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Abstract9

Probabilistic models of subsurface flow and transport are required for risk assessment and reliable10

decision making under uncertainty. These applications require accurate estimates of confidence11

intervals, which generally cannot be ascertained with such statistical moments as mean (unbiased12

estimate) and variance (a measure of uncertainty) of a quantity of interest (QoI). The method of13

distributions provides this information by computing either the probability density function or the14

cumulative distribution functions (CDF) of the QoI. The method can be orders of magnitude faster15

than Monte Carlo simulations (MCS), but is applicable to stationary, mildly-to-moderately heteroge-16

neous porous media in which the coefficient of variation of input parameters (e.g., log-conductivity)17

is below three. Our CDF-RDD framework alleviates these limitations by combining the method of18

distributions and the random domain decomposition (RDD); it also accounts for uncertainty in the19

geologic makeup of a subsurface environment. For a given realization of the geological map, we20

derive a deterministic equation for the conditional CDF of hydraulic head of steady single-phase21

flow. The solutions of this equation are then averaged over realizations of the geological maps to22

compute the hydraulic head CDF. Our numerical experiments reveal that the CDF-RDD remains ac-23

curate for two-dimensional flow in a porous material composed of two heterogeneous hydrofacies,24

a setting in which the original CDF method fails. For the same accuracy, the CDF-RDD is an order25

of magnitude faster than MCS.26

1 Introduction27

Reliable and accurate predictions of subsurface flow and transport are notoriously elusive due28

to insufficient site characterization, which manifests itself in uncertainty about a site’s geological29

makeup, spatial variability of its hydraulic properties, external forcings (e.g., initial and bound-30

ary conditions, recharge), etc. This uncertainty is characterized by treating input parameters as31

random fields (Dagan & Neuman, 1997) and solving a stochastic version of the governing equa-32

tions, whose solutions are probability density functions (PDFs) or cumulative distribution functions33

(CDFs) of model outputs such as hydraulic head or solute concentration. While Monte Carlo simu-34

lations (MCS) can be, and often are, used to compute those, they require a large number of forward35

model runs (MC realizations) to converge. This number increases with the degree of uncertainty in36

input parameters, as quantified, e.g., by their variances.37

Numerical sampling-based strategies for computing PDFs/CDFs of system states, designed38

to beat MCS in terms of the computational cost, include multi-level MC, various forms of quasi-39

MC, and stochastic collocation methods. The method of distributions obviates the need for sample40

generation by deriving deterministic equations for PDFs or CDFs. It relies on stochastic averaging41

techniques similar to those routinely used to derive (deterministic) moment differential equations42

for the first two statistical moments of system states (Neuman et al., 1996; Likanapaisal et al.,43

2012, and the references therein). The performance of these methods deteriorates with the degree of44

subsurface heterogeneity, as quantified by the correlation lengths and variances (or, more precisely,45

coefficients of variation) of the input parameters: Short correlation lengths give rise to the so-called46

curse of dimensionality, which makes polynomial chaos-based techniques slower than MCS. Large47

variances undermine the veracity of perturbation-based moment differential equations and PDF/CDF48

equations.49

Probabilistic computations become even more challenging when parameter PDFs exhibit multi-50

modality and/or lack of statistical homogeneity (stationarity). These are manifestations of the pres-51

ence of multiple geologic materials with distinct (heterogeneous and uncertain) hydraulic and trans-52

port properties. Random domain decomposition (RDD) (Winter & Tartakovsky, 2000, 2002) ame-53

liorates these complications by representing a heterogeneous subsurface environment as a union of54

distinct geological units or hydrofacies. By construction, hydraulic and transport properties of each55

unit are treated as unimodal, statistically homogeneous random fields with relatively small vari-56

ances; boundaries between the units, reconstructed from hard and/or soft data, can be uncertain as57

well. RDD has been used to dramatically enhance the performance of moment differential equa-58

tions (Winter et al., 2003), generalized polynomial chaos expansions (Xiu & Tartakovsky, 2004),59
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and stochastic collocation methods (Lin et al., 2010). Here, we use RDD to derive a deterministic60

equation for the CDF of hydraulic head for flow in highly heterogeneous aquifers with uncertain61

geology, hydraulic properties, and external forcings.62

This approach, which we refer to as CDF-RDD, is presented in section 2. It combines the63

CDF method for flow in statistically homogeneous porous media (Yang et al., 2019) with RDD that64

accounts for geologic uncertainty (A. Guadagnini et al., 2003). In section 3, we demonstrate the65

accuracy and computational efficiency of CDF-RDD via a series of numerical experiments dealing66

with two-dimensional steady-state flow in a porous medium composed of two materials whose spa-67

tial arrangement and hydraulic conductivity are uncertain. Main findings and conclusions drawn68

from our study are summarized in section 4.69

2 Problem Formulation and its Probabilistic Solution70

Consider a subsurface environment Ω composed of Ngu non-overlapping geological units71

Ωi. A spatial arrangement of these units can be provided by expert opinion in the form of a72

geological map. When sufficient data (measurements of hydraulic conductivity or other discrim-73

inating attributes of hydrofacies) are available, one might be able to reconstruct such a map by74

using geostatistics—e.g., indicator Kriging (L. Guadagnini et al., 2004), object-based geostatistics75

(Deutsch & Tran, 2002) and multi-point geostatistcs (Strebelle, 2002)—or machine learning tools76

such as support vector machines (Wohlberg et al., 2005) or nearest-neighbor estimators (Tartakovsky77

et al., 2007). Regarding of the method used, the resulting geological maps are invariably uncertain.78

Steady-state d-dimensional groundwater flow in such an environment is described by

∇ · [K(x)∇h(x)] = g(x), x = (x1, . . . , xd)
> ∈ Ω, (1)

where K(x) is hydraulic conductivity of the porous medium Ω, h(x) is hydraulic head, and g(x)
represents point and/or distributed sources and sinks. The groundwater flow equation (1) is subject
to boundary conditions

h(x) = φ(x), x ∈ ΓD; −K(x)∇h(x) · n(x) = ψ(x), x ∈ ΓN . (2)

Here φ(x) and ψ(x) are the hydraulic head and the normal component of the Darcy flux q(x) =79

−K(x)∇h(x) prescribed, respectively, on the Dirichlet (ΓD) and Neumann (ΓN ) segments of the80

boundary ∂Ω = ΓD ∪ΓN of the flow domain Ω; and n(x) is the outward unit normal vector to ΓN .81

An unknown/unknowable spatial distribution of the hydraulic conductivity K(x) has to be es-82

timated from measurements K(xn) collected at Nmeas (well) locations xn ∈ Ω (n = 1, . . . , Nmeas).83

The presence of multiple hydrofacies Ωi manifests itself in a histogram of the measurement set84

{K(xn)}Nmeas
n=1 (an estimate of the PDF of K) that exhibits multi-modal behavior and its overall85

standard deviation σK is large. This typical setting would increase the computational cost of MCS86

and invalidate the perturbation-based moment differential equations (Likanapaisal et al., 2012) and87

PDF/CDF equations (Yang et al., 2019), both of which require the perturbation parameter σ2
Y (the88

variance of log-conductivity Y = lnK) to be relatively small.89

We tackle this challenge by using the RDD described in section 2.1. It is deployed in sec-90

tion 2.2 to account for geologic and parametric uncertainties in the context of the method of distri-91

butions. An efficient numerical implementation of the resulting CDF-RDD approach for computing92

the CDF Fh(H;x) of hydraulic head h(x) is described in section 2.3.93

2.1 Random Domain Decomposition94

RDD treats the porous medium Ω and its hydraulic conductivity K(x) as a two-scale stochas-95

tic process. The large scale represents geologic uncertainty, such that a random label α with the96

PDF fα(a) encapsulates alternative representations of a site’s geology, i.e., uncertain spatial extent97

of the facies Ωi (i = 1, . . . , Ngu). The small scale accounts for random variability of the hydraulic98
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conductivity K(x) within each facies Ωi, which is quantified by the PDF fK(k;x ∈ Ωi). Com-99

bining the two scales of uncertainty, hydraulic conductivity K(x) is characterized by the joint PDF100

fK,α(k, a;x) = fK|α(k;x|α = a)fα(a), where fK|α is the PDF of K conditioned on a given101

geologic map with label a.102

By construction, the random hydraulic conductivity K(x) of each sub-domain Ωi is statisti-103

cally homogeneous, with unimodal conditional PDFs fK|α=a(k;x ∈ Ωi|α = a) and relatively small104

variances σ2
Yi

of log conductivity Yi = Y (x) for all x ∈ Ωi. We model the hydraulic conductivity105

of each facies, Ki ≡ K(x) for all x ∈ Ωi, as a second-order stationary multivariate log-normal field106

with constant mean K̄i and variance σ2
Ki

. It has a correlation function ρKi
(r/`Ki

), where `Ki
is the107

correlation length, and r = |x − y| is the distance between any two points x,y ∈ Ωi. To simplify108

the presentation, we assume Ki(x) and Kj(x) with i 6= j to be mutually uncorrelated; RDD can109

readily account for cross-correlations between hydraulic properties of different facies at the cost of110

slightly increased mathematical complexity (Winter et al., 2006).111

With these preliminaries, we replace (1) with

∇ · [Ki(x)∇hi(x)] = g(x), x ∈ Ωi, i = 1, . . . , Ngu, (3)

which is subject to boundary conditions (2) and the continuity conditions

hi(x) = hj(x), Ki(x)∇hi(x) · ni(x) = Kj(x)∇hj(x) · nj(x), x ∈ Γij . (4)

defined on the contact interfaces Γij = Ωi∩Ωj between the adjacent facies Ωi and Ωj (i 6= j). In (3)112

and (4), the subscript of h indicates the hydraulic head inside the corresponding facies. This problem113

formulation is beneficial because it enables one to use small variances σ2
Yi

within each facies Ωi as114

perturbation parameters. This has been done before to derive moment differential equations (Winter115

et al., 2003); here, we use it to derive a deterministic equation for the full CDF of hydraulic head.116

2.2 Combined CDF-RDD Approach117

For a given geological map, defined by the label (realization) α = a, we show in Appendix A
that the conditional CDF Fh|α(H;x|α = a) of hydraulic head h(x) in (3) satisfies a deterministic
(d+ 1)-dimensional differential equation

∇ · (K̄(x)∇Fh|α) +
∂(UFh|α)

∂H
= υFh|α, x̃ = (x1, . . . , xd, H)> ∈ Ω̃. (5)

The (ensemble) averaged hydraulic conductivity K̄(x) takes the constant value of K̄i for x ∈ Ωi,
where i = 1, . . . , Ngu. The PDF equation (5) is defined on the domain Ω̃ ≡ Ω × (Hmin, Hmax),
where Hmin and Hmax are, respectively, the minimum and maximum values hydraulic head h(x) can
take in the simulation domain Ω; and

U = υ(H − h̄) +∇ · (K̄∇h̄) + 2g, υ =
K̄∇h̄ · ∇h̄− V

σ2
h

, V = −1

2
K̄∇2σ2

h. (6)

The coefficients (6) contain the conditional mean, h̄, and variance, σ2
h, of hydraulic head h(x) at118

x ∈ Ω. These statistical moments can be computed with various techniques, including MCS. In119

our implementation, we use deterministic moment equations Appendix B, which prove to be more120

computationally efficient than MCS.121

The CDF equation (5) is derived by deploying the self-consistent closure approximation (Yang122

et al., 2019) that ensures that the differential equations for the moments h̄(x) and σ2
h(x), obtained123

by integrating (5), are identical to the moment equations derived in Appendix B. This is in contrast124

to the interaction-with-the-mean closures (Pope, 2001; Raman et al., 2005; Haworth, 2010) used in125

turbulence and combustion. The latter fail to preserve a system state’s variance and, under certain126

conditions, its mean (Boso & Tartakovsky, 2016; Yang et al., 2019).127

Boundary and interfacial conditions for the CDF equation (5) are derived in Appendix A. If
the boundary functions φ(x) and ψ(x) are uncertain and treated as random fields with one-point
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CDFs Fφ(Φ;x) and Fψ(Ψ;x), then (5) is subject to boundary conditions

Fh|α = Fφ, x ∈ ΓD; −∇Fh|α · n = [γ(x)(H − h̄) + η(x)]
∂Fh|α

∂H
, x ∈ ΓN , (7)

where

γ(x) =
K̄σ2

h · n
2σ2

h − 4h̄2
, η(x) = K̄∇h̄ · n− ψ̄, (8)

ψ̄(x) is the mean of the boundary flux ψ(x), and ΓD and ΓN are portions of the Dirichlet and
Neumann boundaries, respectively, that intersect Ω. Finally, the general property of a CDF provides
the remaining boundary conditions in H space,

Fh(H = Hmin;x) = 0, Fh(H = Hmax;x) = 1. (9)

The straightforward formulation for the boundary conditions in the phase space is a key advantage128

of CDF equations over PDF equations, for which the corresponding boundary conditions may not129

be uniquely defined and have to be supplemented with the conservation of probability condition.130

We recall that a combination of the solutions to (5)–(9) in each subdomain Ωi is the conditional
CDF Fh|α, i.e., the CDF of h conditioned on a given geological map with the label α = a. This
boundary-value problem has to be solved repeatedly for different geological realization α. The
average of these solutions over all possible realizations of α is the CDF Fh(H;x),

Fh(H,x) =

∫
Fh|α(H;x|α = a)fα(a)da. (10)

The latter provides a probabilistic prediction of hydraulic head h(x), which accounts for uncertainty131

in both a site’s geology and hydraulic conductivity.132

2.3 Numerical Implementation133

Numerical solution of the boundary-value problem (5)–(9) is computed in three steps. The134

first step involves finite-volume solutions of the moment equations (B4)–(B13), i.e., provides nu-135

merical approximations of the mean and variance of the hydraulic head, h̄(x) and σ2
h(x). This step136

relies on the research code developed in (Likanapaisal et al., 2012).137

The second step consists of numerical solution of (5) and (6). Among the plethora of schemes
for solving a linear advection-diffusion-reaction equation, such as (5), we utilize a finite-volume
scheme in which each facies Ω̃ is divided into Nfv non-overlapping domains Ω̃1, . . . , Ω̃Nfv forming
a partition Pi of Ω̃i. A finite-volume solution of (5) is obtained by integrating this equation over
each element Ω̃k of the partition P and using the Gauss-Ostrogradsky theorem to replace the volume
integrals over Ω̃k with the surface integrals over their surface ∂Ω̃,∫

∂Ω̃k

F · nedx̃ =

∫
Ω̃k

βFh|αdx̃, F(x̃) = (K̄∇xFh|α, UFh|α)> (11)

where ne is the outward unit normal vector of the interface ∂Ω̃ki . The discrete form of (11) is∑
j∈adj(i)

Tij(F
(j)
h|α − F

(i)
h|α) + U+

e F
(i)
h|αAij + U−e F

(j)
h|αAij = βiF

(i)
h|αVki , i = 1, . . . , Nfv, (12)

where adj(i) is the set of neighbors of i, Vki is the volume of Ω̃ki , and

Tij =
KijAij
δxij

, U+
e =

Ue + |Ue|
2

, U−e =
Ue − |Ue|

2
, Ue = Une,H . (13)

Here ne,H is the H-direction component of ne; and Kij , Aij , and δxij are harmonically averaged138

hydraulic conductivity, differential element cross-sectional area, and the distance between the spa-139

tially connected computational nodes i and j, respectively. A main advantage of our finite volume140

implementation for (5) is that it does not require any continuity conditions across the interfaces141
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between the adjacent facies. This results in considerable computational speed-up over other RDD-142

based numerical schemes that enforce the continuity iteratively (A. Guadagnini et al., 2003; Winter143

et al., 2003). Combining (12) into a single system of linear algebraic equations, we obtain Af = 0144

where A is the Nfv ×Nfv coefficient matrix and f is the Nfv × 1 solution vector for the conditional145

CDF Fh|α. We use the bi-conjugate gradient stabilized method to solve this system. Since the146

coefficients of the CDF equation (5) involve ensemble averages (e.g., K̄), they are smoother than147

their randomly fluctuating counterparts (e.g., K). Consequently, coarser meshes (smaller values of148

Nfv) can be used to solve (5) than to solve MC realizations, providing an additional boost to the149

computational efficiency of the CDF method.150

The third, and last, step is to compute the hydraulic head CDF Fh from its conditional coun-151

terpart Fh|α. This step involves numerical evaluation of the integral in (10). We approximate this152

integration with the Monte Carlo average of Nα realizations of the geological map with the label153

α. Numerical integration and differentiation of Fh|α, used to compute the conditional mean and154

variance of h, are carried out with the Gaussian quadrature rule and central difference, respectively.155

Figure 1: Equiprobable geological models used in numerical experiments.

3 Numerical Experiments156

We illustrate the accuracy and efficiency of the CDF-RDD approach on two examples dealing157

with two-dimensional mean-uniform and convergent flows in a statistically inhomogeneous envi-158

ronment composed of distinct heterogeneous facies. These examples represent two typical flow159
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scenarios. The first is regional flow driven by internally imposed hydraulic head gradient, the sec-160

ond is radial flow towards a pumping well.161

Figure 2: Mean (left column) and variance (right column) of hydraulic head in mean uniform flow
(top row) and flow to a well (bottom row). These moments are alternatively computed with Monte
Carlo simulations (MCS), the RDD-enhanced SME (SME-RDD), and evaluating the moments of
Fh in the CDF equation with and without RDD (CDF and CDF-RDD, respectively).

In both flow regimes, the flow domain Ω, a square of unit dimensionless length (normal-162

ized with the domain size L), is composed of Ngu = 2 facies whose uncertain spatial arrange-163

ment is represented by four different equiprobable geological models labeled by α (fig. 1). These164

models are generated using multi-point geostatistics, specifically SNESIM algorithm (Strebelle,165

2002). The log-hydraulic conductivity of each sub-domain, Yi(x) = lnKi(x) (i = 1, 2), is a166

second-order stationary multivariate Gaussian field with an isotropic exponential correlation func-167

tion ρYi
(r) = exp(−|x−y|/`Yi

) and the dimensionless (normalized with L) correlation length `Yi
.168

In the simulations reported below, we set Ȳ1 = 0, Ȳ2 = 5, σ2
Y1

= σ2
Y2

= 1, and `Y1
= 0.3.169

The mean uniform flow is driven by a constant hydraulic head gradient J ≡ (hout − hin)/L =170

0.1, with the deterministic dimensionless hydraulic heads hin = 1.1 and hout = 0.1 (normalized171

with the reference hydraulic head href) along x1 = 0 and x1 = 1, respectively. The radial flow is172

induced by a pumping well at the center of the domain, (x1, x2) = (0.5, 0.5), which is controlled173

by a fixed dimensionless hydraulic head of hwell = 0.1; the boundary head hD along x1 = 0 and174

x1 = 1 is now uncertain and modeled as a Gaussian field with the mean h̄D = 1.0 and variance175

σ2
hD

= 0.04. For both flow scenarios, no-flow boundary conditions are applied at bottom and top176

boundaries (x2 = 0 and x2 = 1).177
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The computation domain Ω̃ ≡ Ω × (Hmin = 0, Hmax = 1.2) is discretized using 45, 45,178

and 120 nodes in the x1, x2, and H directions, respectively. Thus, the total number of grids Nfv is179

243,000.180

We compare the performance of our CDF-RDD method with that of MCS. For each geological181

model, equiprobable MC realizations of Yi(x) are generated by the sequential Gaussian simulator182

(Deutsch & Journel, 1998). The convergence study of the two flow scenarios revealed that, for each183

geological model, it takesNMCS = 104 realizations for MCS estimates of the exceedance probability184

P[h(x) > H] = 1−Fh(H;x) to stabilize with less than 0.01 of the coefficient of variation. Hence,185

the total number of MCS realizations is NMCS = 4 · 104, a prohibitively large number in most186

applications of practical significance.187

3.1 Accuracy of the CDF method188

Both the statistical moment equations (SME) and the CDF equation are derived via perturba-189

tion expansions in the variance of log-conductivity. If one were to treat the porous medium in fig. 1190

as a single continuum, it would be characterized by the variance σ2
Y ∼ (Ȳ1 − Ȳ2)2 (Winter et al.,191

2003); for the parameters used in our experiments, σ2
Y ≈ 7. Such a large variance is expected to192

undermine the accuracy of the moment and CDF equations derived without recourse to RDD. Fig-193

ure 2 demonstrates this to be the case even for the mean, h̄(x), and variance, σ2
h(x), of the hydraulic194

head h(x), let alone its CDF. This figure compares the results of MCS, which are treated as exact,195

to three alternative methods for computing these statistics: the RDD-enhanced SME, and evaluat-196

ing the moments of Fh in the CDF equation with and without RDD. Figure 2 shows that the CDF197

method without RDD fails to predict the hydraulic head mean h̄ and variance σ2
h with reasonable198

accuracy. Yet, the moments computed with SME-RDD and CDF-RDD are in close agreement with199

those computed via the reference MCS in both flow scenarios. By construction, Fh obtained from200

the CDF method is to have the same moments h̄ and σ2
h as their counterparts computed with SME;201

a slight (about 0.2% for h̄ and 4.7% for σ2
h) disagreement between the two is due to the numerical202

error in computing the quadratures.203

A natural interpretation of the hydraulic head CDF Fh(H;x) is the probability P[h(x) >204

H] = 1−Fh(H;x) of hydraulic head h(x) at any point x exceeding a mandated value H . Such ex-205

ceedance probability maps are required for probabilistic risk assessment and delineation of, e.g.,206

sustainable yield areas or well protection zones with a desired confidence level. The maps of207

P[h(x) > 0.85] obtained with CDF-RDD and MCS are virtually indistinguishable (by the “eye-208

ball measure”) from each other, and appreciably different from the map constructed via the CDF209

approach without RDD (fig. 3). Figure 4 elaborates this point further by presenting the CDF esti-210

mates Fh(H;x), obtained with MCS, CDF-RDD, and the CDF method, at several points x in the211

computational domain.212

A more quantitative comparison between the alternative CDF (or exceedance probability) es-
timates is provided by the first Wasserstein distance (aka Earth Mover’s metric) (Yang et al., 2019;
Boso & Tartakovsky, 2016),

D(x) ≡
∫ Hmax

Hmin

| Fh(H;x)− FMCS
h (H;x) | dH, Dave =

1

V

∫
Ω

D(x)dx, (14)

where V is the volume of the simulation domain Ω, FMCS
h (H;x) is the “exact” CDF computed via213

MCS, and Fh(H;x) is its approximation obtained from either the CDF-RDD method or the original214

CDF equation. In the two flow regimes considered, D(x) of the original CDF method is relatively215

large throughout the simulation domain, being larger than 0.15 for the mean uniform flow and 0.09216

for the convergent flow (fig. 5). The Wasserstein distance for the proposed CDF-RDD approach is217

an order of magnitude smaller, not exceeding 0.035 for mean uniform flow and 0.016 for convergent218

flow. These results demonstrate that RDD extends the CDF method to statistically inhomogeneous219

formations with complex and uncertain geology.220
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Figure 3: Spatial maps of exceedance probability P[h(x) > H = 0.85] = 1 − Fh(H = 0.85;x)
obtained with MCS (top row), the CDF method (center row), and CDF-RDD (bottom row) for mean
uniform flow (left column) and convergent flow (right column).
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Figure 4: Hydraulic head CDFs Fh computed with MCS, CDF method, and CDF-RDD at selected
locations x = (x1, x2)> in the simulation domain for the mean uniform flow (top row) and the
convergent flow (bottom row).

Figure 5: Spatial maps of the Wasserstein distance D(x) between the “exact” MCS estimate of the
hydraulic head CDF FMCS

h and its approximations provided by either the CDF method (top row) or
CDF-RDD (bottom row), for the mean uniform flow (left column) and the convergent flow (right
column).
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3.2 Computational Efficiency of CDF-RDD221

The CDF method has been shown to be an order of magnitude faster than MCS in statisti-222

cally homogeneous media (Yang et al., 2019). Instead of multiple MC solves of the d-dimensional223

groundwater flow equation (1), it solves a single (d + 1)-dimensional CDF equation (5). The rela-224

tive smoothness of the coefficients in the CDF and moment equations allows for the use of coarser225

meshes and increases the efficiency of a linear solver. The proposed CDF-RDD method retains these226

features and, hence, one should expect it to be computationally more efficient than MCS in complex227

geologic settings as well.228

These general considerations are confirmed in table 1, which collates the computational costs229

and accuracy (expressed in terms of the average Wassertein distance Dave) of the CDF method and230

CDF-RDD methods. It takes NMCS = 6, 040 and NMCS = 7, 320 Monte Carlo realizations to obtain231

the discrepancy levels of CDF-RDD in the mean uniform flow and convergent flow, respectively. For232

the same discrepancy level, CDF-RDD is an order of magnitude faster than MCS. The discrepancy233

level of the CDF method without RDD is relatively large, Dave ≈ 0.03, but it provides a four-fold234

speedup relative to CDF-RDD.235

Table 1: Computational times and accuracy of MCS and the CDF and CDF-RDD methods.

Flow regime Method Error Dave CPU time (min)

Mean uniform flow

CDF method 3.46 · 10−2 2.95 · 100

CDF-RDD 6.56 · 10−3 9.07 · 100

MCS with NMCS = 6040 6.56 · 10−3 1.07 · 102

MCS with NMCS = 4 · 104 0 8.43 · 102

Convergent flow

CDF method 3.2 · 10−2 3.08 · 100

CDF-RDD 4.90 · 10−3 1.13 · 101

MCS with NMCS = 7320 4.90 · 10−3 1.35 · 102

MCS with NMCS = 4 · 104 0 8.61 · 102

4 Summary and Conclusions236

We proposed the integrated CDF-RDD framework to quantify geologic and parametric uncer-237

tainty in groundwater flow models. The original CDF method for groundwater modeling (Yang et238

al., 2019) provides a computationally efficient alternative to MCS, but its applicability is limited to239

statistically homogeneous fields. This limitation has been overcome by deploying RDD (Winter &240

Tartakovsky, 2000). A key component of CDF-RDD is the derivation of a deterministic equation241

satisfied by a conditional CDF Fh|α, the CDF of hydraulic head h(x) conditioned on a realization242

(labeled by α) of the site geology. The sample average, over alternative geological maps (multiples243

values of α), of the solutions of this CDF equation yields the hydraulic head CDF Fh. We performed244

a series of numerical experiments to demonstrate the accuracy and computational efficiency of the245

CDF-RDD method. Our study leads to the following conclusions.246

• The CDF-RDD method yields accurate estimates of the hydraulic head CDF (exceedance247

probability) for statistically inhomogeneous porous media in both linear and radial flow248

regimes.249

• Unlike its original incarnation, the CDF-RDD method accounts for geologic uncertainty and250

is applicable to highly heterogeneous subsurface environments.251

• For the same accuracy, the CDF-RDD method is an order of magnitude faster MCS in both252

radial and linear flow regimes.253
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• The CDF-RDD method provides information that is necessary for probabilistic risk assess-254

ment and rare event analysis.255

Appendix A CDF Equation for Flow in Composite Porous Media256

Our goal is to compute, for each geological map α, P[h(x) ≥ H] ≡ Fh|α(H;x) , the proba-
bility of an uncertain model prediction of the hydraulic head h(x), at any point x in the subdomain
Ω, exceeding a valueH . To simplify the notation, we omit the reference to α in the following formu-
lations. Let us consider a functional Π[H,h(x)] ≡ H[H − h(x)] defined in terms of the Heaviside
function H(·). By definition, the single-point CDF of h, Fh, is computed as the ensemble mean of
Π, over all possible values of the random variable h at any point x ∈ Ω,

Fh(H;x) = 〈Π[H,h(x)]〉. (A1)

Multiplying (1) with −∂Π/∂H and accounting for the equality∇Π = −(∂Π/∂H)∇h, we obtain a
stochastic (d+ 1)-dimensional PDE for Π,

∇ · (K∇Π)−K ∂2Π

∂H2
∇h · ∇h = −g ∂Π

∂H
. (A2)

Next, we consider a perturbation expansion for the random variables K(x) and Π(U ;x) in (A2),
which are expressed as the sum of their ensemble means and zero-mean fluctuations around these
means, e.g., K = K̄ +K ′ and Π = Fh + Π′. Ensemble averaging of the resulting equation yields

∇ · (K̄(x)∇Fh) +M = −g ∂Fh
∂H

, M ≡ ∇ · 〈K ′∇Π′〉 − 〈K ∂2Π

∂H2
∇h · ∇h〉, (A3)

which requires closure approximations to render the mixed moments computable. We use the modi-
fied Interaction-by-Exchange-with-the-Mean closure (Boso & Tartakovsky, 2016; Yang et al., 2019),
for the unknown mixed moments in (A3)

M ≈ [υ(x)(H − h̄) + ζ(x)]
∂Fh
∂H

, (A4)

where h̄(x) is the mean hydraulic head, and υ(x) and ζ(x) are the closure variables determined
below. Finally, we obtain a closed CDF equation

∇ · (K̄(x)∇Fh) + [υ(x)(H − h̄) + ζ(x)]
∂Fh
∂H

= −g ∂Fh
∂H

, x ∈ Ω. (A5)

Rearranging the terms, (A5) yields (5) for each subdomain in any given geological realization. Ex-
pressions for υi(x) and ζi(x) are determined by enforcing consistency between the moments ob-
tained by integration of Fhi obeying the CDF equation

h̄ = Hmax −
∫ Hmax

Hmin

Fh(H;x)dH, σ2
h = H2

max − 2

∫ Hmax

Hmin

HFh(H;x)dH − h̄2, (A6)

and the moment equations satisfied by h̄(x) and σ2
h(x), as in (Boso & Tartakovsky, 2016; Boso et al.,257

2018; Yang et al., 2019). These expressions assume the random variable h(x) and the correspondong258

CDF Fh(U ;x) to be defined on the interval [Hmin, Hmax].259

Since Fh(Hmin;x) = 0 and Fh(Hmax;x) = 1, integrating (A5) over H yields

∇ · (K̄(x)∇h̄)− ζ(x) = g(x). (A7)

Multiplying both sides of (A5) by H , integrating the resulting equation over H and accounting
for (A7) yields

∇ · (K̄(x)∇σ2
h) + 2K̄(x)∇h̄ · ∇h̄− 2υ(x)σ2

h = 0. (A8)

We obtain first-order approximations for h̄(x) and σ2
h(x), respectively h̃(x) and σ̃2

h, by solving

K̄i∇2h̃+ ρi = g, ρi(x) = K̄i∇ · [ lim
χ→x

∇xCY h(χ,x)]; x ∈ Ωi, χ ∈ Ω (A9)
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and
K̄i∇2σ̃2

h + 2V (x) = 0, x ∈ Ωi. (A10)

Here CY h(x,χ) is the first-order approximation (in σ2
Y ) of the cross-covariance 〈Y ′(x)h′(χ)〉 and

V ≡ K̄i lim
χ→x

[∇xh
(0) · ∇xCY h(x,χ)−∇χ · ∇xCh(x,χ)] + eσ

2
Yi
/2g(x)CY h(x,x), (A11)

with χ ∈ Ω, and Ch(x,χ) denoting the first-order approximation of auto-covariance 〈h′(x)h′(χ)〉260

of the hydraulic head h(x). The derivation via perturbation expansion of (A9) and (A10) is illus-261

trated in Appendix B, where we also list the corresponding boundary and interface conditions. On262

the other hand, approximations of h̄(x) and σ2
h, denoted respectively by h̃(x) and σ̃2

h, satisfy the263

moment equations, which are obtained via a perturbation expansion (Appendix B).264

We impose equivalency (up to the first order in σ2
Y ) between the equations for the mean, (A7)

and (A9), and between the equations for the variance, (A8) and (A10). This results in the following
expressions for the closing terms υ(x) and ζ(x)

υ ≡ (K̄∇h̄ · ∇h̄− V )/σ2
h, ζ ≡ −ρ. (A12)

Substituting these expressions in (A5) yields (5) and (6).265

The derivation of boundary conditions for the CDF equation is consistent with the derivation
of the CDF equation. Using the definition of Π and ensemble averaging leads to the boundary
condition along ΓD for the CDF equation without any closure approximation

Fh = Fφ(U ;x), x ∈ ΓD, (A13)

where Fφ(U ;x) is the single-point CDF for the random boundary head φ(x). For the Neumann
boundary condition in (2), we multiply by ∂Π/∂H to obtain

−K(x)∇Π · n(x) = −ϕ ∂Π

∂H
, x ∈ ΓN . (A14)

Ensemble averaging of (A14) yields

−K̄(x)∇Fh · n(x) = −ϕ̄∂Fh
∂H

+ 〈K ′ ∂Π′

∂H
〉 − 〈ϕ′ ∂Π′

∂H
〉, x ∈ ΓN . (A15)

Like with the closure developed for (3), we impose

−K̄(x)∇Fh · n(x) = −ϕ̄∂Fh
∂H

+
(
γ(x)(H − h̄(x)) + η(x)

) ∂Fh
∂H

, x ∈ ΓN , (A16)

and express γ(x) and η(x) as in (7) to ensure consistency with the boundary conditions of the266

moment equation (Appendix B).267

Appendix B Moment Differential Equations268

The moment equations (MDEs) for highly heterogeneous media composed of distinct geo-269

logical facies has been widely investigated in the hydrology community. Here, we presents the270

combination of random domain decomposition (RDD) and SMEs implemented by (Tchelepi & Li,271

2004). The formulation of SMEs and their boundary conditions for each facies is analogous to the272

case of statistically homogeneous porous media, and it is summarized below. These formulations273

are based on perturbation expansion of the log-conductivity field in each facies, and are formally274

valid for σ2
Yi
/2 < 1, although robust for σ2

Yi
as large as 4.275

In order to obtain an equation the ensemble mean of the hydraulic head in a given geological276

map α, we introduce log hydraulic conductivity Y (x) = lnK(x) where Y (x) = Yi when x ∈277

Ωi. In each subdomain i, the log-conductivity is considered as second-order stationary multivariate278

Gaussian, with constant mean Ȳi and variance σ2
Yi

= 〈Y ′2i 〉. Hence, if the number of subdomain is279

greater than 1, the log-conductivity Y (x) has spatially varying mean Ȳ (x) and variance σ2
Y (x).280
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Here and in the following, both Ā and 〈A〉 indicate the ensemble mean of the random quantity
A. In (B1), we employ the Reynolds decomposition for the log-conductivity Y (x) = Ȳ (x)+Y ′(x),
so that K(x) = exp(Y ) = KG(x) exp(Y ′), where KG(x) = exp(Ȳ ) is the geometric mean of the
hydraulic conductivity K. Then, we rewrite (1) as

∇ · (KG(x)eY
′
∇h) = g(x), x ∈ Ω, (B1)

where KG(x) = KG,i for x ∈ Ωi. We expand exp(Y ′) into a Taylor series around Y ′(x) = 0.
Taking the ensemble average of the resulting equation, and recalling that all odd moments of a
Gaussian Y ′(x) are zero, yields

∇ · (KG(x)∇h̄) +∇ · (KG〈Y ′∇h′〉) + h.o.t. = g(x), (B2)

where h.o.t. refers to the terms of order higher than σ2
Y . We expand h̄ and 〈Y ′∇h′〉 into asymptotic

series in the powers of σ2
Y ,

h̄ = h̄(0) + h̄(1) + · · · , 〈Y ′∇h′〉 = 〈Y ′∇h′〉(1) + 〈Y ′∇h′〉(2) + · · · , (B3)

where the superscript (n) indicates the order of the term with respect to σ2
Y .281

An approximation of the ensemble mean is then computed recursively, solving differential
equations obtained by retaining the terms of equal powers of σ2n

Y :

∇ · (KG∇h̄(0)) = g, ∇ · (KG∇h̄(1)) +∇ · (KG〈Y ′∇h〉(1)) +
1

2
∇ · (KGσ

2
Y h̄

(0)) = 0. (B4)

The unknown term 〈Y ′(x)∇h(x)〉(1) is computed as 〈Y ′∇h〉(1) = limχ→x[∇xCY h(χ,x)], where
CY h(χ,x) = 〈Y ′(χ)h(x)〉(1) is the first-order approximation of the cross-correlation between log-
conductivity and hydraulic head. The latter satisfies (Yang et al., 2019)

∇x · (KG∇xCY h) +∇x(KGCY∇xh̄
(0)) = 0, χ,x ∈ Ω, (B5)

subject to the boundary conditions

CY h = 0, x ∈ ΓD; KG∇xCY h · n(x) = ψ̄CY , x ∈ ΓN . (B6)

Here CY (χ,x) = 〈Y ′(χ)Y ′(x)〉 is an auto-correlation function of the log-condunctivity Y (x).282

In most applications, the conductivities of two different subdomains Ωi and Ωj are uncorrelated,283

i.e., CY (χ,x) = 0 when χ ∈ Ωi and x ∈ Ωj (i 6= j). The relative importance of cross-284

correlations between conductivities of different geological units was investigated in (Winter et al.,285

2006). Once CY h(χ,x) is evaluated, we compute ∇xCY h(χ,x) and then evaluate 〈Y ′∇h〉(1) =286

limχ→x∇xCY h(χ,x).287

We approximate the mean head h̄ to first order in σ2
Y as h̃ = h̄(0) + h̄(1). Since in each

subdomain Ωi the conductivity field is second-order stationary, (B4) gives rise to

KG,i∇2h̄(0) = g, KG,i∇2h̄(1) +KG,i∇ · [ lim
χ→x

∇xCY h(χ,x)] +
σ2
Yi

2
g = 0, x ∈ Ωi. (B7)

Summing up these two equations,

KG,i∇2h̃+KG,i∇ · [ lim
χ→x

∇xCY h(χ,x)] = (1− σ2
Yi
/2)g, x ∈ Ωi, χ ∈ Ω. (B8)

Next, we use the fact that (1−σ2
Yi
/2) ≈ exp(−σ2

Yi
/2) as long as σ2

Yi
/2� 1. With this approxima-

tion, and since K̄i = KG,i exp(σ2
Yi
/2), (B8) yields (A9). A similar procedure leads to the boundary

conditions

h̃ = φ̄(x), x ∈ ΓD; −K̄∇h̃ · n(x) = ψ̄(x). x ∈ ΓN , (B9)
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Subtracting the sum of the two equations in (B4) from (B1) yields an equation for the head
fluctuations h′ ≈ h − h̃. Multiplying the latter with h′(x) and taking the ensemble mean yield an
equation for the first-order approximation of the head variance, σ̃2

h(x),

∇· (KG∇σ̃2
h)−2KG〈∇h′ ·∇h′〉(1) +2KG∇h̄(0) · 〈h′∇Y ′〉(1) = −2gCY h(x,x), x ∈ Ω. (B10)

Using the already evaluated cross-correlation CY h(χ,x), we compute 〈h′∇Y ′〉(1) as the limit
〈h′∇Y ′〉(1) = limχ→x[∇χCY h(χ,x)]. To obtain a workable expression for the unknown term
〈∇h′ · ∇h′〉(1), we solve the following equation for the first-order approximation of the hydraulic
head’s auto-covariance function, Ch(x,χ) = 〈h′(x)h′(χ)〉(1),

∇x · (KG∇xCh) +KG∇xCY h(x,χ) · ∇xh̄
(0) = −gCY h(x,χ), x,χ ∈ Ω, (B11)

subject to the following boundary conditions

Ch = Cφh(x,χ), x ∈ ΓD; KG∇xCh · n = Cψh(x,χ)− ψ̄CY h(x,χ), x ∈ ΓN . (B12)

Once C̃h(x,χ) is computed, we evaluate 〈∇h′ · ∇h′〉(1) = limχ→x[∇x · ∇χCh(χ,x)]. Then,
writing (B10) for individual subdomains Ωi and multiplying the resulting equations with exp(σ2

Yi
/2)

leads to the closed equations (A10) for an approximation of the head variance, subject to boundary
conditions

σ̃2
h = σ2

φ, x ∈ ΓD; KG∇xσ̃
2
h · n = 2Cψh(x,x)− 2ψ̄CY h(x,x), x ∈ ΓN . (B13)

The cross-covariances Cφh(x,χ) and Cψh(x,χ) in (B12) and (B13) are derived by multiplying the288

equation for the head fluctuations h′(x) with φ′ and ψ′, respectively (Neuman et al., 1996).289

As an alternative, σ̃2
h can be computed by taking the limit of the head’s auto-covariance func-290

tion Ch(x,χ), i.e., σ̃2
h = limχ→x Ch(x,χ).291
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