regional 234 

 235 
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Cao et al. (2018): NMVOC emissions in China for the year 2007 are derived using the GEOS-236 

Chem CTM (version 8.2.1) and its adjoint at a spatial resolution of 5° × 4°).  The GEOS-Chem 237 

CTM was updated to include improved NMVOC chemical schemes.  Emissions are constrained 238 

by using HCHO and glyoxal columns observed by the GOME-2A and OMI satellite instruments. 239 

Four inversion experiments using different combinations of these satellite observations were 240 

conducted in order to explore their impacts on the top-down emission estimates. The 241 

anthropogenic NMVOC emission estimates for 2007 range from 16.4-23.6 Tg yr
-1

. In this study, 242 

we show the average of the four estimates which is 20.2 Tg yr
-1

. 243 

 244 

Qu et al. (2019a): NOx and SO2 emissions in East Asia for the period 2005-2012 are derived 245 

simultaneously using the GEOS-Chem adjoint model (Henze et al. 2007, 2009) and a hybrid 4D-246 

Var / mass balance approach at 0.5° × 0.667° resolution (Qu et al., 2017). The emissions are 247 

constrained by the OMI NO2 NASA standard product (Krotkov et al., 2017) and the OMI Royal 248 

Belgian Institute for Space Aeronomy (BIRA) SO2  product (Theys et al., 2015). We refer to this 249 

inventory as Qu-joint. An inversion is also performed constraining only NO2 in order to assess 250 

the benefits of constraining multiple species. This inversion is referred to as Qu-single. The 251 

inversions were performed on a limited domain which does not included all of the countries of 252 

the India+ region shown in Figure 1 of the Supplement, therefore the averages for Qu-single and 253 

Qu-joint are for India only. 254 

 255 

Qu et al. (2019b): Global SO2 emissions for the period 2005-2017 are derived using the GEOS-256 

Chem adjoint model (Henze et al. 2007, 2009) and a hybrid 4D-Var / mass balance approach at a 257 

2° × 2.5° horizontal resolution. In order to assess the uncertainty related to satellite retrievals, 258 

two inversions are performed using different OMI satellite retrievals to constrain the emissions; 259 

the NASA standard product OMSO2 (Li et al., 2013) and the BIRA product (Theys et al., 2015).  260 

Note that these SO2 emissions are shown only for China and India because the estimates are less 261 

accurate in comparatively cleaner areas with lower SO2 columns due to negative column 262 

densities in the OMI SO2 retrievals (Qu et al., 2019). These inversions are referred to as Qu-263 

BIRA and Qu-NASA.  264 

 265 
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Stavrakou et al. (2017): Global NMVOC emissions for the period 2005-2014 are derived using 266 

the adjoint model technique in the IMAGESv2 global CTM at a spatial resolution of 2° × 2.5°.  267 

Emissions from open fire vegetation and human activities are constrained using vertical columns 268 

of formaldehyde (HCHO) retrieved from the Ozone Monitoring Instrument (OMI-BIRA). The 269 

anthropogenic VOC sources are found to be weakly constrained by the inversions on a global 270 

scale due to their small contribution to the total HCHO columns (Stavrakou et al. 2009), except 271 

over strongly polluted regions, like China.  272 

 273 

 274 

Table 1:  Description of inverse modelling estimates considered in this study. 275 

 Species 

 

Region Res. (lon 

x lat) 

Period CTM Satellite 

constraint 

Inversion 

method 

Global   

Chen et al. 

(2019) 

OC/BC Global 2.5° x 2° 2006-

2011 

GEOS-Chem PARASOL/ 

GRASP* 

AOD/AAOD  

Adjoint  

TCR-2 NOx Global 2.8° x 2.8° 2005-

2018 

MIROC-

Chem 

OMI/GOME-

2/SCIAMACHY 

NO2,TES O3,  

MOPITT CO, 

MLS O3/HNO3 

Ensemble 

Kalman 

filter  

Müller et al. 

(2018) 

CO Global 2.5 ° x 2° 2013 IMAGESv2 IASI CO  and OH 

levels based on 

methylchloroform 

(MCF) obs.  

Adjoint 

Zheng et al. 

(2019) 

CO 

 

 

Global 3.75° x 1.9° 2000-

2017 

LMDz-SACS MOPITT CO, 

OMI HCHO, 

GOSAT XCH4 

Bayesian  

Jiang et al. 

(2017) 

CO Global 5° x 4° 2001-

2015 

GEOS-Chem MOPITT CO and  

OH levels based 

on MCF obs. 

Adjoint 

Regional  

Cao et al. 

(2018)  

NMVOC China 5° x 4° 2007 GEOS-Chem GOME-2/OMI 

HCHO/ 

CHOCHO  

Adjoint 

Qu et al. 

(2019a) 

NOx, SO2 East 

Asia 

0.5° x 

0.667° 
2005-

2012 

GEOS-Chem OMI SO2, NO2 Adjoint 

Qu et al. 

(2019b) 

NOx East 

Asia 

 2.5° x 2° 2005-

2017 

GEOS-Chem OMI NO2 Adjoint 

Stavrakou et al. 

(2017) 

NMVOC China 2.5 ° x 2° 2005-

2014 

IMAGESv2 OMI HCHO Adjoint 

 276 

 277 

3.2 Bottom-up Emissions 278 
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In this study we compare 13 of the most recent anthropogenic global and regional bottom-up 279 

inventories, respectively.  Included in the global inventories are EDGARv4.3.2 (JRC, Crippa et 280 

al., 2018) and CEDS (Hoesly et al., 2018) which are both traditional bottom-up inventories. We 281 

also compare CAMS-GLOB-ANTv4.1 and MACCity which are based on bottom-up inventories 282 

and projections, thereby provide emissions to the current year. The CAMS global emissions are 283 

based on both the EDGARv4.3.2 and CEDS emissions. The standard version of CAMS-GLOB-284 

ANT (version 4.1) used in this study applies the monthly profiles provided by CAMS-GLOB-285 

TEMPO (Granier et al., 2019) to the annual emissions from EDGARv4.3.2 for the years 2000-286 

2012. After 2012, the data are linearly extrapolated to 2020 using trends derived from the CEDS 287 

emissions for the years 2011-2014. A detailed description of all the global and regional bottom-288 

up inventories are presented in the Supplement, along with a brief discussion regarding the 289 

uncertainties among global inventories. 290 

 291 

Table 2:  Description of global and regional bottom-up inventories considered in this study. 292 

 
Species 

 

Region Res. 

(lon x lat) 

Period Reference 

Global Inventories  

CAMS-GLOB-ANT 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Global 0.1° x 0.1° 2000-2019 Granier et al. (2019) 

EDGARv4.3.) 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Global 0.1° x 0.1° 1970-2012 Crippa et al. (2018) 

CEDS 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Global 0.5 ° x 0.5° 1950-2014 Hosley et al. (2018) 

HTAPv2 

 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

 

Global 0.1° x 0.1° 2008, 2010 http://www.htap.org 

MACCity  

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Global 0.5 ° x 0.5° 2007 https://eccad3.sedoo.fr 

Regional Inventories  

CAMS-REG-AP 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Europe 0.1° x 0.05° 2000-2017 
Kuenen et al. (2014) 

Granier et al. (2019) 

DACCIWA 
NOx, CO, 

NMVOC, 
Africa 0.1° x 0.1° 2000-2015 Keita et al. (2020) 
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SO2, OC, 

BC 

DICE-Africa 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Africa 0.1° x 0.1° 2000-2015 Marais et al. (2016) 

US NEI 
NOx, CO, 

NMVOC, 

SO2 

United 

States 
 2000-2016 

https://www.epa.gov/air-

emissions-inventories 

MEICv1.3 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

China 0.25 ° x 0.25° 2008-2017 
http://www.meicmodel.org 

Zheng et al. (2018) 

REASv3.1 

NOx, CO, 

NMVOC, 

SO2, OC, 

BC 

Asia 0.25 ° x 0.25° 1950-2015 Kurokawa et al. (2019) 

Sharma et al. (2019) 
NOx, CO, 

NMVOC, 

SO2 

India  2011 Sharma et al. (2019) 

Sun et al. (2018) 
NOx, CO, 

NMVOC, 

SO2 

China  1949-2015 Sun et al. (2018) 

 293 

 294 

3.3 Shared Socioeconomic Pathways (SSPs) 295 

 296 

The projected emissions from five SSPs were developed for use in the current Coupled Model 297 

Intercomparison Project phase 6 (Eyring et al., 2016).  The SSPs are global scenarios which 298 

describe how the future emissions might evolve according to socioeconomic development, 299 

demographics, technological advances within the context of climate change mitigation and 300 

adaptation during the period 2015-2100 (van Vuuren et al., 2014; O’Neill et al., 2014; Kreigler et 301 

al., 2012).   The air pollutant emission trajectories associated with the SSP scenarios have been 302 

harmonized with the CEDS historical global inventory for the year 2015 and are described in 303 

Rao et al., (2017) and Gidden et al. (2019). The pathways are based on five narratives describing 304 

alternative socioeconomic developments. SSP1 and SSP5 assume strong pollution control 305 

scenarios, and therefore emissions which are substantially lower than current levels, whereas 306 

according to SSP3 and SSP4 future emissions are higher than current levels.  SSP2 is based on a 307 

medium pollution control scenario where emissions remain close to current levels (Rao et al. 308 

2017).  In addition, mitigation policies are added to each scenario in order to achieve a 309 

prescribed radiative forcing by the end of the 21
st
 century (i.e. 2.6, 4.5, 6.0 and 8.5 W m

-2
).   310 

 311 

http://www.meicmodel.org/
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In this study, we focus on the four Tier 1 SSPs (SSP126, SSP245, SSP370 and SSP585), which 312 

have the same radiative forcing as the RCPs used in CMIP5, but combine socioeconomic and 313 

technological developments, and have been given priority in CMIP6 (O’Neill et al., 2016). In 314 

addition, we also analyze SSP460, which has been designated as a Tier 2 scenario in order to 315 

complement and extend the Tier 1 scenarios and the RCPs (O’Neill et al., 2016). The emissions 316 

associated with these scenarios are available at a 0.5° × 0.5° spatial resolution (https://esgf-317 

node.llnl.gov/projects/input4mips). 318 

4 Comparison of emission inventories and inverse modelling estimates 319 

In this section, we compare inverse modelling anthropogenic emission estimates of CO, NOx 320 

NMVOC, SO2, BC and OC to global and regional inventories which were developed using 321 

bottom-up estimation methods over the six regions of interest described in Section 2 and shown 322 

in Figure 1. 323 

4.1 CO 324 

The annual average CO emissions for each region are displayed in Figure 2.  The inversion 325 

estimates are shown for Zheng et al. (2019), Müller et al. (2018) and Jiang et al. (2017).  We 326 

compare two estimates from Zheng; Inv1 which uses satellite constraints of only columns of CO 327 

for the time period 2000-2017, and Inv2 which, in addition, is constrained by both CO and 328 

HCHO columns for 2005-2017. Two estimates from Jiang et al. (2017) are also compared; Jiang-329 

prof which assimilates profile data and Jiang-colm which assimilates total column data. More 330 

specific details can be found in the Supplement. 331 

 332 

In regions with high emissions such as China, the U.S. and India, the inversion estimates are 333 

generally within the range of the bottom-up inventories in terms of magnitude and have a similar 334 

range of uncertainty. In all regions, Müller’s estimates are significantly lower compared to those 335 

of Zheng or Jiang. The lower estimates of Müller et al. (2018) are due to the use of prescribed 336 

modelled OH levels which are based on observations of methylchloroform (MCF) and further 337 

modulated based on comparisons with aircraft profiles and ground-based data. The OH field 338 

prescribed in their inversion setup is at the lower end of the range of what has been reported in 339 

the literature and calculated in most CTMs, implying less CO oxidation. The resulting higher CO 340 

lifetime is in turn compensated by lower optimized emissions. Another factor which could 341 

partially explain the discrepancy among the top-down estimates is the satellite data used in the 342 
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inversion system.  Müller assimilates IASI satellite CO data, while Zheng and Jiang, both of 343 

which have higher values, use MOPITT. 344 

 345 

In Western and Central Europe, Müller’s estimate for 2013 is within the narrow range of CO 346 

emission reported by the bottom-up inventories, and is quite close to the regional CAMS-REG 347 

inventory (Figure 2). However, regarding the U.S., Müller’s estimate of CO emission is 348 

considerably below (approx. 35%) the regional U.S. EPA inventory. Müller et al. (2018) attribute 349 

this large discrepancy to an overestimation in the U.S. bottom-up inventory, which has also been 350 

suggested in other studies (Hudman et al., 2008; Anderson et al., 2014; Jiang et al., 2015). In 351 

other regions such as China, India and Western Africa, it is difficult to comment on the accuracy 352 

of the magnitude of the inversion (or bottom-up) emission estimates due to the lack of 353 

measurements and regional information.  354 

 355 

The two inversion estimates of CO emissions from Zheng are quite similar in magnitude and 356 

trend in most regions, but differ in terms of inter-annual variability (Figure 2). The two estimates 357 

from Jiang show similar trends, but significant differences in magnitude over most regions, 358 

indicating that the type of data assimilated (e.g. profile vs. total column) has a large impact on 359 

the emission estimates. In most regions, the Jiang-prof estimates are higher than Jiang-colm. In 360 

China, there is a sharp decline in emissions after 2010 as a result of the stringent clean air 361 

policies that have been implemented in recent years due to the severe air quality issues which 362 

have been documented in other studies (Zheng et al., 2018). With the exception of the regional 363 

inventories MEIC v1.3 and REASv3.1, which show a decrease of 4.4 and 2.7 % yr
-1

 for the 364 

period 2011-2015, most of the inventories do not show the declining CO emissions after 2010. 365 

However, this trend is captured quite well by all of the inversion estimates which show a 366 

decrease in emissions ranging from 1 to 3 % yr
-1

 over 2010-2015. While both of Zheng’s 367 

estimates capture the magnitude and decreasing trend in China after 2011, Inv1 stabilizes after 368 

2014, whereas Inv2 continues to show a declining trend similar to the MEICv1.3 emissions. 369 

Between 2011 and 2017, the Inv2 estimates decrease at an annual rate of 5.6%, while the Inv1 370 

estimates decrease at a slower rate of 3.3%. The only difference between these two inversions is 371 

that, in addition to constraining columns of CO, formaldehyde (HCHO) is also constrained in 372 

Inv2. Constraining HCHO has a significant influence on the chemical production of CO and the 373 
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trend in Inv2. Tropospheric columns of OMI HCHO have been reported to keep increasing over 374 

China, likely due to significant increases in NMVOC emissions (Shen et al., 2019; Li et al., 375 

2019). This could explain why CO emission estimates continue to decrease in Inv2, while Inv1 376 

flattens out since the optimized emissions are overestimated to compensate for the 377 

underestimation of CO photochemical production.  378 

 379 

In the U.S., the CO inversion estimates from Zheng and Jiang are similar to the U.S. NEI 380 

regional inventory in terms of trends, and slightly higher in magnitude (Figure 2). Both estimates 381 

follow the continuing decreasing trend of the regional inventory up to 2010, after which Jiang’s 382 

estimates diverge and indicate a stabilization in CO emissions in the United States. Jiang et al. 383 

(2017) attribute this slowdown of U.S. pollutant reduction to factors such as diminished returns 384 

on improved catalytic converters which they suggest are unaccounted for in the U.S. inventory 385 

(Jiang et al., 2018). Jiang et al. (2018) demonstrate that satellite retrievals and surface 386 

measurements also indicate a significant reduction in the decreasing trends of CO and NOx 387 

concentrations after 2010 as compared to the previous years, corroborating the trend shown in 388 

their CO inverse estimates. However, there is not always a direct linear relationship between 389 

anthropogenic NOx emissions and measurements of tropospheric NO2. This point is further 390 

discussed in the following section on NOx emissions.  391 

 392 

In Europe, Zheng’s CO inversion estimates match fairly well the general trends from the bottom-393 

up inventories, which show a steady declining trend from the year 2000 that slows down after 394 

2009. Zheng’s estimates show a lot of inter-annual variability, while Jiang’s estimates show 395 

higher emissions in 2015 than in 2009, indicating a slightly positive recent trend that is contrary 396 

to the inventories. In terms of magnitude of emissions, all of the inversion estimates are 397 

considerably higher, except for that of Müller which is very to the CAMS-REG-AP regional 398 

inventory as discussed above (Figure 2). Zheng et al. (2019) suggest that the bottom-up 399 

inventories underestimate emissions in these regions, and show that their model biases are 400 

reduced compared to independent ground-based CO measurement when the posterior emissions 401 

are used. However, given that Europe is a region where there is a relatively a high level of 402 

detailed emission information, the higher inverse estimates of Zheng and Jiang may be due to 403 

higher OH levels in their model, since the estimates by Müller et al. (2018), using 404 
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methylchloroform-constrained OH abundances, provide an excellent agreement with the bottom-405 

up inventories.   406 

 407 

The largest uncertainly among the inversion estimates is found In Western Africa, where the CO 408 

emissions range from 17 Tg (Jiang-colm) to 64 Tg (Zheng-Inv2) in 2010 (Figure 2). However, 409 

Jiang’s estimates are likely biased towards the low-end because they are influenced by the low a 410 

priori emissions used in their inversion method. The scheme used to partition emissions into 411 

separate categories (e.g. anthropogenic, biomass burning, etc.) is different in each inversion 412 

system (see the Supplement and references therein) and based on information from the a priori 413 

emissions. Therefore, this can account for small differences between inversion estimates, 414 

particularly in regions such as Western Africa where there is a large contribution from non-415 

anthropogenic sources, such as biomass burning. In addition, the data used to construct bottom-416 

up inventories (e.g. emission factors, activity data, etc) in Africa also have quite large 417 

uncertainties. The DACCIWA and DICE-Africa regional inventories both show similar 418 

increasing trends in CO emissions. The DACCIWA estimate is about 33% higher than DICE-419 

Africa in 2010, however, there are some sectors not included in DICE-Africa (e.g. on-grid 420 

energy and formal industry, see the Supplement for details) which accounts, at least in part, for 421 

the discrepancy.  422 

 423 

In India, the inversion estimates are largely within the range of the global inventories and the 424 

regional inventory REASv3.1, however, they are almost twice as high as Sharma’s estimate. The 425 

trends are similar to the inventories until about 2012, after which the inverse estimates begin to 426 

stabilize (Figure 2). Because India is one of the regions in which updated regional emission data 427 

is not easily available, it is difficult to evaluate the trend in CO emissions seen in the estimates. 428 

Although not shown here, Sharma projects a value of 53.9 Tg for the year 2021, indicating an 429 

increasing trend in CO emissions in India.  430 

 431 
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 432 

Figure 2.  CO emissions from different inventories, inversion estimates and the SSPs. Note that 433 

the Sharma estimate is for the national boundaries of India only. 434 

 435 

 436 

4.2 NOx 437 

Figure 3 displays annually averaged NOx emissions for each region.  Inversion estimates are 438 

shown for TCR-2 in all regions and Qu in China and India. Two estimates for Qu are both 439 

derived using the same hybrid 4D-Var / mass balance inversion method. The ‘single’ estimates 440 

are constrained by only NO2 observations and the ‘joint’ estimates are constrained by NO2 and 441 

SO2, as described in section 2. We recall from Section 2 that Qu’s joint and single estimates are 442 
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for India only, while the TCR-2 and inventory emission averages are for India+ (Figure 1 in the 443 

Supplement) which is a larger region encompassing neighboring countries such as Pakistan,  444 

Nepal and Bangladesh. Qu’s estimates would likely be 15-25% higher if they included India+.  445 

Although there is a slight difference in the magnitude between the ‘single’ and ‘joint’ species 446 

estimates, the results in China and India indicate that this difference is minor compared to the 447 

spread in the top-down emission estimates, at least at the regional scale. Qu et al. (2019a) report 448 

large differences at grid-scale, but not in the national budget between the ‘single’ and ‘joint’ 449 

inversions.  450 

 451 

In terms of trends in NOx emissions, the degree of agreement between the inversion estimates 452 

and the inventories varies regionally (Figure 3).  In China, the trends are consistent with the 453 

regional inventories (MEICv1.3, REASv3.1 and Sun) and the CEDS global inventory, all of 454 

which show a broad peak around 2011-12, followed by a sharp decline. This declining trend is 455 

not found in the other global among the bottom-up inventories than the top-down estimates. For 456 

example, the Qu-single estimate for 2012 is the lowest of the inversion estimates (~17 Tg NO), 457 

while the TCR-2 estimate is about 25% higher (~21 Tg NO).  Among the bottom-up inventories, 458 

CEDS is the highest (~23 Tg NO), about 45% higher than the lowest value given by Sun et al. 459 

(2018) (~16 Tg NOx). In China, the range of uncertainty is about 20% greater in the bottom-up 460 

emissions than the top-down emissions.  461 

 462 

In the United States and Europe, the TCR-2 inversion estimates of NOx emissions generally 463 

follow the decreasing trends shown in the bottom-up inventories, except in recent years where 464 

TCR-2 shows a tendency towards a stabilization of emissions, while the inventories indicate a 465 

continuing significant decline (Figure 3). In the U.S. between 2010 and 2016, the TCR-2 NOx 466 

emissions decreased by about 3.8% per year on average, while the U.S. regional inventory shows 467 

a continuously strong reduction of almost 5.5% per year. Jiang et al. (2018) also report a 468 

slowdown of the decreasing trend in CO and NOx top-down emissions in the U.S. inferred by 469 

satellite NO2 data and suggest that the method used to calculate the NEI U.S. emissions leads to 470 

an overestimation of the reduction of emissions after 2010, whereas an alternative fuel-based 471 

method could produce trends more consistent with the top-down estimates.  Furthermore, the 472 

top-down emissions were found to be more consistent with observed ozone concentrations than 473 
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the U.S. inventory (He et al., 2019).  In contrast, Silvern et al. (2019) assert that the continued 474 

decreasing trend in the U.S. national inventory is consistent with the trends in NO2 surface 475 

observations, and that the stabilization in the OMI NO2 trend, and the TCR-2 NOx estimates, 476 

could be attributed to an underestimate of free tropospheric NO2 background in the models. They 477 

suggest that increases in the relative contribution of non-anthropogenic background sources of 478 

NOx (e.g. lightning and soils) explains the discrepancy between trends in OMI NO2 and the NEI 479 

inventory. Furthermore, Li and Wang (2019) report that in rural areas, strong nonlinear 480 

relationships exist between anthropogenic NOx emissions and satellite  NO2 columns, implying 481 

that constraining NOx emissions by only NO2 satellite retrievals might lead to inaccurate 482 

estimates.  Laughner and Cohen (2019) reported changes in NOx lifetime for many U.S. cities 483 

and suggested that accounting for this change in lifetime more accurately (for example, by using 484 

models with higher resolution) should help to improve emission trend estimates. Clearly, a better 485 

understanding of the relationship between anthropogenic NOx emissions and NO2 satellite 486 

retrievals, as well as uncertainties in bottom-up methods used to estimate NOx emissions, is 487 

urgently needed. 488 

 489 

In India and West Africa, the inversion estimates fall within the range of the inventories, but they 490 

show a weaker increasing trend than the inventories (Figure 3). For example, in Western Africa 491 

for the period 2005-2015, the TCR-2 estimates increase by slightly less than 1.5% yr
-1

, while the 492 

regional inventory DACCIWA increases by more than 3.5% yr
-1

 and DICE-Africa increases by 493 

more than 2% yr
-1

 (2006-2013). Similarly, in India during the period 2010-2015 NOx emissions 494 

given by REASv3.1 increase by almost 5% yr
-1

, while the TCR-2 estimates increase at a slower 495 

rate of about 2.5% yr
-1

. In 2011, the TCR-2 estimates 7.9 Tg NOx which is in very good 496 

agreement with Sharma’s value of 7.6 Tg NOx.    497 

 498 
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 499 

Figure 3.  NOx emissions from different inventories, inversion estimates and the SSPs. Note that 500 

the Sharma estimate is for the national boundaries of India only. 501 

 502 

4.3 NMVOCs, SO2 and Carbonaceous Aerosols 503 

Fewer inventories and inverse estimates are available for these species compared to CO and 504 

NOx. Figure 4a,b shows the annually averaged NMVOC inversion emission estimates in China 505 

from Stavrakou and Cao, along with the global and regional inventories. Note that Cao’s 506 

estimate in Figure 3 represents an average of four inversion experiments, ranging from 16.4 to 507 

23.6 Tg NMVOC, using different combinations of satellite observations as described in Cao et 508 
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al. (2018). The significant spread reflects uncertainty in the satellite data and its impact on top-509 

down NMVOC estimates. Both the inversion estimates (Stavrakou and Cao) and the inventories 510 

lie within a narrow range (Figures 2 and 3), although this does not necessarily indicate less 511 

uncertainty. Cao’s estimate for 2007 (20.2 Tg NMVOC) is slightly below the range of the 512 

inventories (21.0-27.5 Tg NMVOC) and is quite close to the REASv3.1 estimate for 2013 (21.0 513 

Tg NMVOC). Stavrakou’s estimates are similar in magnitude to the inventories and exhibit a 514 

stronger interannual variability. The inventories show an increasing trend in NMVOC emissions 515 

in China until ca. 2012, after which they start to level out. Over 2005-2014, Stavrakou’s 516 

estimates indicate a weak positive trend of ca. 1.4% yr
-1

, which is lower than those of REASv3.1 517 

(5.2% yr
-1

 over 2005-2014), Li et al. (3.2% yr
-1

) and MEICv1.3 (3.4% yr
-1

 over 2008-2014). The 518 

top-down emission trend is primarily driven by the tropospheric HCHO column trend, 519 

amounting to 1.3% yr
-1

 over Northern China between 2005 and 2014 (Stavrakou et al., 2017). 520 

Note that Shen et al. (2019) recently reported comparable summertime HCHO trends over 521 

Northern China over 2005-2016, and they found a good consistency with corresponding HCHO 522 

trends calculated by the GEOS-Chem CTM driven by MEICv1.3 emissions. The reasons for the 523 

apparent discrepancy with Stavrakou’s results are unclear but might be related to intermodel 524 

differences.  525 

 526 

Annually averaged SO2 emissions for China and India are illustrated in Figure 4c,d with 527 

inversion estimates from Qu and TCR-2 for both regions. The two estimates from Qu are derived 528 

using identical methods, except the emissions are constrained using different OMI satellite 529 

retrievals (Qu-BIRA and Qu-NASA, Qu et al., 2019). The impact of the two different retrievals 530 

on the magnitude of emissions is more significant in China where the average difference in 531 

annual SO2 emission estimates is about 20%. In India, this difference is around 6%, a 532 

consequence of the fact that differences in the satellite retrievals are not the same in all regions. 533 

Both estimates indicate relatively similar trends in China and India between the two OMI SO2 534 

products.  A third estimate of SO2 emission from Qu (Qu-joint) was derived using satellite SO2 535 

and NO2 constraints simultaneously, as described in section 2. We recall that the Qu-joint 536 

inversion estimates is for India only, unlike the other inversion and bottom-up estimates which 537 

are for India+. The Qu-joint estimate would be roughly 25% higher if it included India+.  538 

 539 
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In China, the range of SO2 emissions is large in both the inversion estimates and the bottom-up 540 

inventories (Figure 4c,d). For example, in 2010 the inversion estimates range from 541 

approximately 17 (TCR-2) to 24 (Qu-BIRA) Tg SO2 and the inventories range from about 16 542 

(Sun) to 28 (MEICv1.3) Tg SO2. While the inversion estimates show a significant decrease in 543 

Chinese emissions after 2010, this decline is not as steep as in the regional REASv3.1 and 544 

MEICv1.3 inventories in which SO2 emissions decreased by about 35 and 40% between 2011 545 

and 2015, respectively. In general, the inversion estimates are significantly lower than in the 546 

regional inventories until after 2014.  547 

 548 

In India, SO2 emissions derived from the inversion systems are all considerably lower than what 549 

is reported in most inventories (Figure 4c,d). The exception is Sharma’s bottom-up estimate for 550 

2011 of 6.5 Tg SO2 which is considerably lower than the other inventories and closer to the 551 

inversion estimates. Even if we add 25% to Sharma’s estimates for India to account for the other 552 

countries included in the India+ region, it is still the less than the other bottom-up estimates. The 553 

inventories all indicate that emissions have been steadily increasing in India since about 2005, 554 

however, this trend is weaker in the inversion estimates. The weaker trends in the inversion 555 

estimates could in part be due to satellite sensors which are not sensitive enough to pick some of 556 

the diffuse sources. Posterior SO2 emissions in less polluted areas are harder to estimate due to 557 

the large amount of negative retrievals (Qu et al., 2019). 558 

 559 

 560 

 561 

 562 
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 563 

Figure 4.  NMVOC (a, b) and SO2 (c,d) emissions from different inventories, inversion estimates 564 

and the SSPs. Note that the Qu-joint and Sharma estimates are for the national boundaries of 565 

India only. 566 

 567 

Figure 5 shows annually averaged black and organic carbon emissions in China, India and 568 

Western Africa. Chen’s inverse emission estimates provide a unique global time-series for the 569 

period 2006-2011, as a first attempt in using an inversion approach to indirectly derive black and 570 

organic carbon emissions by fitting satellite measurements of spectral aerosol extinction (AOD) 571 

and absorption (AAOD) (Chen et al., 2019). The inversion estimates of BC emissions are within 572 

the range of the bottom-up inventories in China and Western Africa, and slightly below in India 573 

(Figure 5). In contrast, the inversion estimates of anthropogenic OC emissions are considerably 574 

higher than most inventories in China and Western Africa, and at the upper end of the range in 575 
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India. It is interesting to note that Chen’s estimates and the DACCIWA regional inventory show 576 

considerably higher OC emissions than the global inventories and the regional inventory DICE-577 

Africa, while BC emissions are quite similar. This could suggest an underestimation in OC 578 

emissions in the global inventories in these regions. Other studies have identified inaccuracies in 579 

global inventories in West Africa where there is much uncertainty related to the emission factors 580 

and activity data from region-specific emissions sources which are unaccounted for (Liousse et 581 

al., 2014; Marais et al., 2016).  For example, wood burning for cooking and heating is a large 582 

source of OC and BC emissions in Africa but is likely misrepresented in inventories due to lack 583 

of representative data. Inversion estimates could potentially be used to improve inventory 584 

emissions from these and other misrepresented sources. However, uncertainties in the inversion 585 

estimation of black and organic carbon by fitting indirectly measurements of AOD/AAOD need 586 

to also be better quantified. Both the BC and OC inversion estimates show a stronger interannual 587 

variability than the bottom-up inventories, but in most cases the general trends agree reasonably 588 

well.  589 
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 590 

Figure 5.  BC and OC emissions from different inventories, inversion estimates and the SSPs. 591 

Note that the Sharma estimate is for the national boundaries of India only. 592 

 593 

 594 

5 Comparison of recent emission trends with SSPs for different regions 595 

In this section, we compare recent trends from available inventories and inversion estimates to 596 

the five SSP scenarios under consideration. Linear trends of NOx and CO emissions from the 597 

SSPs for the years 2010-2020, and the average of the trends from the bottom-up inventories and 598 

inverse modelling estimates (INV) which have data until at least 2015, are summarized in Table 599 

3.  All trends are expressed in % yr
-1

 relative to the mean over the data period. Individual trends 600 
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and their statistical significance is given in supplementary material. Note that for CO INV trends, 601 

we include only the Zheng et al. (2019) estimates from the inversion using the most recent 602 

satellites constraints for CO, HCHO and CH4 (inversion 3, cf. Section 2), and the Jiang-prof 603 

estimates which assimilates profile data. For each region, the SSP trends which differ by less 604 

than 1% compared to the INV trend are in bold, indicating the scenarios with recent trends that 605 

are closest to those of the inventories and inverse modelling emissions. This type of analysis is to 606 

a certain extent speculative, therefore the results only indicate suggestions of the scenarios which 607 

match most closely the estimations of actual recent trends. Furthermore, recent trends in the last 608 

10 years are not necessarily indicative of how emissions will evolve in the future. Recall that 609 

SSP1 and SSP5 are both strong pollution control scenarios; SSP5 assumes an energy-intensive, 610 

fossil fuel based economy, while SSP1 represents a future  shifted towards more sustainable 611 

practices. SSP3 and SSP4 represent futures with more pessimistic development trends, where 612 

there is little investment in health and education and fast growing populations. In SSP3, national 613 

and regional security is prioritized, whereas in SSP4 large inequalities dominate both within and 614 

across countries.  SSP2 is the moderate pollution control scenario, in which trends more or less 615 

follow their historical patterns.  616 

 617 

In China, SSP126 is the scenario which matches most closely to the actual recent trends in CO 618 

emissions. This is a strong pollution control scenario that reflects the stringent air quality 619 

standards China has enforced in recent years. All of the SSP NOx trends agree with the declining 620 

emissions reported by the inventories (REASv3.1, Sun, MEICv1.3) and inverse modelling 621 

estimates (Qu-joint, TCR-2 and DECSOv5.1qa), but for the period considered, 2010-2020, the 622 

decrease is not as strong. However, considering only the last few years since 2015, we can see in 623 

Figure 2 that the MEICv1.3 regional inventory and the inverse modelling estimates from 624 

DECSOv5.1qa both show a decline in the decreasing trend of NOx emissions, which is 625 

qualitatively similar to that of SSP126. 626 

 627 

The results indicate that recent emission trends in the United States are also similar to SSP126 628 

(Table 3). The INV trends, which are based on the NEI regional inventory and inverse modelling 629 

estimates, show recent declines in NOx and CO emissions on the order of 3% yr
-1

, consistent 630 

with the strong pollution control scenario. However, it should also be noted that the CO 631 
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inversion estimates from Jiang et al. (2017) which show a slowdown in declining CO emissions 632 

in the US are not included in the INV average because there is not a statistically significant trend. 633 

If the Jiang et al. (2017) inversion estimates are included, the INV trend would show less of a 634 

negative trend in CO emissions more similar to that of SSP585. In Western and Central Europe, 635 

as in the U.S., there is a smaller spread in emissions among the SSPs, especially during the early 636 

century, therefore the trends are more similar and indicate the same sign. Trends from SSP126 637 

and SSP585 match most closely to the INV trends for Europe, both of which are strong pollution 638 

control scenarios. However, it should be noted that the inversion estimates of CO (Jiang et al. 639 

(2017) and Zheng et al.(2019)) and NOx (TCR-2) emissions do not show a statistically 640 

significant trend in recent years in Europe, and therefore are not included in the INV trend 641 

average which is based largely on the CAMS-REG-AP regional inventory (Figures 1 and 2). In 642 

Southeast Asia, the strong pollution control scenario SSP126 also matches the INV trend most 643 

closely, which indicates a positive trend in NOx and declining trend in CO emissions.   644 

 645 

Our results, based on the trends given in Table 3 as well as a qualitative visual interpretation of 646 

Figures 1 and 2, indicate that the most likely scenario representing recent emission trends in 647 

India is SSP370 which is a low pollution control scenario. In Western Africa and Indonesia+, 648 

emission trends from SSP460 match most closely to the recent INV trends in NOx and CO 649 

emissions. SSP4, also a low pollution control scenario, represents a scenario with a fast-growing 650 

population with increasing inequalities, leading to societies that are highly vulnerable to climate 651 

change. Indeed, air quality is deteriorating in many West African countries due to rapid increases 652 

in population, economic growth and coinciding lack of regulations, especially in megacities 653 

(Liousse et al. 2014).  For some of the regions the results are ambiguous, either because none of 654 

the SSP emission trends are close to the actual trends (i.e. Southern Africa), or because there is 655 

not a statistically significant INV trend (i.e. Middle East and South America). In general, and 656 

especially in regions where there is a lack of reliable emission data, the results should be 657 

interpreted with caution in terms of robustness. 658 

 659 

 660 

 661 

 662 
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 663 

 664 

Table 3: Linear trends of NOx and CO emissions from SSPs for the years 2010-2020, and the averaged trend from 665 

all regional inventories and inversion estimates (INV) which have data until at least 2015 and are statistically 666 

significant (p > 0.05).  Trends are expressed in units of % yr-1 relative to the mean over the data period. The number 667 

of available datasets with statistically significant trends used to calculate the average is indicated in parenthesis.  668 

SSP trends shown in bold correspond most closely to recent observed trends for NOx and CO. 669 

 670 

 671 

 672 

 INV SSP126 SSP245 SSP370 SSP460 SSP585 closest 

scenario 

China 

 

NOx -3.07 (4) -1.59 -1.06 0.86 -0.64 -1.03 
SSP126 

CO -2.94 (3) -2.36 -1.03 0.36 -0.98 -2.19 

Middle 

East 

NOx * 0.02 0.44 1.29 -1.39 1.01 
---- 

CO * -2.12 -3.31 -0.12 -1.86 0.02 

Western 

Africa 

NOx +2.03 (2) 0.59 1.40 1.92 2.08 2.18 
SSP460 

CO +3.35 (2) -3.52 0.97 1.27 1.30 -0.41 

India 
NOx +3.33 (2) 1.39 2.13 3.17 3.05 4.35 

SSP370 
CO +1.32 (3) -2.03 0.95 1.81 2.10 0.23 

United 

States 

NOx -3.16 (2) -3.98 -4.80 -2.47 -3.19 -2.99 
SSP126 

CO -3.70 (3) -3.54 -2.02 -1.28 -2.34 -1.21 

Western 

Europe 

NOx -2.47 (2) -4.86 -4.86 -3.44 -4.12 -3.12 
SSP126 

CO -4.21 (1) -3.87 -4.19 -1.48 -2.50 -2.80 

Central 

Europe 

NOx -3.44 (1) -4.21 -4.34 -2.46 -3.11 -2.46 
SSP126 

CO -3.20 (1) -3.72 -1.01 -0.93 -0.03 -3.18 

South 

America 

NOx * -0.07 -0.41 1.12 -0.52 0.94 
--- 

CO * -2.56 -2.85 -0.47 -1.31 -1.74 

Southeast 

Asia 

NOx +2.07 (2) 1.84 0.45 2.07 2.00 1.35 
SSP126 

CO -2.72 (2) -3.02 -0.97 1.05 0.84 -0.08 

Indonesia 
NOx +1.43 (2) 0.61 0.08 2.01 1.44 1.41 

SSP460 
CO +2.86 (2) -3.15 -1.83 0.50 0.65 -0.63 

Oceania 
NOx * -0.75 -0.38 0.36 -0.32 0.17 

--- 
CO -5.90 (1) -3.17 -1.07 -1.21 -2.08 -0.91 

Southern 

Africa 

NOx +2.91 (1) -0.19 0.21 0.76 0.32 0.32 
--- 

CO +3.04 (2) -2.53 0.80 1.11 1.28 -0.37 
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 674 

6 Conclusions 675 

In this study, we have presented a comprehensive overview and comparison of current state-of-676 

the-art top-down and bottom-up emission estimates of CO, NOx, NMVOC, SO2, BC and OC for 677 

several world regions. The results show that the top-down estimates are generally within the 678 

range of bottom-up emission inventories and exhibit a similar level of uncertainty, or even less in 679 

certain regions such as China. In general, for all species the largest discrepancies are found 680 

outside of regions such as the U.S., Europe and Japan where the most accurate and detailed 681 

information on emissions (e.g. activity data, emission factors) is available. In terms of absolute 682 

magnitude, the largest spread in CO and NOx inventory emissions is found in China where in 683 

2010 differences are approximately 90 (60%) and 6 (33%) Tg, respectively. Significant 684 

differences are also seen for other compounds in China: ~20 Tg (~80%) for SO2, 2 Tg (~55%) 685 

for OC, ~1 Tg (+55%) for BC. Contrarily, NMVOC inventory emissions are in better agreement 686 

in China, with a difference of 4 Tg (15%) in 2010, as compared to most other regions (e.g. 8 687 

Tg (90%) in Western Africa and 8 Tg (45%) in India+). This agreement might be 688 

coincidental, however, and does not necessary imply that the emissions are less uncertain. In 689 

terms of percentage differences, the variation is not region- or species-dependent, and in general 690 

ranges from about 15% up to about 100%.  In part, this likely reflects differences in the 691 

inclusion/exclusion of specific sectors, as well as in the methodologies used to construct the 692 

bottom-up inventories. A more in-depth detailed analysis at the sectoral level would give insight 693 

into how much of the uncertainty is due to these factors, but would be beyond the scope of this 694 

study. 695 

 696 

Top-down emission estimates offer great potential and clear advantages, however, future work 697 

aimed at identifying, quantifying and reducing the uncertainties is needed.  698 

Constraining multiple species in inversion modelling methods can lead to better consistency in 699 

simulated atmospheric chemical processes and thus more accurate optimized emissions (e.g., 700 

Zheng et al., 2019a; Qu et al., 2019a). Correctly modelling OH fields are also important due to 701 

its significant impact on oxidation processes (Müller et al., 2018; Jiang et al., 2011; Miyazaki et 702 

al., 2020b). More generally, the representation of chemical and transport processes in model 703 
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should be improved. In addition, the type of satellite data assimilated (e.g. profile vs total 704 

column) has a large impact on inversions (e.g., Jiang et al., 2017) and should be further explored. 705 

Finally, the satellite retrievals have important uncertainties with significant impacts on the 706 

emission inversions. Much can be learned in terms of quantifying these and other sources of 707 

uncertainty in inverse modelling estimates through more collaborated inter-comparison projects 708 

such as the Global Carbon Project (www.globalcarbonproject.org) which targets CO2 and CH4. 709 

A first step has been made with the IGAC AMIGO project (Analysis of eMIssions usinG 710 

Observations, https://amigo.aeronomie.be/) which brings together the international scientific 711 

community with the common goal of better quantifying emissions for a variety of trace gases and 712 

at different spatio-temporal scales. Inverse modelling has been identified as an integral part of 713 

AMIGO. 714 

 715 

Top-down emissions offer great potential to supplement or improve bottom-up inventories, 716 

particularly in regions where global inventories often lack the necessary up-to-date and accurate 717 

information regarding regional activity data and emission factors. For example, China has 718 

undergone rapid economic growth in addition to stringent pollution control policies in recent 719 

years, both of which have led to rapidly changing activity data and emission factors (Zheng et 720 

al., 2018). This evolution has had a large impact on emissions, which were estimated to have 721 

been decreasing substantially in China during the last several years, except for NMVOC. The 722 

downward trend in China’s emissions is well captured by the inversion estimates, as well as 723 

(Rao, et al., 2016)by the detailed regional inventories, but is not represented in any of the global 724 

inventories. This is a clear example of where inversion estimates provide useful constraints to the 725 

global bottom-up inventories, particularly in countries that are undergoing rapid changes in 726 

economy, technology, and environmental policies, such as India and Africa. Finally, since 727 

inversion estimates become available more quickly than bottom-up inventories, they can be used 728 

to extrapolate bottom-up inventories to the most recent years, which would benefit air quality 729 

forecasting. This also adds information that can be used to tune baseline emissions in recent 730 

years in the development of future emission scenarios such as the RCPs and SSPs. 731 

 732 

This study has also compared recent emission trends in regional inventories and inversion 733 

estimates to those of five SSP near-future projections for several world regions.  For each region, 734 
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we identified the scenarios for which the recent CO and NOx trends for the recent years (2010-735 

2020) match most closely the best estimates based on bottom-up and top-down estimates. This 736 

type of analysis can be helpful in updating inventories for the most recent years and can serve as 737 

a guide in selecting CMIP6 climate change projections to be used for regional downscaling in air 738 

quality forecasting, and near-future pollution control/mitigation and climate impact studies. In 739 

addition, highlighting inconsistencies between the SSPs and actual emissions can help improve 740 

in the development of future emission scenarios. Not surprisingly for China, which has 741 

experienced drastic reductions in emissions due to the enforcement of stringent air quality 742 

policies, the trends from the strong pollution control scenarios, SSP1 and SPP5, are most 743 

representative of the actual recent trend. In India and Western Africa, regions of rapid population 744 

growth and significant increases in unregulated emissions, SSP3 and SSP4 which represent 745 

futures with more pessimistic development trends (e.g. little investment in health and education 746 

and fast growing populations) match most closely the actual recent trends.  747 
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