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Key Points:  9 

• Evolving experimental strike-slip fault maps are suitable for machine learning.  The labels 10 
are calculated via image processing. 11 

• Proposed convolutional neural networks (CNNs) can predict off-fault deformation directly 12 
from experimental fault trace maps.  13 

• Trained CNN performs with 91% accuracy on unseen experimental faults and show 14 
promise in predicting kinematic efficiency of crustal faults.  15 
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Abstract   16 
Crustal deformation occurs both as localized slip along faults and distributed deformation 17 

off faults; however, we have few robust estimates of off-fault deformation. Scaled physical 18 
experiments simulate crustal strike-slip faulting and allow direct measurement of fault slip to 19 
regional deformation, quantified as Kinematic Efficiency (KE). We offer an approach for KE 20 
prediction using a 2D Convolutional Neural Network (CNN) trained directly on images of fault 21 
maps produced by physical experiments. A suite of experiments with different loading rate and 22 
basal boundary conditions, contribute over 13,000 fault maps throughout strike-slip fault 23 
evolution. Strain maps allow us to directly calculate KE and its uncertainty, utilized in the loss 24 
function and performance metric. The trained CNN achieves 91% accuracy in KE prediction of an 25 
unseen dataset. The application of the CNN trained on scaled experiments to crustal fault maps 26 
provides estimates of off-fault deformation that overlap available geologic estimates.  27 

 28 
Plain Language Summary 29 

Where the earth deforms at the boundaries between tectonic plates, some of the 30 
deformation is taken up as localized slip along fault surfaces and some of the deformation is 31 
distributed around the fault. This distributed deformation is very hard to measure in the Earth’s 32 
crust. To get around this challenge, we create faults in the laboratory and use the direct 33 
measurements of the distributed deformation off of faults to train a machine learning model. The 34 
trained model performs well at predicting distributed off-fault deformation from the fault 35 
geometry. 36 

1 Introduction   37 
Despite abundant documentation of distributed deformation, such as folding and fracturing, 38 

within bedrock and soil away from primary fault surfaces, we have few estimates of the portion of 39 
regional deformation that is permanently accommodated off of faults. Within regions of strike-slip 40 
faulting, geologic investigations of structures that record cumulative deformation suggest that ~10-41 
30% of the regional strike-slip strain may occur off of individual strike-slip faults (e.g., (Goren et 42 
al., 2015; Gray et al., 2018; Shelef & Oskin, 2010; Titus et al., 2011). Comparisons of coseismic 43 
surface slip to geodetic estimates show greater strike slip rate discrepancy for immature faults with 44 
< 25 km cumulative slip than more mature faults (Dolan & Haravitch, 2014). Attributing the 45 
discrepancy in fault slip rate to off-fault deformation, Dolan & Haravitch (2014) find that immature 46 
faults have 40-50% off-fault deformation while mature faults (total slip > 25 km) have 10-15% 47 
off-fault deformation. Fault geometry, which is an outcome of fault maturity, exerts primary 48 
control on the portion of regional deformation partitioned as fault slip (C. Milliner et al., 2016). 49 
Strike-slip faults with smoother traces can more efficiently accommodate slip with lesser off-fault 50 
deformation than faults with rough/complex traces in the slip direction (e.g., Chester & Chester, 51 
2000; Fang & Dunham, 2013; Newman & Griffith, 2014; Saucier et al., 1992). 52 

The hypothesis that smoother faults produce greater slip is strongly supported by scaled 53 
physical experiments of strike-slip fault evolution that directly document that as faults mature and 54 
become smoother, the % of fault slip quantified as kinematic efficiency (KE = 1 - % off fault 55 
deformation) increases. KE describes the ratio of incremental strike-slip accommodated along the 56 
fault to the total incremental displacement (Hatem et al., 2017). Arrays of echelon faults that 57 
develop early in strike slip fault evolution have KE of 50-60% and this increases to 80-90% along 58 
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the through-going mature strike-slip fault (Hatem et al., 2017). The direct and complete 59 
observations available from experiments can inform our interpretations of crustal faulting in ways 60 
that field data, which generally only reveal cumulative deformation and parts of the structure, 61 
cannot (e.g., Reber et al., 2020). The power of scaled experiments derives from using carefully 62 
selected analog materials that allow fault evolutionary processes that occur over very large space 63 
and time scales to be simulated in a few hours within the laboratory.  64 

What controls the kinematic efficiency of strike-slip faults? Studies of both the coseismic 65 
deformation fields  and experiments show correlations of amount of fault slip with both fault zone 66 
width (Hatem et al., 2017; C. W. Milliner et al., 2015) as well as strike-slip fault trace 67 
roughness/complexity (Hatem et al., 2017; C. Milliner et al., 2016). While fractal dimension can 68 
quantify the roughness of continuous fault traces (e.g., Brown, 1987) this metric cannot reliably 69 
capture the roughness of segmented faults where connectivity controls fault slip. Because any 70 
single metric will overlook aspects that may relate strike-slip fault architecture and KE, we need 71 
an alternative approach.  72 

In this study, we harness a machine learning algorithm on an experimental time series of 73 
fault maps to estimate kinematic efficiency. Experiments that are scaled to simulate crustal strike-74 
slip fault development allow direct detailed observation of the evolution of both active fault 75 
network and KE under a range of loading rates and boundary conditions. Machine learning has 76 
been used to predict the timing and size of lab quakes produced in rock (e.g., Rouet-Leduc et al., 77 
2017) and scaled analog materials (Corbi et al., 2019). We use Convolutional Neural Networks 78 
(CNNs), which have proved successful for a wide range of computer vision tasks (e.g.,LeCun et 79 
al., 2010) because they can relate relevant parameters in higher dimensions to specific prediction 80 
tasks. With experimental strike-slip fault dataset, our CNNs associate the complexity of the active 81 
fault network with the degree of off-fault deformation.  82 

2 Data and Methodology 83 

2.1 Experimental fault data 84 
We record the changing complexity of strike-slip faults during their evolution within 85 

experiments under various boundary conditions that represent different crustal loading. The table-86 
top deformation apparatus consists of a split box filled with wet kaolin clay (Figure 1a). The 87 
benefits of wet kaolin over other crustal analog materials are that 1) wet kaolin creates very clear 88 
faults that can be tracked (e.g., Eisenstadt & Sims, 2005; Henza et al., 2010; Oertel, 1965; 89 
Tchalenko, 1970), 2) the low but non-zero cohesion of wet kaolin ensures that faults are long-90 
lived; (compared to dry granular materials (Cooke et al., 2013; Eisenstadt & Sims, 2005; Withjack 91 
et al., 2007) and 3) the viscoelastic behavior of wet kaolin can simulate off fault relaxation of 92 
stresses with the crust (Cooke & van der Elst, 2012). Many studies have used kaolin to simulate 93 
evolution of strike-slip fault systems (Cooke et al., 2013; Hatem et al., 2015, 2017; Tchalenko, 94 
1970).  95 

The scaling of the wet kaolin and details of the experimental set up and analysis are 96 
described in the supplement to this paper. We simulated two basal shear conditions: distributed 97 
shear via a 2.5 cm wide elastic band secured to the basal plates or localized shear by juxtaposing 98 
the two basal plates. Computer-controlled stepper motors displaced one half of the box at a 99 
prescribed rate (0.25, 0.5, 1.0, or 1.5 mm/min) parallel to the basal plate discontinuity to initiate 100 
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dextral strike-slip faulting within the overlying wet kaolin. We conducted experiments at least 101 
twice for each condition for a total of 16 experiments.  102 

The experimental active fault maps capture the evolution of strike-slip faults from echelon 103 
crack initiation to through-going slip surface. Because digital image correlation techniques provide 104 
us with precise knowledge of the incremental horizontal displacement fields, we can directly 105 
calculate localized slip along the faults and kinematic efficiency (KE labels) across any portion of 106 
the fault. Additionally, we record the associated standard deviation (SD) of KE across the region 107 
input to the CNN. Both the KE labels and SDs are utilized in the optimization of the CNN (Eq. 1) 108 
and assessment of the CNN performance (Eq. 2) 109 

 110 
Figure 1: (a) Schematic of the distributed basal shear experiment loaded in strike-slip. (b) 111 
incremental displacement vectors at a snapshot of the fault evolution. (c) The shear strain map 112 
derived from (b). (d) Example experiment fault maps (1.5 mm/min distributed basal shear). Color 113 
shading delineates individual windows and their overlap. (e) KE for the experiment increases with 114 
strike-slip fault maturity. The grey band indicates the range of KE within individual windows along 115 
the experimental fault. The red numbers report KE for specific example windows outlined in red 116 
in (d). (f – h) Strike slip fault traces from Southern California show how complexity changes with 117 
increasing fault maturity along the (f) San Jacinto fault (map center at 33.45°N 116.45°W), (g) 118 
Calico fault (map center at 34.65°N 166.6°W), and (h) Coachella segment of the San Andreas fault 119 
near Mecca Hills (map center at 33.58°N 116.95°W).  120 

2.2 Data Processing 121 
We subsample each fault map into five 128x64 pixel windows with ~ 20% overlap (Fig. 122 

1e). This window size captures multiple echelon strands during early stages of fault development 123 
while allowing larger numbers of unique datasets that are essential for training and testing of the 124 
model. We divide the complete dataset into three statistically equivalent subsets for training (64%), 125 
evaluation (24%), and test (12%) purposes. Since each experiment set-up is repeated, all 5 126 
windows of the first experiments of each set-up are included in the training dataset while the 5 127 
windows within the repeated runs are randomly allocated for training (⅖), evaluation (⅖), and 128 
testing (⅕). With this approach, each dataset contains all ranges of boundary conditions. We use 129 
the unseen test dataset to assess the trained CNN performance.  130 
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After filtering out early maps prior to the initiation of active faults, the dataset consists 131 
of  approximately 13,400 sliced windows. In order to generate a sufficiently large dataset, we apply 132 
common geometric augmentation techniques (e.g., Shorten & Khoshgoftaar, 2019). Trivial 133 
transformation does not contribute to significant diversification of the dataset while over-134 
exaggerated transformation distorts the fault traces so much that the CNN cannot  associate fault 135 
maps to kinematic efficiency. We found that zooming (+/- 5%), shifting (+/- 10%), and flipping 136 
(binary) each window are the most effective ranges of transformation for the dimension and scaling 137 
of our dataset. Augmented fault locations, sizes, and slip sense better represent broad varieties of 138 
potential crustal active fault maps. See supplementary to this paper for further details of the data 139 
processing.   140 

2.3 CNN Methodology 141 
Convolutional Neural Networks (CNNs) trained using experimental strike-slip fault maps 142 

can provide a useful way to describe the complex and non-linear relationship between active fault 143 
trace complexity and kinematic efficiency. Learning directly from fault maps eliminates the need 144 
to prescribe exact equations to describe complex failure behaviors. The proposed CNNs learn how 145 
active fault traces relate to KE by minimizing a custom loss function L based on a normalized 146 
mean square error as shown in Eq. 1 147 
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The mean square error (MSE) is the squared difference of the estimated values (KE 149 
prediction, 𝑦+,) and the truth (KE label, 𝑦*). A small value of ensures a non-zero divisor. Our custom 150 
loss function scales MSE with the squared standard deviation of KE (SD), allowing the model to 151 
learn more precisely where we have the most confidence while relaxing the learning conditions 152 
where uncertainties are high.  153 

We train the models with Adam Optimizer (Kingma & Ba, 2017), a modified stochastic 154 
gradient descent with adaptive learning rate. Our CNN network (Fig 2a) has stacked convolutional 155 
layers that have appropriate kernel sizes and dilation parameters to detect features both locally (i.e. 156 
stepovers between faults) and globally (fault connectedness). We then apply batch normalization, 157 
which stabilizes learning with a modest regularization effect that improves the performance (Ioffe 158 
& Szegedy, 2015). We chose the rectified linear (ReLU), as our non-linear activation function, to 159 
enable the network to approximate functions and preserve properties of each feature map 160 
(Kulathunga et al., 2021; Nair & Hinton, 2010). Subsequently, we use max-pooling to highlight 161 
the most representative features and then downsample the feature maps so that they would not be 162 
sensitive to the faults’ location within the input maps. Pooled layers also reduce the number of 163 
parameters, and aid computing efficiency before being flattened into a vector in fully-connected 164 
layers. We add a dropout regularizer (Srivastava et al., 2014) to improve generalization and prevent 165 
overfitting in predicting KE. 166 

We iterate over a range of network depth and select the  most efficient network (Fig. 2a) 167 
that performs well. We assess the performance of our CNN networks by considering the prediction 168 
as correct if the absolute difference of the predicted KE and the true KE label fit within two 169 
standard deviations of the label (Eq. 2).  170 

 171 
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 174 
Figure 2: (a) Convolutional neural network architecture designed to optimize for efficiency and 175 
performance. (b-c) Loss and accuracy as we fit the models over 50 training epochs and evaluate 176 
the performance against the loss and accuracy at the end of each epoch. The solid lines represent 177 
the best performing model. Dotted lines represent the results of comparable fitting using the same 178 
set of hyperparameters showing repeatability of all models, achieving consistently high 179 
performances. 180 

3 Results 181 

3.1 CNN Prediction on Experimental Faults  182 
To ensure that the trained CNN can generalize to unseen data, we use the minimum loss 183 

(Eq. 1) of the evaluation dataset to guide tuning of the hyperparameters. The best model, and all 184 
repeated training runs illustrate a good fit, and the CNN model stops improving after 185 
approximately 50 training epochs, where we impose an early stopping of the training process(Fig. 186 
2b). Additionally, we confirm the repeatability of the models’ performance by reproducing mini-187 
batch accuracy over 90% (Table S3) on all training sessions using the same set of hyperparameters 188 
(Table S2) while varying the randomized initialization.  189 

Applying the selected CNN’s model (best model) for prediction tasks, we reach high 190 
performance of 96.7% and 96.1% accuracy (Eq.2) in training and evaluation datasets respectively 191 
(Fig 2C). Similarly,  prediction on an unseen test dataset yields satisfactory performance of 90.9% 192 
accuracy. These correct predictions for the majority of the dataset extensively represent 193 
experiments with the full range of applied loading rates, basal boundary conditions and stages of 194 
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fault evolution. On the other hand, the clusters of outliers from more matured faults seem to 195 
correlate to individual experiments within a specific KE range (Fig. 3).  196 

 197 
 198 
Figure 3: Prediction performance on training, evaluation, and test datasets using the selected 199 
model that generates the lowest evaluation loss during training for the prediction task.  (a)-(b) 200 
Trained CNN can predict KE of both training and evaluation dataset with an accuracy exceeding 201 
96%.  (c) Trained CNN can predict KE of an unseen test dataset with 91% accuracy. On the upper 202 
left, we display selected fault maps from all KE ranges. These examples represent datasets that can 203 
be accurately predicted by CNN. On the lower right, we display examples of a few outliers that 204 
cannot be predicted correctly by the trained CNN.  205 

3.2 CNN Application on Crustal Fault Maps  206 
Because there are very few geologic estimates of off-fault deformation in the crust, we 207 

strictly train the CNN model using only experimental faults. But since these laboratory simulated 208 
faults are scaled to crusts, the trained CNN has potential to predict KE of crustal faults. Here, we 209 
compare the off-fault deformation estimates from three geologic studies to CNN predicted KE that 210 
use the active fault maps of those studies. These studies use evidence of off-fault deformation 211 
accumulated across different time spans: coseismic deformation associated with 2016 M7 212 
Kumamoto earthquake along the Futagawa fault (Scott et al., 2019), Holocene deformation of 213 
drainages adjacent to the San Andreas fault at Mecca Hills (Gray et al., 2018) and bending of 214 
Mesozoic faults and dikes adjacent to the northern Calico fault in the Eastern California Shear 215 
Zone (Shelef & Oskin, 2010). To prevent misinterpreting a mapped fault trace thickness, which 216 
varies with map scale and may be correlated to fault maturity, we have the CNN predict KE for a 217 
range of fault trace thickness (see supplement). The CNN predicts KEs from the mapped fault 218 
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traces that overlap all of the geologic estimates (Figure 4). The CNN predicts the greatest off-fault 219 
deformation (lowest KE) for the Calico fault because its trace is the most segmented; the CNN 220 
predicts the least off-fault deformation for the San Andreas, which is the most straight and 221 
continuous. The segmentation of the Calico fault trace produces along-strike variability of its trace 222 
that contributes to the wide range of CNN predicted KEs. 223 
 224 

 225 
Figure 4. Crustal fault trace maps and the kinematic efficiency ranges from geologic studies (grey 226 
rectangles with uncertainty represented by shading) and the CNN predictions (blue rectangles). 227 
The different symbols indicate the CNN’s prediction for three different representations of fault 228 
thicknesses, which might vary with map scale. For example, 2 pixels within the dataset used to 229 
train the CNN scales to 200 m in the crust.   230 

Interestingly, the range of off-fault deformation estimates vary considerably between the 231 
geologic studies due to the different methods employed. The range of off-fault estimates for 232 
coseismic deformation along the Futagawa fault may be larger than those of Gray et al. (2018) and 233 
Shelef & Oskin (2010) because the digital image correlation methods used by Scott et al. (2019) 234 
allow for more complete detection of off-fault deformation than available from either geomorphic 235 
or geologic records. Having the complete displacement field captures spatial variations in off-fault 236 
deformation whose fingerprint might be averaged within the landscape and within the permanent 237 
deformation of rocks adjacent to the fault. The results here show the potential for the CNN to 238 
estimate crustal fault KE from fault traces alone.  239 
  240 
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4 Discussion  241 
The CNN successfully trained here provides accurate prediction of KE and corresponding 242 

off-fault deformation of experimental faults. A combination of the optimal hyperparameters, 243 
customized loss function, and efficient network architecture contribute to the satisfactory 244 
performance of the trained model to predict KE in experimental strike-slip faults. Performance and 245 
learnability of the CNNs are impacted by the scale of geometric augmentation, especially the 246 
stretching factor. This indicates a sensitivity of scaling and thickness of crustal fault maps that the 247 
CNN is able to predict. 248 

The width of the map window used for the CNN development can impacts both the KE 249 
label and the CNN predicted KE of segmented faults. For example, the segmentation of faults may 250 
not be fully captured within the windows that we used in this study. If the window width does not 251 
span adjacent fault segments but only captures a single segment, the calculated and predicted KE 252 
will be higher than along the segmented fault. Wider windows can sample step overs more reliably. 253 
Within the strike-slip experiments, the kinematic efficiency within a single 6.4 cm window has 254 
standard deviation up to 20%, demonstrating that KE varies significantly over a relatively short 255 
distance along faults.  256 

While we expect that more mature faults are more localized than immature faults (e.g., 257 
Tchalenko, 1970), and strike-slip experiments show decreasing shear zone with fault maturity 258 
(Hatem et al., 2017), the CNN predicted KE for the crustal fault maps did not vary systematically 259 
with fault trace thickness (Fig. 4). Furthermore, the kaolin used here produces highly localized 260 
faults whereas other crustal analog materials, such as sand, produce wider zones of faulting and 261 
may produce different degrees of off-fault deformation (Reber et al., 2020). The degree of off-262 
fault deformation within viscoelastic materials, such as the kaolin used here, depends on applied 263 
loading rate. Because we trained the CNN on experiments with a range of loading rates, the results 264 
here incorporate some degree of off-fault deformation variability.  Because the active morphology 265 
of crustal strike-slip fault may owe to processes not captured in the wet kaolin experiments of this 266 
study, the CNN trained here may not accurately predict off-fault deformation of all strike-slip 267 
faults. Retraining the CNN on additional data sets may produce more robust predictive tools for 268 
crustal faults. 269 

5 Conclusion 270 
Because seismic hazard analyses benefit from estimates of off-fault deformation, we need 271 

reliable ways to quantify  the portion of strain that is accommodated off of faults. Here, we offer 272 
an alternative approach for Kinematic Efficiency (KE) prediction in strike-slip using a 2D 273 
Convolutional Neural Network, that is trained directly on images of fault maps produced by fault 274 
experiments scaled to simulate crustal strike-slip faults. Our dataset captures the whole evolution 275 
of strike-slip faults and allows precise calculation of off-fault deformation (1-KE).  We use a 276 
custom loss function and custom accuracy, which fully utilize both the KE labels and their standard 277 
deviation. We tune the set of hyperparameters to optimize our CNN training. The final CNN model 278 
has the ability to predict on an unseen test dataset with 91% accuracy. Lastly, the match of the 279 
CNN to crustal fault maps with off-fault deformation estimates shows the potential for applying 280 
experimentally trained CNNs to crustal faults. 281 
 282 
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Data Availability Statement 283 
We have submitted the experimental PIV experiment data and strain map animations of all 284 
experiments to the EPOS analog modeling repository at GFZ (Cooke et al, 2021). Dataset to this 285 
manuscript is published to EPOS data repository at https://doi.org/10.5880/GFZ.fidgeo.2021.029. 286 
Because the EPOS DOI link provided is not yet activated, the authors temporarily upload our 287 
dataset as Supporting Information for review purposes. The codes and selected models used in this 288 
paper are available  via GitHub Repository, deposited at https://doi.org/10.5281/zenodo.5155156 289 
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