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In this document we present the derivation of the general expression for the heat flux

through a conductive lid in a setting where heat transport is dominated by convection,

together with the corresponding figures. In addition, we reproduce the expression of H(t),

i.e. the rate at which heat is produced by decay of radioactive elements, and the functional

form of the quality factors KI (l, χlmpq) present in the expression of the tidal heating rate.

Tables S1, necessary for the computation of H(t), Tables S2 and S3 are also included for

the implementation of the numerical models.

Text S1. Derivation of the convecting heat flux expressions

The dominant heat transfer mechanism inside Earth is convection on geological time

scales. In our work, we will make use of the boundary layer approach (Turcotte & Schubert,

2014) in order to obtain simple expressions of the heat flow in the convection regime.

Briefly speaking, under specific circumstances, the temperature profile of a fluid in the

thermal convection regime, flowing over or below a heated or cooled surface, can described

as a temperature profile corresponding to thermal conduction through a thin lid followed

by an isothermal profile (see Figure S2).

The Nusselt number is defined as the ratio of heat flux transported by convection to

that by conduction (Turcotte & Schubert, 2014). Mathematically expressed:

Nu =
qconv

qcond
(S-1)

By virtue of what we have pointed out before, we then have that Nu � 1. Another

useful definition of the Nusselt number, that fits the purposes of our work, is the following

(Turcotte & Schubert, 2014):

Nu =

(
24 Ra

Racr

) 1
3

, (S-2)
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where Ra is the Rayleigh number and Racr is the critical value of the Rayleigh number

(Turcotte & Schubert, 2014). The Rayleigh number is defined as:

Ra =
α ρ g∆T d3

κ η
, (S-3)

where α is the thermal expansivity coefficient, g is the surface gravitational acceleration,

∆T is the temperature difference between the limiting surface and the limit of the con-

duction lid of thickness d, closest to the former. In addition, κ = k (c ρ)−1 is the thermal

diffusivity and η is the dynamical viscosity.

Equating Equations (S-1) and (S-2) leads to:

qconv =

(
24 Ra

Racr

) 1
3

qcond. (S-4)

In order to derive the expression of the conductive thermal flux, consider the volume

enclosed by two concentric spherical surfaces, which we assume it is filled with a solid

material. The inner spherical surface has radius Rin and it is at temperature Tin, while

the outer one has radius Rout and it is at temperature Tout (see Figure S1) which is

assumed to be less than Tin (Tout < Tin).

If we assume that heat transfers within the material enclosed by the concentric spherical

surfaces by conduction, then the temperature profile inside the volume can be found by

virtue of the Fourier’s law:

q = − k∇T (S-5)

where k is the thermal conductivity of the material and T is the temperature. In the

following, some simplifying assumption will be considered. First, we will consider the

temperature distribution in the steady state. In consequence, the time derivative of the
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energy density is equal to zero and the equation expressing the energy conservation law:

∂u

∂t
+∇ · q = % (r, t) , (S-6)

becomes:

∇ · q = 0. (S-7)

In addition, we will assume that heat flows radially outwards the hollow sphere. This

implies that q = qrr̂, where r̂ is the corresponding versor that is perpendicular to the

spherical surfaces at each point and its sense is outwards the aforementioned surface.

Taking this assumption into account, Equation (S-7) can be rewritten as:

1

r2

d

dr

[
r2 qr(r)

]
= 0. (S-8)

Similarly, Fourier law takes the form:

qr = − k dT

dr
. (S-9)

Then, by inserting Equation (S-9) into Equation (S-8) and simplifying we obtain:

d

dr

[
r2 dT (r)

dr

]
= 0. (S-10)

The solution of Equation (S-10) considering the boundary conditions T (Rin) = Tin and

T (Rout) = Tout is (Carslaw & Jaeger, 1959):

T (r) =
Rout Tout (r −Rin) +RinTin (Rout − r)

(Rout −Rin) r
. (S-11)

By virtue of Equation (S-9) we have:

q(r) = k
(Tin − Tout)

(Rout −Rin)

RoutRin

r2
. (S-12)

Thus, the heat flux through the inner spherical surface, crossing it radially outwards, is:

q(Rin) = k
(Tin − Tout)

d

1

1− z
, (S-13)
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where we have expressed Rin as Rout − d, where d is the thickness of the hollow sphere

(Figure S1), and defined z = d/Rout. Analogously, the heat flux through the outer sphere

is:

q(Rout) = k
(Tin − Tout)

d
(1− z) . (S-14)

In practice z � 1 and, consequently, Equation (S-13) can be rewritten as:

q(Rin) = k
(Tin − Tout)

d

(
1 + z + z2 + . . .

)
, (S-15)

It is very common in the specialized literature to consider only the zeroth order of ap-

proximation in both Equation (S-14) and Equation (S-15). In our work we will follow the

same tendency, but we would like to pose the question to which extent the aforementioned

approximation remains valid and to leave the discussion to a future work. In consequence,

as long as the approximation z � 1 remains valid in Equations (S-14) and (S-15), the

expression of the conductive heat flow corresponding to conductive heat transfer through

a slab can be considered:

qcond = k
∆T

d
. (S-16)

Insertion of Equations (S-3) and (S-16) into Equation (S-4) leads to:

qconv = k

(
24

Racr

α ρ g∆T

κ η

) 1
3

∆T. (S-17)

In the following, the superscript “conv” can be omitted. By comparing Equations (S-16)

and (S-17) we can obtain an expression of the conductive lid thickness:

d =

(
Racr κ η

24α ρ g∆T

) 1
3

. (S-18)

Thus, the right hand side of Equation (S-17) can be replaced by the right hand side of

Equation (S-16) with d given by Equation (S-18).
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If we assume that T1 > Tiso > T2 in Figure S2, then the incoming heat flux from

below is given by Equation (S-17) in which ∆T = ∆T1 = T1 − Tiso, where Tiso is the

isothermal temperature. The out-coming heat flux is also given by Equation (S-17) but

∆T = ∆T2 = Tiso − T2.

Thus, the expressions of the heat fluxes inside the Earth, which are the outgoing heat

flux from the core and the heat fluxes incoming into and outgoing from the mantle, can

be obtained in a straightforward fashion.

Text S2. Expression of the radioactive heat production rate

The expression of H(t) was taken from the work by Turcotte and Schubert (2014),

which we reproduce here.

H(t) = 0.9928CU
0 H0

(
238U

)
exp

[
− ln 2

τ 1
2

(238U)
(t− t0)

]

+ 0.0071CU
0 H0

(
235U

)
exp

[
− ln 2

τ 1
2

(235U)
(t− t0)

]

+ CTh
0 H0

(
232Th

)
exp

[
− ln 2

τ 1
2

(232Th)
(t− t0)

]

+ 1.19× 10−4CK
0 H0

(
40K
)

exp

[
− ln 2

τ 1
2

(40K)
(t− t0)

]
. (S-19)

where C0 and H0 are the concentration and heat production rate per unit mass of each

isotope at instant t0, while τ 1
2

is the corresponding half-life. In Table S1 we reproduce the

values given in the work by Turcotte and Schubert (2014).

Text S3. Rheological models

The rheological response of a solid body is described by the complex Love numbers:

KI(l, ωlmpq) = −3

2

1

l − 1

Bl=
[
J̄(χ)

]
sgn (ωlmpq)(

<
[
J̄(χ)

]
+Bl

)2
+
(
=
[
J̄(χ)

])2 , (S-20)
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in which J(χ) is defined by:

J̄(χ) =

∫ ∞
0

J̇(t− t′) exp [−iχ(t− t′)] dt′, (S-21)

where the over-dot means differentiation with respect to t′ and i =
√
−1 is the imaginary

unit. The particular form of the kernel J(t − t′) depends on the particular rheological

model considered. However, it is generally given by:

J(t− t′) = J(0) Θ(t− t′) + viscous and hereditary terms, (S-22)

where J(0) is the instantaneous value of the compliance which, in its turn, is the reciprocal

value of the instantaneous rigidity µ(0), and Θ(t − t′) is the Heaviside step function

(Efroimsky, 2012).

The first term on the right hand side of Equation (S-22) describes the instantaneous

elastic response in deformation of the body under stress. However, the general rheological

response of a real solid body is a mixture of elastic and anelastic behavior. The latter

includes viscous and hereditary behaviors.

The complex compliance is obtained from the constitutive equation, which relates stress

and strain. In a linear medium, assumed to be homogeneous, incompressible and isotropic,

the relationship between the components of the stress tensor and the strain tensor is, in

general terms, given by:

2 ūγν(χ) = J̄(χ) σ̄γν(χ), (S-23)

where ūγν(χ) and σ̄γν(χ) are the complex counterparts of the strain and stress tensors,

respectively (Efroimsky, 2012).

In our work, we will consider three rheological models to describe tidal dissipation within

Earth’s mantle, namely the Maxwell, the Burgers and Maxwell-Andrade models.
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The Maxwell, Kelvin-Voigt and Burgers rheological models are typical examples of

models used to describe different types of viscoelastic behavior of a solid body. The first

one is represented as a dashpot and a spring connected in series. The second one is

represented as a dashpot and a spring connected in parallel. These two models differ in at

least two aspects. On one hand, after being deformed a body whose rheological behavior

is characterized by the Maxwell model can not recover is shape. On the contrary, a body

whose rheological behavior is described by the Kelvin-Voigt model, do recover its shape.

On the other hand, in a Maxwell configuration, the applied stress acting on the spring

and on the dashpot are equal, while the total deformation is the sum of the deformations

of each of the aforementioned components.

The Burgers model can be thought as a Kelvin-Voigt element connected in series with

a Maxwell element. It worth to note that the viscosity of the dashpot in the Kelvin-Voigt

element has a different meaning from that of the viscosity of the dashpot in the Maxwell

element (Renaud & Henning, 2018).

The last rheological model to be considered is that of Maxwell-Andrade. It is schemati-

cally similar to the Burgers model, but has the fundamental difference that the viscosity of

the dashpot and the compliance (or rigidity) of the spring in the Kelvin-Voigt element are

not fixed but are variable in order to allow for the hereditary reaction behavior (Efroimsky,

2012; Renaud & Henning, 2018). As a consequence of this, the Burgers element does not

exactly recover its original form, i.e. there is a certain “hysteresis”. The origin of the

latter is due to dislocations and vacancy flow within the material that responds according

to this rheology.

May 27, 2021, 10:50am



LUNA ET AL.: THE INFLUENCE OF TIDAL HEATING X - 9

Concerning the expression of the complex creep function, J̄(χ), which is given in general

terms by Equation (S-21), in the following we will present its specific from for each rheology

in a suitable form for its translation into a computer code.

For the Maxwell model, the expression of J(t− t′), which was given in its general form

in Equation (S-22), is (Efroimsky, 2012):

J(t− t′) =

[
J + (t− t′)1

η

]
Θ(t− t′). (S-24)

Inserting Equation (S-24) in Equation (S-21), and performing the required mathematical

operations, we obtain:

J̄ (χ) = J − i

χ η
. (S-25)

The real and imaginary parts of the right hand side of Equation (S-25) are evidently:

<
[
J̄(χ)

]
= J (S-26a)

=
[
J̄(χ)

]
= − 1

χ η
. (S-26b)

The next step would be to insert Equations (S-26) into Equations (S-20). However,

the presence of the tidal frequency in the denominator on the right hand side of Equa-

tion (S-26b) can cause numerical instabilities, given the possibility that χ can become

zero when the considered rotating body crosses or gets captured in a spin-orbit reso-

nance (Efroimsky, 2012). In order to avoid this numerical difficulty, we can define the

dimensionless complex compliance J (χ) as:

J (χ) = η χ J̄(χ). (S-27)
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By multiplying and dividing the right hand sides of Equations (S-20) by η2χ2, we can

express the tidal quality functions in terms of the dimensionless complex compliance:

KI(l, ωlmpq) = −3

2

1

l − 1

Bl η χ= [J (χ)] sgn (ωlmpq)

(< [J (χ)] +Bl η χ)2 + (= [J (χ)])2 . (S-28)

Using Equation (S-25) and Equation (S-27), the dimensionless creep response function for

the Maxwell rheology is:

J (χ) = J η χ− i, (S-29)

whose real and imaginary parts are:

< [J (χ)] = J η χ (S-30a)

= [J (χ)] = −1. (S-30b)

Inserting Equations (S-30) into Equations (S-28) we obtain:

KI(l, ωlmpq) =
3

2

1

l − 1

Bl η χ sgn (ωlmpq)

(J +Bl)
2 η2 χ2 + 1

. (S-31)

The rheology of a body described by the Maxwell model behaves as a elastic solid at high

frequencies (χ η J � 1). On the contrary, at low frequencies, it behaves as a viscous solid

body (χ η J � 1). Consequently, this kind of behavior has the particular feature of un-

derestimate tidal dissipation at high frequencies. In order to overcome this inconvenience,

more realistic rheologies can be considered such as the Burgers and Maxwell-Andrade

models.

The complex compliance function corresponding to the Burgers model is given by

(Renaud & Henning, 2018):

J̄ (χ) = J − i

η χ
+ JR

(
1− i JR η∗ χ

1 + (JR η∗ χ)2

)
. (S-32)
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For the sake of reducing the number of free parameters, we follow the work by Renaud

and Henning (2018), who expressed the relaxed compliance, JR, and the Kelvin-Voigt

viscosity, η∗, in terms of the unrelaxed compliance, J , and the Maxwell viscosity, η, as

follows:

JR = ζJ J, (S-33a)

y

η∗ = ζη η. (S-33b)

For the Earth’s mantle, the parameters ζJ and ζη are taken equal to 0.2 and 0.02, respec-

tively (Renaud & Henning, 2018).

The corresponding expression of the dimensionless complex compliance is:

J (χ) = J η χ− i + ζJ J η χ

(
1− i ζJ ζη J η χ

1 + (ζJ ζη J η χ)2

)
, (S-34)

while its real and imaginary parts are:

< [J (χ)] = J η χ

(
1 +

ζJ

1 + (ζJ ζη J η χ)2

)
(S-35a)

= [J (χ)] = −

(
1 +

ζη (ζJ J η χ)2

1 + (ζJ ζη J η χ)2

)
. (S-35b)

These expressions combined with Equations (S-28) deliver the values of KI (l, ωlmpq).

Similarly, the complex creep response function corresponding to the Maxwell-Andrade

model is given by:

J̄(χ) = J − i

η χ
+

J1−α

(i ζA η χ)
Γ (1 + α) , (S-36)

where α is known as Andrade’s parameter and ζA is identified with the ratio between the

characteristic times of the Maxwell-Andrade rheology (τA) and that of the viscoelastic

response (τM). In general, due to the current lack of knowledge about this particular
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aspect, it is common to set ζA = 1, which implies τA = τM. This last equality is approx-

imately true for relatively low stresses, such as the ones we have in this kind of study

(Castillo-Rogez et al., 2011). On the other hand, Karato and Spetzler (1990) point out

that the anelastic dissipation mechanism is effective in the Earth’s mantle up to the limit

frequency χ0 ' 1 year−1. At lower frequencies, this mechanism is less efficient resulting

in viscoelastic behavior. That is, at low frequencies the mantle behaves like a Maxwell

solid. Consequently, for frequencies higher than χ0, the anelasticity is the dominant dissi-

pation mechanism and, therefore, in such a frequency regime the aforementioned equality

is satisfied (Efroimsky, 2012).

Concerning the Andrade parameter, α, it should be noted that the values it assumes

(which is specific to each material) are always in the interval [0.14, 0.4] for all minerals,

including ice, which constitutes a surprising fact (Efroimsky, 2012). The lower values of

the interval correspond to materials at high temperatures or semi-molten and the higher

values correspond to colder rocks and ices.

The dimensionless complex compliance function for Maxwell-Andrade rheology is given

by:

J (χ) = J η χ− i +
J η χ

(ζA J η χ)α
exp

(
−i
π

2
α
)

Γ (1 + α) . (S-37)

Then, the real and imaginary parts of J (χ) for the same rheology are given by:

< [J (χ)] = J η χ+
J η χ

(ζA J η χ)α
Γ (1 + α) cos

(π
2
α
)
, (S-38a)

= [J (χ)] = −1− J η χ

(ζA J η χ)α
Γ (1 + α) sin

(π
2
α
)
. (S-38b)

In the case that the response of certain material that makes up a celestial body is modeled

with this rheology, the expressions given in Equation (S-38) have to be combined with

Equations (S-28) in order to evaluate the tidal quality function KI (l, ωlmpq).
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Rin

Rout

d

Tin

Tout

Figure S1. Schematic representation of a hollow sphere with the representative parameters

used to derive the thermal flux from the internal surface to the external surface through the

volume enclosed by both surfaces.

r T2

T1

∆T2

∆T1

d

d

Tiso

Figure S2. Vertical temperature profile in a setting where heat transport is dominated by

convection.
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Figure S3. Plots of the three different assumed dynamical evolution models (DEMs) of the

major semiaxis of the Moon’s orbit
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Figure S4. Plots of the three different assumed dynamical evolution models (DEMs) of the

Earth’s LOD.

May 27, 2021, 10:50am



X - 16 LUNA ET AL.: THE INFLUENCE OF TIDAL HEATING

Table S1. Thermally relevant radioactive isotopes together with the corresponding values of

the parameters needed to compute the respective heat production rate per unit mass (Turcotte

& Schubert, 2014).

Isotope H0 [W kg−1] τ 1
2

[yr] C0 [kg kg−1]
238U 9.46× 10−5 4.47× 109 30.8× 10−9

235U 5.69× 10−4 7.04× 108 0.22× 10−9

U 9.81× 10−5 31.0× 10−9

232Th 2.64× 10−5 1.40× 1010 124× 10−9

40K40 2.92× 10−5 1.25× 109 36.9× 10−9

K 3.48× 10−9 31.0× 10−5

Table S2. Constants, physical and orbital parameters of the Earth-Moon system gathered

from the works by (Stacey & Davis, 2008) and (Turcotte & Schubert, 2014).

Symbol Value
G 6.67408× 10−11kg−1 m3 s−2

Rgas 8.31447 J K−1 mol−1

M⊕ 5.9722× 1024kg
R⊕ 6.371× 106 m
Rc 3.480× 106 m
M$ 7.342× 1022 kg
ξ 1

3
µ 8.0× 1010 Pa
ηref 4.5× 1021 Pa s
Tref 1600.0 K
Ts 300.0 K

Racr 1000
E∗ 3.0× 105 J mol−1

α 0.2
a 3.844× 108 m
e 0.0549
i ∼ 23.5◦

Porb 27.322 days
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Table S3. Physical parameters and their corresponding numerical value for the core and

mantle gathered from the works by (Stacey & Davis, 2008) and (Turcotte & Schubert, 2014).

Symbol Unit Core Mantle
α K−1 1.0× 10−5 1.5× 10−5

ρ kg m−3 1.076× 104 4.5× 103

g m s−2 7.0 10.0
κ m2s−1 6.0× 10−6 1.0× 10−6

k W K−1m−1 36.0 6.0
ν m2 s−1 1.0 Variable
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