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Introduction  

Please find supplementary texts, figures, and tables below to explain our experiment 
setups, data preparation, methodology, and findings.   

Text S1. Kaolin 

We use a wet kaolin tile #6 pottery clay to examine echelon fault growth and linkage 
because this material simulates several critical elements of crustal faulting. Wet kaolin 
displays localized and slickenlined fault surfaces (Henza et al., 2010) that allow for 
tracking of fault linkage and evolution. The wet kaolin has non-zero cohesion, which 
facilitates continued slip along fault surfaces that are no longer preferentially 
oriented, consistent with observations of crustal faulting. At failure, the wet kaolin 
shows rate and state behavior and normal stress dependency consistent with crustal 
materials (Cooke & van der Elst, 2012). Finally, the wet kaolin is a viscoelastic material 
that shows off-fault stress relaxation that can simulate pervasive off-fault permanent 
deformation in the crust. This last property allows us to investigate how the kinematic 
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efficiency of strike-slip faults changes as faults evolve within our experimental 
apparatus. 

The properties of the wet kaolin depend on water content (Eisenstadt & Sims, 2005). 
We adjust the water content of the wet kaolin so that fall cone tests report 100-107 
Pa undrained shear strength (DeGroot & Lunne, 2007; Table S1). The resulting water 
content is ~ 71-77% by weight for these experiments. This target strength ensures 
that 1cm within the experiment scales as 1 to 2 km of crust. The range reflects the 
range of estimates for km-scale strength of rock material in the upper few kms of the 
crust.  We follow procedures described in Hatem et al. (2017) for preparation of the 
wet kaolin. 

Text S2. Experimental Setup 

Stepper motors move one side of a split box to create basal strike-slip strain that is 
either localized or distributed via an elastic sheet attached to the base of both 
boxes.  To prevent rippling of the elastic upon shear we pre-stretch the 1.5 cm wide 
elastic sheet to a width of 2.5 cm. Throughout the experiments with the elastic shear, 
the basal shear is distributed over 2.5 cm.  As the localized or distributed basal shear 
drives upward propagation of the fault, photos taken every ~0.3 mm of plate 
displacement document the evolution of the fault at the top surface of the clay pack. 
Red and black sand grains distributed on the surface of the clay allow us to calculate 
the incremental horizontal displacement fields from the photos of the clay surface 
using Digital Image Correlation (DIC) techniques. We use the matlab based PIVlab for 
the DIC techniques following techniques described in Toeneboehn et al. (2018). The 
distribution of sand and timing of photos allows for <0.01 mm uncertainty of 
horizontal displacement between successive images of our experiment measured at 
points with spacing of 1 mm. 

Nine experiments have distributed basal shear with an elastic sheet and 7 
experiments have localized basal shear. The experiments span a range of applied 
plate velocities: 0.25 mm/min to 1.5 mm/min (Table S1). 

Strain rate maps derived from the incremental horizontal displacement fields 
allow us to delineate active faults at all stages of the experiment and track the 
evolution of the early echelon fault arrays. The total strain rate is the sum of the 
incremental vorticity and divergence maps calculated from gradients in the 
incremental displacement field. Because the divergence rate is very low in these 
strike-slip experiments, it contributes considerable noise to the total strain rate field. 
Consequently, here we only consider vorticity rate fields when mapping faults. We 
identify faults from the vorticity maps using several stages of filtering. First an 
adaptive image threshold filter (Bradley & Roth, 2007) with 10% sensitivity 
distinguishes regions that have shear strain 10% above the local average strain. This 
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filter picks out localized faults within the region of distributed shear strain that 
develops above the transition between the basal plates without having to prescribe a 
global shear strain threshold that depends on motor speed and distributed nature of 
basal shear. This method also detects faults when background strain varies with 
position in the experiment. However, the low neighborhood shear strain in regions 
far from basal plate transition means that noise within the strain signal exceeds 10% 
of the local average strain. For this reason, we also exclude areas with vorticity rate 
below a background of 0.025 times the incremental displacement of the basal plate. 
For these experiments with typical incremental plate displacement between 
photographs of 0.3 mm, regions with shear strain less than 0.0075 are excluded. This 
is nearly an order of magnitude less than the shear strain along the faults (Fig. S1). 
Finally, to further reduce noise within the fault maps, we exclude remaining regions 
of high strain with fewer than 8 connected data points, corresponding to less than 9 
mm2 total area. We use the fault maps to find the amount of displacement along the 
faults compared to the applied displacement. The kinematic efficiency is the ratio of 
fault slip to total displacement, which serves as the labels to the CNN.  

Text S3. Data Pre-Processing  

We set up a pipeline to pre-process raw experimental dataset for training CNNs. The 
pre-processing, such as subsampling the whole fault map into five cropped slices, 
expands the dataset by 5 folds for raw data. Then, we apply common geometric 
transformation (Flip, Zoom, Shift) via the ImageDataGenerator class of Keras to 
significantly manifold both size and variation of the dataset. While ‘Flip’ is a binary 
augmentation. Random ‘Zoom’ and ‘Shift’ allow all possible floats within the specified 
intervals to be randomly applied during training. See Figure S2.  

Since each experiment variation is repeated, we sub-divide the complete dataset into 
three statistically equivalent subsets for training, evaluation, and test purposes. Table 
S1 displays naming schemes between experimental dataset (by dates) and dataset 
referred to in GitHub (by experiment variations).  

Text S4. CNN’s hyperparameters selection and performance.  

We search and attain a combination of hyperparameters that achieve the best 
performance in predicting kinematic efficiency from fault maps. This combination can 
successfully combat noisy validation loss and poor model performance (<70% 
accuracy) during early search. Since the number of kernels indicate the complexity of 
our CNN, we selected the smallest, most efficient network that performs well. 
Learning rate and batch size are two of the most sensitive hyperparameters for our 
models while momentum and dropout rate are less sensitive. However, since each 
hyperparameter has interactive effects to model performance, we propose the 
combination of parameters reported in Table S2 to be most optimal for our dataset.  



 
 

4 
 

We repeat training sessions using the final combination of hyperparameters but 
varying randomized initialization of the network weights. Selecting out of the five 
trials, the one that has the best performance is used for prediction tasks in an unseen 
dataset (Table S3). Since our model starts to over fit beyond Epoch 50, we impose 
early stopping. We choose the best CNN model, which produces the lowest loss in the 
evaluation dataset, also highest in mini-batch accuracy for both training and 
evaluation datasets.  

Mini-batch accuracy during training (i.e., Table S3 and Fig 2c) is a performance of the 
model on the mini-batch of only 256 samples. On the other hand, model accuracy for 
prediction task (i.e., Fig. 3) is an overall accuracy of the whole dataset.  

Text S5. Crustal Fault Maps preparation for CNN prediction 

We create windows across the fault traces from the three crustal faulting studies that 
are equivalent in dimension (128x64 pixels) and scale to the experimental windows 
used to train the CNN. In order to have more than one fault window for each crustal 
study, we use the minimum range of wet kaolin length scaling, where 1 cm of clay 
scales to 1 km of crust. This scaling provides 2-4 windows for each study. The 6.4 cm 
wide experimental fault windows then scale to 6.4 km wide crustal fault windows. The 
thickness of the fault traces (i.e., number of pixels) may impact the CNN prediction of 
kinematic efficiency. Active fault traces within the experimental data range from 2 to 
4 pixels. Fault zones may thin with system maturity (Hatem et al., 2017). To avoid 
presuming a fault maturity and fault zone width for the crustal faults, we use crustal 
fault maps with thicknesses of 2, 3, and 4 pixels. To be consistent with the 
experimental dataset that trained the CNN, all windows are oriented so that the 
maximum shear strain direction for the region parallels the short edge of the window. 
For the San Andreas fault study, we used the max shear direction from SCEC’s 
community geodetic model horizontal velocities while the displacement analysis of 
Scott et al. (2018) showed the max shear direction.  For each window along the crustal 
fault maps, the CNN predicts the kinematic efficiency directly from the fault trace 
geometry without having to know any information about the deformation field. 
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Figure S1. (a) Incremental vorticity map of early echelon faults within experiment 5_16_19, 
in which clay deforms over an elastic sheet. (b) The adaptive threshold highlights regions 
of strain that are greater than the local background. Both blue and red regions of local 
high strain are detected by the adaptive threshold, but we eliminate the blue regions by 
setting a lower shear strain bound. (c) Further filtering removes small faults, and the 
resulting map is used as the active fault pattern at that stage of the experiment. 

 
Figure S2. a) The original sliced fault map. b)-d) A display of one realization for each 
transformation: Zoom, Flip, Shift. The Keras ImageDataGenerator transforms raw data 
randomly to feed each training epoch any possible realization within the specified 
intervals. 
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Distributed Basal Shear 
Experiment Name 
(lab) 

Loading 
(mm/min) 

Initial Clay 
strength (Pa) 

Experiment name 
(GitHub) 

Data Split 

5_16_19 0.25 100 EB_025_1 Train 
5_18_19 0.25 106 EB_025_2 Train/Eval/Test 
5_23_19 0.25 102 EB_025_3 Train/Eval/Test 
5_17_19 0.5 104 EB_050_1 Train 
5_20_19 0.5 105 EB_050_2 Train/Eval/Test 
5_22_19 0.5 101 EB_050_3 Train/Eval/Test 
5_19_19 1.5 104 EB_150_1 Train 
5_24_19 1.5 102 EB_150_2 Train/Eval/Test 
5_25_19 1.5 102 EB_150_3 Train/Eval/Test 
Localized Basal Shear 
Experiment Name 
(lab) 

Loading 
(mm/min) 

Initial Clay 
strength (Pa) 

Experiment name 
(GitHub) 

Data Split 

6_07_19 0.25 104 PP_025_1 Train 
6_18_19 0.25 102 PP_025_2 Train/Eval/Test 
6_19_19 0.5 106 PP_050_1 Train 
6_24_19 0.5 106 PP_050_2 Train/Eval/Test 
6_04_19 1.0 107 PP_100_1 Train 
6_13_19 1.0  104 PP_100_2 Train/Eval/Test 
6_03_19 1.5  107 PP_150_1 Train/Eval/Test 

Table S1. Experimental Variations, including loading conditions (mm/min) and initial clay 
strength (Pa). Since each experiment set-up is repeated, we purposefully split the data into 
training, evaluation, and testing.  

 

Hyperparameters Search Ranges Selected Values 
# Kernels in the first CNN layer  2 – 8    4 
Learning rate 1e-5 – 1e-2 5e-3 
Batch size  32 – 512  256 
Momentum  0.75 – 0.95 0.8 
Dropout Rate 10% - 50%  20% 

Table S2. Final hyperparameters selection  
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Training  
Sessions 

Best Epoch # Lowest Eval Loss Mini-Batch Accuracy  
Train Dataset Eval Dataset 

1 37 2.621 90.5% 94.2% 
2 46 2.403 91.8% 95.8% 
3 45 2.492 92.4% 94.7% 
4 77 2.120 93.6% 96.1% 
5 41 2.138 92.9% 96.6% 

Table S3: Performance report for repeated CNN training sessions using the finalized 
combination of hyperparameters and randomized initialization. The entries of this table 
are ranked by their accuracy performance of the evaluation dataset. The ‘best model’ (entry 
#5) is selected for prediction tasks of an unseen dataset of this paper. Model performance 
generally deteriorate after epoch 50. However, entry #4 show an out-of-trend performance 
with exceptionally high training accuracy, though the evaluation accuracy is still lower than 
the selected ‘best model’.  
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