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Introduction

The materials included here (i) clarify the choice of the timing of when the quantity of

interest, i.e. the Bering Strait transport, is defined, and (ii) provide of full derivation of

the formulation used to decompose the Bering Strait transport anomaly time-series into

temporal components.

March 5, 2020, 7:28pm



X - 2 NGUYEN ET AL.: SENSITIVITY OF BERING STRAIT FLOW TO ATMOSPHERIC FORCING

1. Dependence of reconstruction of δ̃J on the time when J is defined

The monthly mean transport J(ti) for each month ti has large variability with nega-

tive values (southward flow) during some months and maximum positive values during

other months (Fig. S1a). An important question is whether and how the gradients ∂J
∂Ωk

vary when J varies. Intuitively we expect that if there is a dominant linear mechanism

controlling the transport, the gradient ∂J
∂Ωk

retains the same sign and similar magnitude,

independent of the period over which J is defined. For example, if northward wind stress

is the dominant controlling mechanism such that ∂J
∂τN

= X, a smaller J is then a result of

weaker τN and a negative J is a result of a reversal of the wind stress (negative τN). Thus,

J can vary widely and is a result of the variation in τN , while the physical connection, as

captured by ∂J
∂τN

= X, remains the same.

Following this line of argument, we hypothesize that if instead ∂J
∂Ωk

is dependent on the

time when J is defined (e.g., phase of the seasonal cycle), it is due to J being a highly non-

linear function of Ωk along the model trajectory such that at any given time the linearized

gradients ∂J
∂Ωk

cannot fully capture the physics. We can test this dependency by comparing

gradients computed from different J for each forcing variable. Most importantly, we can

compare the reconstructed δ̃J using the corresponding gradients to see the impact of

varying J on the reconstructed time series.

Gradients ∂J
∂Ωk

were obtained from J [07,09,12] for three different averaged months that

span the seasonal cycle [Jul/2013, Sep/2013, Dec/2013], and each was used to reconstruct

the respective time-series δ̃J
[07,09,12]

. These constructions as well as the forward anomaly

time-series δJfwd are shown in Fig. S1. Linear fit of scatter plot of these various δ̃J show
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that they are different by up to only 3%, depending on the number of lags used in the

reconstruction (Fig. S1b,c).

Thus, given that any of the reconstructed δ̃J
[07,09,12]

can capture the variability in the

forward model δJfwd (Fig. S1a), that the difference between the these reconstructions is

small, and that subsequent analyses show no significant differences in the behavior of how

the reconstructions differ from the forward model time-series (Fig. S2), as discussed in

the main text, we chose J09 for all gradients calculations and analyses in this study.

2. Reconstruction: temporal component derivations

Eqn. (3) can be used to reconstruct the full anomaly time series, δ̃J , which can then be

decomposed into temporal components associated with interannual, seasonal, and monthly

time-scales, as discussed in Section 3. Here we show that by rewriting eqn. (3), the

reconstruction can be approximated as eqn. (4), which allows for more direct connection

between the time-scales of the forcing anomalies and the time-scales of the Bering Strait

transport anomalies. Our example here is for the reconstruction of the annual mean time

series, but the same logic applies to other time-scales.

We first define the annual mean forcing δΩy for a year ta within the time range [ta, ta+Ty]

as,

δΩy(ta) =
1

Ty

∫ ta+Ty

ta

δΩ(t) dt (S.1)

where Ty is a time period of 1 year. Based on eqn. (3), the full reconstruction for the

annual δ̃Jy for the same year ta at a specific geographic location [x1, x2] for a forcing

component k would be as follows, where for clarity we will omit the geographic integrals

and location [x1, x2] as well as the forcing index k from the equations, but the reader should
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understand these integrals are still required. Note also that the sensitivity corresponding

to the first month ∂J
∂Ω(0)

, i.e., where (α − t = 0 mo), also termed the “zero-lag”, is the

average of sensitivities accumulated between 0–1 month).

δ̃Jy(ta) (S.2)

= 1
Ty

∫ ta+Ty
ta

[ ∫ t
t0

∂J
∂Ω

(α− t)δΩ(α)dα

]
dt

= 1
Ty

∫ ta+Ty
ta

[
∂J
∂Ω

(0)δΩ(t) +
∫ t−1mo

t0

∂J
∂Ω

(α− t)δΩ(α)dα

]
dt

= 1
Ty

∫ ta+Ty
ta

[
∂J
∂Ω

(0)δΩ(t)

]
dt + 1

Ty

∫ ta+Ty
ta

[ ∫ t−1mo

t0

∂J
∂Ω

(α− t)δΩ(α)dα

]
dt

= ∂J
∂Ω

(0) 1
Ty

∫ ta+Ty
ta

δΩ(t)dt + 1
Ty

∫ ta+Ty
ta

[ ∫ t−1mo

t0

∂J
∂Ω

(α− t)δΩ(α)dα

]
dt

= ∂J
∂Ω

(0)δΩy(ta) + 1
Ty

∫ ta+Ty
ta

[ ∫ t−1mo

t0

∂J
∂Ω

(α− t)δΩ(α)dα

]
dt

= ∂J
∂Ω

(0)δΩy(ta) + other terms

The key rearrangement in this long derivation for the annual δ̃Jy is in the forcing anomalies

δΩ, which first appear in eqn. (S.2) as the total (i.e. un-decomposed) anomalies δΩ(α)

but by the end are in the form of the yearly anomalies δΩy. With more effort, we can

continue to rearrange the “other terms” in the last line of eqn. (S.2) to get the equation

into the form:

δ̃Jy(ta) (S.3)

= ∂J
∂Ω

(0)δΩy(ta) + ∂J
∂Ω

(1)δΩy(ta) + ... + ∂J
∂Ω

(11)δΩy(ta)

+ ∂J
∂Ω

(12)δΩy(ta − 1) + ∂J
∂Ω

(13)δΩy(ta − 1) + ... + ∂J
∂Ω

(23)δΩy(ta − 1)

+higher lag terms

where the vector δΩy that enters into eqn. (S.3) is a monthly time-series and has in

the last twelve entries the same Ωy(ta) for the year of the reconstruction ta, followed by
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Ωy(ta − 1) of the prior year in the previous twelve entries, and so on. Now re-expressing

eqn. (S.3) in the integral form and generalizing it to time t, we obtain:

δ̃Jy(t) =

∫ t

t0

∂J

∂Ω
(α− t)δΩy(α)dα + residuals (S.4)

Finally, with the inclusion of the geographic integrals eqn. (S.4) becomes

δ̃Jy(t) (S.5)

=
∫ t
t0

∫
x1

∫
x2

∂J
∂Ω

(x1, x2, α− t)δΩy(x1, x2, α)dx1dx2dα + residuals

≈
∫ t
t0

∫
x1

∫
x2

∂J
∂Ω

(x1, x2, α− t)δΩy(x1, x2, α)dx1dx2dα

Eqn. (S.5) is identical to eqn. (S.2) when the “residuals” are fully taken into account,

and is a good approximation of eqn. (S.2) only if the “residuals” are small. To test if the

“residual” in eqn. (S.5) are indeed small for the Bering transport anomaly reconstruction,

we performed reconstructions of δ̃J [y,c,res], based on either the temporal decomposition of

the full reconstructed δ̃J , eqn. (3), into annual, seasonal and monthly components, which

we refer to as the “exact” method, or using eqn. (4), which we refer to as the “approx”

method. Results are summarized in Fig. S3. In general, regardless of the method use,

the reconstructed time-series δ̃Japprox and δ̃Jexact capture between 80–97% of the forward

signal δJfwd. Up to 12-month lag, results of the temporal decomposition from the two

methods are very similar. Beyond 12-month lags, some difference can be seen with the

“exact” method capturing slightly less of the explained variance at seasonal and monthly

time-scales (Fig. S3f,i).
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The reformulation of the reconstruction following eqn. (S.5) and eqn. (4) now allows us

to quantify the interannual, seasonal, and monthly transport anomalies directly from the

components of the input forcing. See discussion in Section 3 for how this second “approx”

method is used to investigate the direct relationship between extreme annual forcing wind

stress anomalies and extrema in Bering Strait transport anomalies.
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Figure S1. (a) Time-series of the transport anomaly from the forward model run (δJfw, thick

gray) and the three different reconstruction (δ̃J
[07,09,12]

) based on the sensitivity calculated from J

of Jul/2013, Sep/2013, Dec/2013. The black squares are the values of δJ [07,09,12]. Reconstructions

are summed over 24-month lags. (b) Scatter plots of reconstructed transport anomalies δ̃J
[07,12]

versus δ̃J
09

, reconstructed using lags of up to 24 months. Values shown in the legend are the

slope of the linear fit. (c) Slope of the linear fit using reconstructions summed up to lags ranging

from 0–48months.
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Figure S2. Correlation and explained variance as a function of lags for reconstructed δ̃J
07

,

to be compared with Fig. 3b which was obtained with δ̃J
09

. The behavior of the correlation and

explained variance are the same regardless of the choice of J [07,09,12] used in the computation of

the gradients and the subsequent reconstructed δ̃J .
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Figure S3. Comparison of δ̃J [y,c,res] using methods “exact” versus “approx”. The rows

correspond to (a,b,c) interannual, (d,e,f) seasonal, and (g,h,i) monthly residual decompositions.

The first column (a,d,g) compared time-series of δ̃J using the two methods against the forward

time series δJfwd. The second column (b,e,h) shows scatter plots of δ̃Japprox versus δ̃Jexact using

lags of up to 12 months. The last column (c,f,i) shows the percentage of explained variance of

each reconstructed δ̃J relative to the forward time series δJfwd for all lags.
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