Figure 23. FRT00021C92-based false color image with 50%
transparency over red version of the HiRISE mosaic. The figure covers
the SoF and eastern side of the Greenheugh pediment. Arrow represents
inferred wind direction for sands derived from SoF and deposited on the
pediment, together with local bedrock-derived sediment also blown onto
the pediment. RGB set to 0.618, 0.553, 0.468 µm. Slopes
>15° were excised from the FRT image to enhance the color
variations associated with relatively flat terrain.
Second, there is a potential that these two deposits have different
source materials. In our study, olivine is the heaviest mineral with
augite and pigeonite having approximately equal densities. Topographic
influence and wind sorting alone may not be enough to explain the
variation in pyroxene abundances observed through spectral modeling
results, as wind sorting would not separate the pyroxene minerals. The
combination of unique source material and topographic influence,
however, could then explain the outcomes of this study observed from
spectral data. In this case, SoF would have been sourced from a more
augite-rich material compared to MDI.
Finally, our result has implications for interpreting aeolian deposits
in the Martian rock records. Here we have two sand bodies that are close
to one another yet have different properties. This is an example of the
paradigm that “present is the key to the past”. The aeolian rock
record likely has similar examples of deposits in the same stratigraphic
horizon, but with laterally varying properties controlled by local
topographic or other controls. Unique properties observed within aeolian
rocks could provide insights into more regional variations of
topography, wind regime, and mineral sorting.
9 Acknowledgments
The work presented in this paper was partially supported by Contract
1549716 from the Caltech/Jet Propulsion Laboratory to REA, MNH, and SJV,
for participation on the Mars Science Laboratory Curiosity rover
mission. RVM acknowledges support from the NASA Mars Science LaboratoryCuriosity rover mission and the NASA Johnson Space Center. We
thank Loan Le (Jacobs, Johnson Space Center) for synthesis and electron
microprobe analyses of synthetic glasses.
10 Data Availability Statement
The data sets used in this study are publicly available through the
Planetary Data System Geosciences Node
(https://pds-geosciences.wustl.edu/). The HiRISE data are available at
https://www.uahirise.org/. CRISM, Navcam, Mastcam, MARDI, MAHLI, and
APXS raw data can be found at
https://pds-geosciences.wustl.edu/dataserv/doi.htm. Mastcam, MAHLI, and
MARDI mosaics were processed by the Mastcam team at Malin Space Science
Systems (MSSS). Laboratory mineral spectra are available through the
PDS/RELAB (https://pds-speclib.rsl.wustl.edu/) and the USGS
(https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library)
spectral libraries, while the synthetic glass spectra can be found at
https://openscholarship.wustl.edu/data/102/. The product IDs and DOIs of
all data sets used in this study are also listed in Table 1.
11 References Cited
Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V.,
Treiman, A.H., et al. (2017). Mineralogy of an active eolian sediment
from the Namib dune, Gale crater, Mars. Journal of Geophysical
Research: Planets , 122 (11), 2344–2361.
https://doi.org/10.1002/2017JE005262
Adams, J.B., & Goullaud, L.H. (1978). Plagioclase feldspars: visible
and near infrared diffuse reflectance spectra as applied to remote
sensing. Proceedings of the Lunar Science Conference , 9 ,
2901–2909.
Aitchison, J. (1994). Principles of compositional data analysis.Lecture Notes-Monograph Series , 24 , 73–81.
https://doi.org/10.1214/lnms/1215463786
Arvidson, R.E., Iagnemma, K.D., Maimone, M., Fraeman, A.A., Zhou, F.,
Heverly, M.C., et al. (2016a). Mars Science Laboratory Curiosity Rover
Megaripple Crossings up to Sol 710 in Gale Crater. Journal of
Field Robotics , 34 (3), 495–518.
https://doi.org/10.1002/rob.21647
Arvidson, R.E., Poulet, F., Morris, R.V., Bibring, J.P., Bell, J.F. III,
Squyres, S.W., et al. (2006). Nature and origin of the hematite-bearing
plains of Terra Meridiani based on analyses of orbital and Mars
Exploration rover data sets. Journal of Geophysical Research E:
Planets , 111 (12), 1–19. https://doi.org/10.1029/2006JE002728
Arvidson, R.E., Squyres, S.W., Morris, R.V., Knoll, A.H., Gellert, R.,
Clark, B.C., et al. (2016b). High concentrations of manganese and sulfur
in deposits on Murray Ridge, Endeavour Crater, Mars. American
Mineralogist , 101 (6), 1389–1405.
https://doi.org/10.2138/am-2016-5599
Bell III, J.F., Godber, A., McNair, S., Caplinger, M.A., Maki, J.N.,
Lemmon, M.T., et al. (2017). The Mars Science Laboratory Curiosity rover
Mastcam instruments: Preflight and in-flight calibration, validation,
and data archiving. Earth and Space Science , 4 (7),
396–452. https://doi.org/10.1002/2016EA000219
Bell III, J.F., Malin, M.C., Caplinger, M.A., Ravine, M.A., Godber,
A.S., Jungers, M.C., et al. (2012). Mastcam Multispectral Imaging on the
Mars Science Laboratory Rover: Wavelength coverage and imaging
strategies at the Gale Crater field site. 43rd Lunar and Planetary
Science Conference , No. 2541.
Bell, P.M., Mao, H.K., & Weeks, R.A. (1976). Optical spectra and
electron paramagnetic resonance of lunar and synthetic glasses: A study
of the effects of controlled atmosphere, composition, and temperature.Proceedings of the Lunar Science Conference , 7 ,
2543–2559.
Bennett, K., et al. (2022). An Overview of Curiosity’s Campaign in Glen
Torridon and Synthesis of Major Results, Journal of Geophysical
Research: Planets , submitted.
Bennett, K.A., Hill, J.R., Murray, K.C., Edwards, C.S., Bell, J.F. III,
& Christensen, P.R. (2018). THEMIS-VIS Investigations of Sand at Gale
Crater. Earth and Space Science , 5 (8), 352–363.
https://doi.org/10.1029/2018EA000380
Blake, D., Vaniman, D., Achilles, C., Anderson, R., Bish, D., Bristow,
T., et al. (2012). Characterization and calibration of the CheMin
mineralogical instrument on Mars Science Laboratory. Space Science
Reviews , 170 (1–4), 341–399.
https://doi.org/10.1007/s11214-012-9905-1
Boctor, N.Z., Meyer, H.O.A., & Kullerud, G. (1976). Lafayette
Meteorite: Petrology and Opaque Mineralogy. Earth and Planetary
Science Letters , 32 , 69–76.
https://doi.org/10.1007/s12036-014-9301-1
Bridges, N.T., & Ehlmann, B.L. (2018). The Mars Science Laboratory
(MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the
special issue. Journal of Geophysical Research: Planets ,123 (1), 3–19. https://doi.org/10.1002/2017JE005401
Burns, R.G. (1970). Crystal Field Spectra and Evidence of Cation
Ordering in Olivine Minerals. American Mineralogist ,55 (9-10), 1608–1632.
Burns, R.G. (1993). Origin of electronic spectra of minerals in the
visible and near-infrared region. In C. M. Pieters & P. A. Englert
(Eds.), Remote Geochemical Analysis (pp. 3–29).
Calef III, F.J., & Parker, T. (2016). MSL Gale Merged Orthophoto Mosaic
[Data Set]. PDS Annex, U.S. Geological Survey.
http://bit.ly/MSL_Basemap
Cannon, K.M., Mustard, J.F., Parman, S.W., Sklute, E.C., Dyar, M.D., &
Cooper, R.F. (2017). Spectral properties of Martian and other planetary
glasses and their detection in remotely sensed data. Journal of
Geophysical Research: Planets , 122 (1), 249–268.
https://doi.org/10.1002/2016JE005219
Christian, J.R., Arvidson, R.E., O’Sullivan, J.A., Vasavada, A.R., &
Weitz, C.M. (2022). CRISM‐based High Spatial Resolution Thermal Inertia
Mapping along Curiosity’s Traverses in Gale Crater. Journal of
Geophysical Research: Planets . https://doi.org/10.1029/2021je007076
Crown, D.A., & Pieters, C.M. (1987). Spectral properties of plagioclase
and pyroxene mixtures and the interpretation of lunar soil spectra.Icarus , 72 (3), 492–506.
https://doi.org/10.1016/0019-1035(87)90047-9
Dyar, M.D., Sklute, E.C., Menzies, O.N., Bland, P.A., Lindsley, D.,
Glotch, T., et al. (2009). Spectroscopic characteristics of synthetic
olivine: An integrated multi-wavelength and multi-technique approach.American Mineralogist , 94 (7), 883–898.
https://doi.org/10.2138/am.2009.3115
Edgett, K.S. (2013). MSL Mars Hand Lens Imager 4 RDR ZSTACK V1.0 [Data
set]. NASA Planetary Data System.
https://doi.org/https://doi.org/10.17189/1520169
Edgett, K.S., Yingst, R.A., Ravine, M.A., Caplinger, M.A., Maki, J.N.,
Ghaemi, F.T., et al. (2012). Curiosity’s Mars Hand Lens Imager (MAHLI)
investigation. Space Science Reviews , 170 (1–4), 259–317.
https://doi.org/10.1007/s11214-012-9910-4
Edwards, C.S., Piqueux, S., Hamilton, V.E., Fergason, R.L., Herkenhoff,
K.E., Vasavada, A., et al. (2018). The Thermophysical Properties of the
Bagnold Dunes, Mars: Ground-Truthing Orbital Data. Journal of
Geophysical Research: Planets , 123 (5), 1307–1326.
https://doi.org/10.1029/2017JE005501
Ehlmann, B.L., Edgett, K.S., Sutter, B., Achilles, C.N., Litvak, M.L.,
Lapotre, M.G.A., et al. (2017). Chemistry, mineralogy, and grain
properties at Namib and High dunes, Bagnold dune field, Gale crater,
Mars: A synthesis of Curiosity rover observations. Journal of
Geophysical Research: Planets , 122 (12), 2510–2543.
https://doi.org/10.1002/2017JE005267
Gellert, R. (2013). MSL Mars Alpha Particle X-Ray Spectrometer 4/5 RDR
V1.0 [Data Set]. NASA Planetary Data System.
https://doi.org/10.17189/1518757
Gellert, R., Clark III, B.C. (2015). In Situ Compositional Measurements
of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA’s
Mars Rovers. Elements , 11 (1), 39–44.
https://doi.org/10.2113/gselements.11.1.39
Grotzinger, J.P., Gupta, S., Malin, M.C., Rubin, D.M., Schieber, J.,
Siebach, K., et al. (2015). Deposition, exhumation, and paleoclimate of
an ancient lake deposit, Gale crater, Mars. Science ,350 (6257). https://doi.org/10.1126/science.aac7575
Grotzinger, J.P., Crisp, J., Vasavada, A.R., Anderson, R.C., Baker,
C.J., Barry, R., et al. (2012). Mars Science Laboratory mission and
science investigation. Space Science Reviews , 170 , 5–56.
https://doi.org/10.1007/s11214-012-9892-2
Gruninger, J.H., Ratkowski, A.J., & Hoke, M.L. (2004). The sequential
maximum angle convex cone (SMACC) endmember model. Algorithms and
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery
X , 5425 . https://doi.org/10.1117/12.543794
Hapke, B. (2012). Theory of Reflectance and Emittance
Spectroscopy (2nd ed.). Cambridge, UK: Cambridge
University Press. https://doi.org/10.1017/CBO9781139025683
He, L., Arvidson, R.E., O’Sullivan, J.A., Morris, R.V., Condus, T.,
Hughes, M.N., & Powell, K.E. (2022). Surface Kinetic Temperatures and
Nontronite Single Scattering Albedo Spectra from Mars Reconnaissance
Orbiter CRISM Hyperspectral Imaging Data Over Glen Torridon, Gale
Crater, Mars. In Journal of Geophysical Research: Planets .
https://doi.org/10.1029/2021je007092
He, L., O’Sullivan, J.A., Politte, D.V., Powell, K.E., & Arvidson, R.E.
(2019). Quantitative Reconstruction and Denoising Method HyBER for
Hyperspectral Image Data and Its Application to CRISM. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing , 12 (4), 1219–1230.
https://doi.org/10.1109/JSTARS.2019.2900644
Hintze, J.L., & Nelson, R.D. (1998). Violin Plots: A Box Plot-Density
Trace Synergism. The American Statistician , 52 (2),
181–184. https://doi.org/10.1080/00031305.1998.10480559
Hiroi, T., & Pieters, C.M. (1994). Estimation of grain sizes and mixing
ratios of fine powder mixtures of common geologic minerals.Journal of Geophysical Research , 99 (E5), 10867– 10879.
https://doi.org/10.1029/94JE00841
Horgan, B.H.N., Cloutis, E.A., Mann, P., & Bell III, J.F. (2014).
Near-infrared spectra of ferrous mineral mixtures and methods for their
identification in planetary surface spectra. Icarus , 234 ,
132–154. https://doi.org/10.1016/j.icarus.2014.02.031
Johnson, J.R., Bell III, J.F., Bender, S., Cloutis, E., Ehlmann, B.,
Fraeman, A., et al. (2018). Bagnold Dunes Campaign Phase 2:
Visible/Near-Infrared Reflectance Spectroscopy of Longitudinal Ripple
Sands. Geophysical Research Letters , 45 (18), 9480–9487.
https://doi.org/10.1029/2018GL079025
Johnson, J.R., Grundy, W.M., Shepard, M.K. (2004). Visible/near-infrared
spectrogoniometric observations and modeling of dust-coated rocks.Icarus, 171 (2), 546-556.
https://doi.org/10.1016/j.icarus.2004.05.013
Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M.,
Pearson, N.C., et al. (2017). USGS Spectral Library Version 7 . US
Geological Survey. https://doi.org/https://doi.org/10.3133/ds1035
Kreisch, C.D., O’Sullivan, J.A., Arvidson, R.E., Politte, D.V., He, L.,
Stein, N.T., et al. (2017). Regularization of Mars Reconnaissance
Orbiter CRISM along‐track oversampled hyperspectral imaging observations
of Mars. Icarus , 282 , 136–151.
https://doi.org/10.1016/j.icarus.2016.09.033
Lane, M.D., & Christensen, P.R. (2013). Determining olivine composition
of basaltic dunes in Gale Crater, Mars, from orbit: Awaiting ground
truth from Curiosity. Geophysical Research Letters ,40 (14), 3517–3521. https://doi.org/10.1002/grl.50621
Lapotre, M.G.A., Ehlmann, B.L., & Minson, S.E. (2017a). A probabilistic
approach to remote compositional analysis of planetary surfaces.Journal of Geophysical Research: Planets , 122 (5),
983–1009. https://doi.org/10.1002/2016JE005248
Lapotre, M.G.A., Ehlmann, B.L., Minson, S.E., Arvidson, R.E., Ayoub, F.,
Fraeman, A.A., et al. (2017b). Compositional variations in sands of the
Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared
spectroscopy and comparison with ground truth from the Curiosity rover.Journal of Geophysical Research: Planets , 122 (12),
2489–2509. https://doi.org/10.1002/2016JE005133
Lapotre, M.G.A., Ewing, R.C., Weitz, C.M., Lewis, K.W., Lamb, M.P.,
Ehlmann, B.L., & Rubin, D.M. (2018). Morphologic Diversity of Martian
Ripples: Implications for Large-Ripple Formation. Geophysical
Research Letters , 45 (19), 10,229-10,239.
https://doi.org/10.1029/2018GL079029
Lapotre, M.G.A., & Rampe, E.B. (2018). Curiosity’s Investigation of the
Bagnold Dunes, Gale Crater: Overview of the Two-Phase Scientific
Campaign and Introduction to the Special Collection. Geophysical
Research Letters , 45 (19), 10,200-10,210.
https://doi.org/10.1029/2018GL079032
Lucey, P.G. (1998). Model near-infrared optical constants of olivine and
pyroxene as a function of iron content. Journal of Geophysical
Research , 103 (E1), 1703–1713.
Maki., J. (2014). MSL Mars Navigation Camera 5 RDR Mosaic V1.0 [Data
Set]. NASA Planetary Data System.
https://doi.org/https://doi.org/10.17189/1520335
Maki, J., Thiessen, D., Pourangi, A., Kobzeff, P., Litwin, T., Scherr,
L., et al. (2012). The Mars Science Laboratory Engineering Cameras.Space Science Reviews , 170 (1–4), 77–93.
https://doi.org/10.1007/s11214-012-9882-4
Malin, M.C. (2013a). MSL Mars Descent Imager 4 RDR Image V1.0 [Data
Set]. NASA Planetary Data System.
https://doi.org/https://doi.org/10.17189/1520349
Malin, M.C. (2013b). MSL Mars Mast Camera 4 RDR Image V1.0 [Data
Set]. NASA Planetary Data System.
https://doi.org/https://doi.org/10.17189/1520328
Malin, M.C., Ravine, M.A., Caplinger, M.A., Ghaemi, T.F., Schaffner,
J.A., Maki, J.N., et al. (2017). The Mars Science Laboratory (MSL) Mast
cameras and Descent imager: Investigation and Instrument Descriptions.Earth and Space Science , 4 (8), 506–539.
https://doi.org/10.1002/2016EA000252
McEwen, A.S. (2005). MRO Mars High Resolution Image Science Experiment
EDR V1.0 [Data Set]. NASA Planetary Data System.
https://doi.org/https://doi.org/10.17189/1520179
McEwen, A.S., Eliason, E.M., Bergstrom, J.W., Bridges, N.T., Hansen,
C.J., Delamere, W. et al. (2007). Mars reconnaissance orbiter’s high
resolution imaging science experiment (HiRISE). Journal of
Geophysical Research E: Planets , 112 (5), 1–40.
https://doi.org/10.1029/2005JE002605
McFadden, L.A., & Cline, T.P. (2005). Spectral reflectance of Martian
meteorites: Spectral signatures as a template for locating source region
on Mars. Meteoritics and Planetary Science , 40 (2),
151–172. https://doi.org/10.1111/j.1945-5100.2005.tb00372.x
McSween, H.Y., Ruff, S.W., Morris, R.V., Gellert, R., Klingelhöfer, G.,
Christensen, P.R., et al. (2008). Mineralogy of volcanic in Gusev
Crater, Mars: Reconciling Mössbauer, Alpha Particle X-Ray Spectrometer,
and Miniature Thermal Emission Spectrometer spectra. Journal of
Geophysical Research E: Planets , 113 (6), 1–14.
https://doi.org/10.1029/2007JE002970.
Milliken, R. (2020). RELAB Spectral Library Bundle [Data Set]. NASA
Planetary Data System. https://doi.org/https://doi.org/10.17189/1519032
Moreland, E.L, Arvidson, R.E., Morris, R.V., Condus, T., Hughes, M.N.,
Weitz, C.M, & VanBommel, S.J. (2022). Orbital and In-Situ Investigation
of the Bagnold Dunes and Sands of Forvie, Gale Crater, Mars [Data
Set]. Digital Research Materials (Data & Supplemental files). 102.
https://doi.org/10.7936/2jv6-c769
Murchie, S., Arvidson, R., Bedini, P., Beisser, K., Bibring, J. P.,
Bishop, J., et al. (2007). Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of
Geophysical Research E: Planets , 112 (5), 1–57.
https://doi.org/10.1029/2006JE002682
O’Connell-Cooper, C. D., Thompson, L. M., Spray, J. G., Berger, J.
A., Gellert, R., McCraig, M., et al. (2022). Statistical analysis of
APXS-derived chemistry of the clay-bearing Glen Torridon region and
Mount Sharp group, Gale crater, Mars. Journal of Geophysical Research:
Planets, 127, e2021JE007177. https://doi.org/10.1029/2021JE007177
Rampe, E.B., Blake, D.F., Bristow, T.F., Ming, D.W., Vaniman, D.T.,
Morris, R.V., et al. (2020). Mineralogy and geochemistry of sedimentary
rocks and eolian sediments in Gale crater, Mars: A review after six
Earth years of exploration with Curiosity. Geochemistry ,80 (2). https://doi.org/10.1016/j.chemer.2020.125605
Rampe, E.B., Lapotre, M.G.A., Bristow, T.F., Arvidson, R.E., Morris,
R.V., Achilles, C.N., et al. (2018). Sand Mineralogy Within the Bagnold
Dunes, Gale Crater, as Observed In Situ and From Orbit.Geophysical Research Letters , 45 (18), 9488–9497.
https://doi.org/10.1029/2018GL079073
Rogers, A.D., & Bandfield, J.L. (2009). Mineralogical characterization
of Mars Science Laboratory candidate landing sites from THEMIS and TES
data. Icarus , 203 (2), 437–453.
https://doi.org/10.1016/j.icarus.2009.04.020
Seelos, F. (2016). MRO CRISM Map-Projected Targeted Reduced Data Record
V1.0. [Data Set] NASA Planetary Data System.
https://doi.org/https://doi.org/10.17189/1519470
Seelos, K.D., Seelos, F.P., Viviano-Beck, C.E., Murchie, S.L., Arvidson,
R.E., Ehlmann, B.L., & Fraeman, A.A. (2014). Mineralogy of the MSL
Curiosity landing site in Gale crater as observed by MRO/CRISM.Geophysical Research Letters , 41 (14), 4880–4887.
https://doi.org/10.1002/2014GL060310
Silvestro, S., Vaz, D.A., Ewing, R.C., Rossi, A.P., Fenton, L.K.,
Michaels, T.I., et al. (2013). Pervasive aeolian activity along rover
Curiosity’s traverse in Gale Crater, Mars. Geology , 41 (4),
483–486. https://doi.org/10.1130/G34162.1
Stamnes, K., Tsay, S.C., Wiscombe, W., & Jayaweera, K. (1988).
Numerically stable algorithm for discrete-ordinate-method radiative
transfer in multiple scattering and emitting layered media.Applied Optics , 27 (12), 2502.
https://doi.org/10.1364/ao.27.002502
Stein, N.T., Arvidson, R.E., O’Sullivan, J.A., Catalano, J.G., Guinness,
E.A., Politte, DV., et al. (2018). Retrieval of Compositional
End-Members From Mars Exploration Rover Opportunity Observations in a
Soil-Filled Fracture in Marathon Valley, Endeavour Crater Rim.Journal of Geophysical Research: Planets , 123 (1),
278–290. https://doi.org/10.1002/2017JE005339
Sullivan, R., Baker, M., Newman, C., Turner, M., Schieber, J., Weitz,
C., et al. (2022). The Aeolian Environment in Glen Torridon, Gale
Crater, Mars. Journal of Geophysical Research , submitted.
Sunshine, J.M., & Pieters, C.M. (1998). Determining the composition of
olivine from reflectance spectroscopy. Journal of Geophysical
Research , 103 (E6), 13675-13688.
https://doi.org/10.1029/98JE01217
Trang, D., Lucey, P.G., Gillis-Davis, J.J., Cahill, J.T.S., Klima, R.L.,
& Isaacson, P.J. (2013). Near-infrared optical constants of naturally
occurring olivine and synthetic pyroxene as a function of mineral
composition. Journal of Geophysical Research: Planets ,118 (4), 708–732. https://doi.org/10.1002/jgre.20072
Vanbommel, S.J., Gellert, R., Arvidson, R.E., Berger, J.A., Boyd, N.I.,
McCraig, M., et al. (2020). Quantification of Volatile Elements through
Spectral Modeling and Analyses of APXS Data: Comparing Murray and
Sheepbed. 51st Lunar and Planetary Science Conference, No. 1452.
Vanbommel, S.J., Gellert, R., Berger, J.A., Campbell, J.L., Thompson,
L.M., Edgett, K.S., et al. (2016). Deconvolution of distinct lithology
chemistry through oversampling with the Mars Science Laboratory Alpha
Particle X-Ray Spectrometer. X-Ray Spectrometry , 45 (3),
155–161. https://doi.org/10.1002/xrs.2681
VanBommel, S.J., Gellert, R., Berger, J.A., Thompson, L.M., Edgett,
K.S., McBride, M.J., et al. (2017). Modeling and mitigation of sample
relief effects applied to chemistry measurements by the Mars Science
Laboratory Alpha Particle X-ray Spectrometer. X-Ray Spectrometry ,46 (4), 229–236. https://doi.org/10.1002/xrs.2755
VanBommel, S.J., Gellert, R., Berger, J.A., Yen, A.S., & Boyd, N.I.
(2019a). Mars Science Laboratory Alpha Particle X-ray spectrometer trace
elements: Situational sensitivity to Co, Ni, Cu, Zn, Ga, Ge, and Br.Acta Astronautica , 165 (11), 32–42.
https://doi.org/10.1016/j.actaastro.2019.08.026
VanBommel, S.J., Gellert, R., Boyd, N.I., & Hanania, J.U. (2019b).
Empirical simulations for further characterization of the Mars Science
Laboratory Alpha Particle X-ray Spectrometer: An introduction to the
ACES program. Nuclear Instruments and Methods in Physics Research,
Section B: Beam Interactions with Materials and Atoms , 441 (E7),
79–87. https://doi.org/10.1016/j.nimb.2018.12.040
Vasavada, A.R., Grotzinger, J.P., Arvidson, R.E., Calef, F.J., Crisp,
J.A., Gupta, S., et al. (2014). Overview of the Mars Science Laboratory
mission: Bradbury Landing to Yellowknife Bay and beyond. Journal
of Geophysical Research: Planets , 119 , 1134–1161.
https://doi.org/10.1002/2014JE004622
Weitz, C.M., Connell, C.O.C., Thompson, L., Sullivan, R.J., Baker, M.,
& Grant, J.A. (2022). The Physical Properties and Geochemistry of
Grains on Aeolian Bedforms at Gale Crater, Mars. Journal of
Geophysical Research: Planets , submitted.
Weitz, C.M., Sullivan, R.J., Lapotre, M.G.A., Rowland, S.K., Grant,
J.A., Baker, M., & Yingst, R.A. (2018). Sand Grain Sizes and Shapes in
Eolian Bedforms at Gale Crater, Mars. Geophysical Research
Letters , 45 (18), 9471–9479.
https://doi.org/10.1029/2018GL078972
Wolff, M.J., Smith, M.D., Clancy, R.T., Arvidson, R., Kahre, M., Seelos
IV, F., et al. (2009). Wavelength dependence of dust aerosol single
scattering albedo as observed by the compact reconnaissance imaging
spectrometer. Journal of Geophysical Research, 114 (E00D04).
https://doi.org/10.1029/2009JE003350