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Abstract15

Cirrus clouds of various thicknesses and radiative characteristics extend over much of16

the tropics, especially around deep convection. They can be difficult to observe due to their17

high altitude and sometimes small optical depths. They are also difficult to simulate in18

conventional global climate models, which have coarse grid spacings and simplified param-19

eterizations of deep convection and cirrus formation. We investigate the representation of20

tropical cirrus in global storm-resolving models (GSRMs), which have higher spatial resolu-21

tion and explicit convection and could more accurately represent cirrus cloud processes. This22

study uses GSRMs from the DYnamics of the Atmospheric general circulation Modeled On23

Non-hydrostatic Domains (DYAMOND) project. The aggregate life cycle of tropical cirrus24

is analyzed using joint albedo and outgoing longwave radiation (OLR) histograms to assess25

the fidelity of models in capturing the observed cirrus cloud populations over representative26

tropical ocean and land regions. The proportions of optically-thick deep convection, anvils,27

and cirrus vary across models and are reflected in the vertical distribution of cloud cover28

and top-of-atmosphere radiative fluxes. Model differences in cirrus populations, likely driven29

by subgrid processes such as ice microphysics, dominate over regional differences between30

convectively-active tropical land and ocean locations.31

Plain Language Summary32

Cirrus (ice) clouds vary in thickness and so have a wide range of impacts on Earth’s33

energy budget. Unlike other clouds, thin cirrus reduce the amount of energy escaping34

to space, slightly warming the Earth. It is important to understand the differences in35

tropical cirrus cloud life cycles between models because tropical cirrus are a major source36

of uncertainty in the prediction of future climates. Cirrus clouds cover a large area in space37

and can last up to several days, yet they are difficult to measure with satellites and ground-38

based instruments. We instead use computer models to simulate tropical cirrus, specifically39

global storm-resolving models (GSRMs) which are able provide a level of detail not possible40

through observations. Unfortunately, most models have large biases in cloud properties.41

These differences arise from the imperfect representation of ice in the models. Our goal is42

to understand the model differences in representation of ice clouds using statistical analysis43

of the life cycle of cirrus in each model.44

1 Introduction45

High clouds in the tropics have been difficult to reproduce in global climate models46

(GCMs) because of their complex microphysics and radiative properties (e.g., Del Genio,47

2012; Stephens, 2005). Proper representation of the properties of tropical cirrus, especially48

cloud amount and hydrometeor distribution, is a key issue for improving GCMs (Inoue49

et al., 2010). GCMs generally have a low spatial resolution, which is unable to explicitly50

represent convection and the subsequent tropical cloud life cycle. Diverse convective and51

ice microphysical parameterizations lead to large differences between GCMs in the ice cloud52

population (Del Genio, 2012).53

This is the second of two papers comparing the formation and properties of tropical54

cirrus in relation to deep convection in several high-resolution global storm-resolving models55

(GSRMs). Nugent et al. (2021) (hereafter Part I) focuses on deep convection and its role56

as a source of ice and vapor for cirrus formation. Here, we compare the simulated ice cloud57

populations with satellite observations, interpreting them in terms of an aggregate cirrus58

life cycle.59

As noted in Part I, GSRMs are attractive for modeling tropical cirrus. Unlike conven-60

tional climate models with horizontal grid spacings of 25–200 km, GSRMs have sub-5 km61

grid spacing that enables them to explicitly simulate deep convection and its detrainment62
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of ice into the upper troposphere and better represent the mesoscale gravity wave spectrum63

and orographic features. Therefore, GSRMs have the potential to act as a better surrogate64

for the real atmosphere to study scientific questions about tropical cloud populations and the65

aggregate life cycle of tropical cirrus, including how they might respond to climate change.66

However, before we can use GSRMs to try to answer such questions, we must evaluate their67

performance compared to available observations.68

We focus on three contrasting 10◦ × 10◦ regions in or near frequent deep convection69

during the simulated period of 1 August–10 September 2016. The first two regions were also70

used in Part I. Our main focus of analysis is a tropical West Pacific (TWP) region centered71

near Manus, Papua New Guinea. The second region, which sampled continental convection,72

is centered over the Sahel (SHL) in west Africa. We added a third region (NAU) centered73

near Nauru Island on the edge of the Pacific warm pool, where cirrus are often thinner and74

have originated from remote convection.75

1.1 Archetypal Life Cycle of Tropical Cirrus76

Convection plays a significant role in the formation and composition of tropical cirrus77

clouds (Fueglistaler et al., 2009). Houze (1981) describes the idealized life cycle of a typical78

tropical mesoscale convective system, which begins with a narrow core of deep convection79

in the formation stage that then matures and spreads into a system with stratiform precip-80

itation and cirrus outflow. As the system weakens, the stratiform precipitation persists but81

tends not to reach the ground. Finally, the upper-level cirrus clouds break up and thin in82

the dissipating stage (Houze, 1981). During this evolution, the cloud system has notably83

different effects on the reflected shortwave (RSW) and outgoing longwave radiation (OLR)84

at the top of atmosphere (TOA) due to the changing amount of liquid and ice in the vertical85

column and the change in the associated optical depth.86

We focus on the radiative impacts of the life cycle through the populations of thick,87

medium, and thin clouds and their relative cloud radiative effects. Following Hartmann88

and Short (1980), we use joint albedo-OLR histograms to characterize and compare cloud89

populations and their TOA radiative effects in models and satellite observations. These90

histograms do not follow individual cloud systems, but can be interpreted as proxies for91

the cirrus life cycle. As tropical cirrus clouds evolve from thick to thin, they tend to follow92

a characteristic path in the albedo-OLR plane associated with cooling to warming cloud93

radiative effects (CRE), switching signs for an ice water path (IWP) around 200 g m−2,94

(Berry & Mace, 2014) that can be qualitatively reproduced in cloud-resolving simulations95

(Gasparini et al., 2019).96

The overall radiative properties of tropical cloud fields integrate over all phases of the97

cirrus life cycle to be approximately neutral in the TWP. This observed cancellation of long-98

wave (LW) and shortwave (SW) CRE in the TWP has been well documented, but whether99

it is coincidental or reflects some deeper physical regulating principle is still controversial100

(e.g., Ramanathan et al., 1989; Hartmann et al., 2001; Kiehl, 1994). Ackerman et al. (1988)101

showed that cirrus with an optical depth less than ∼5 have a net warming effect since they102

absorb LW radiation more than they reflect SW solar radiation at TOA. Conversely, thick103

anvils and deep convective clouds reflect SW radiation more than they absorb LW radia-104

tion, resulting in a net cooling effect. In the TWP and NAU, the large negative CRE from105

relatively infrequent deep convective events is nearly offset by the widespread, thin cirrus106

clouds with slightly positive CRE (Wall et al., 2018). In this study, we analyze whether107

GSRMs capture this observed neutrality in the TWP and NAU regions.108

We also investigate the representation of cirrus in the tropical tropopause layer (TTL),109

a transitional layer from troposphere to stratosphere defined as in Part I to extend from110

14–18 km altitude. TTL cirrus are the highest clouds in the tropics and are thought to play111

an active role in the thermodynamic structure of this layer and in setting lower-stratospheric112

water vapor concentrations.113
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Figure 1. The three analysis regions: (a) the Sahel (SHL; 3◦W–7◦E, 9◦N–19◦N), (b) Manus,

Papua New Guinea (TWP; 143◦E–153◦E, 5◦N–5◦S), and (c) Nauru Island (NAU; 163◦E–173◦E,

5◦N–5◦S). Shading shows ERA5 sea surface temperatures on 1 August 2016.

In section 2, we review data sources reused from Part I and introduce new data and114

analysis methods. Results for the TWP region are presented in section 3 and compared115

across regions in section 4. We analyze TTL cirrus simulated by the GSRMs in section 5.116

Section 6 presents our conclusions.117

2 Methods and Data118

The focus of this paper is comparing the population and implied life cycle of cirrus in119

GSRMs vs. satellite observations, in different parts of the tropics, with a focus on their120

TOA radiative properties.121

The GSRM radiative transfer schemes operate on individual grid columns for computa-122

tional efficiency. Consequently, our analysis largely focuses on column-by-column statistics,123

not horizontal relationships between columns. Properties of GSRM grid columns that we124

will compare with observations include OLR, albedo, ice water content, and frozen water125

path.126

In this section, we describe the study domains, models, and data used. The models127

and some data are described in more detail in Part I, so we only elaborate on our new data128

sources and analysis methods.129

2.1 Study Domains130

The global simulations and observational data are studied in three contrasting 10◦×10◦131

latitude-longitude regions across the tropics shown in Figure 1. These three regions each132

contain a substantial but manageable volume of model output (at least 66,000 grid columns).133

Two of these regions are used in Part I: (a) the Sahel (SHL) in west Africa, representative134

of continental deep convection, and (b) the TWP region near Manus Island, Papua New135

Guinea, representative of warm oceanic deep convection, which will be our primary focus.136

We add (c) a secondary region in the west Pacific near Nauru Island (NAU), in which there137

is less local deep convection, so more of the cirrus has aged. Each region at some time138

included an observational Department of Energy Atmospheric Radiation Measurement site139

offering a comprehensive set of ground-based observations for future work.140

The three study regions experienced typical amounts of precipitation over the simulated141

period in August and early September 2016, with a weak MJO in mid-August and slight142

La Niña conditions. This justifies comparing model output with climatological observations143

from the same season in other years.144
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2.2 The DYAMOND GSRMs145

Like Part I, this study uses outputs from GSRMs that participated in the DYnamics146

of the Atmosphere general circulation Modeled On Non-hydrostatic Domains (DYAMOND)147

intercomparison project. The DYAMOND project compared free-running GSRMs over the148

40-day period from 00 UTC 1 August to 00 UTC 11 September 2016, initialized from ERA5149

reanalysis, with the sea surface temperature evolution also based on ERA5. As noted in150

Part I, the DYAMOND GSRMs use diverse choices of ice microphysics, advection schemes,151

etc. However, because of their fine grid, they do not use deep convection parameterizations,152

allowing the detrainment of ice into the tropical upper troposphere to be explicitly simulated.153

Thus, it is interesting to compare their simulated populations of tropical cirrus clouds.154

Because the GSRMs are free-running, we compare the model output statistically rather155

than comparing specific weather systems. We disregard the first two days of model output156

for all models as a spin-up period for cloud processes.157

We focus on four models: NICAM, FV3, ICON, and SAM (collectively referred to as158

NFIS) because those models provide sufficient output to compute the total IWP and also159

include 3D output for cloud ice (see Table 1). For more information, see section 2.1 of Part160

I.161

Table 1. List of DYAMOND GSRMs used in this study by their acronym, horizontal grid spacing,

and availability of ice/snow/graupel for 3D water content (WC) and 2D integrated water path (WP).

Grid 3D WC 2D WP
Model spacing I S G I S G

NICAM 3.5 km X X X X X X
FV3 3.25 km X X X X
ICON 2.5 km X X X X
SAM 4 km X X X X
ARPNH∗ 2.5 km X
IFS∗ 4 km X X -
MPAS∗ 3.5 km X X X
UM∗ 7.8 km X

* Coarsened model output with 0.1◦ resolution used
- Graupel not included in microphysics scheme

The DYAMOND models output 2D fields, such as precipitation, available integrated162

water paths (listed in Table 1), and SW and LW fluxes at TOA, at 15 minute intervals.163

Some 2D comparisons are based on output coarsened to a 0.1◦×0.1◦ grid in all models. We164

also use 3-hourly 3D output of temperature, hydrometeor mixing ratios (available frozen165

hydrometeors listed in Table 1), specific humidity, vertical velocity, pressure, and height.166

The vertical grid spacings are similar between models. For example, NICAM has 10 vertical167

levels within the 14–18 km TTL, while FV3, ICON, and SAM all have 8 vertical levels in168

the TTL.169

Figure 2 shows a typical snapshot of total water content from FV3 in a 10◦ × 10◦170

latitude-longitude area for the TWP. Darker shading indicates more ice mass in a particular171

grid cell. Figure 2 demonstrates the detail and complexity of simulated cloud systems172

afforded by the high resolution. Some convective cores are surrounded by anvil outflow and173

thinner cirrus with underlying low clouds.174
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Figure 2. Snapshot of cloud ice water content (g m−3) in FV3 at 6:00 UTC on 3 August 2016

for the 10◦ × 10◦ TWP study region.

2.3 Data175

The CALIPSO-CloudSat-CERES-MODIS (CCCM) merged product and the raDAR-176

liDAR (DARDAR) product are reused from Part I. In addition, this paper uses TOA radia-177

tive fluxes from the CERES SYN1 deg product.178

CCCM provides collocated cloud microphysics and TOA radiative fluxes with a horizon-179

tal footprint of roughly 30 km (Kato et al., 2011). We use daytime values from this dataset180

(13:30 local time) when albedo can be measured and seasonally subset to July–September181

2007–2010.182

DARDAR combines CloudSat, CALIPSO, and MODIS satellite measurements to derive183

microphysical properties of cirrus clouds over a broad range of optical thicknesses (Deng et184

al., 2013; Sokol & Hartmann, 2020) with a fine horizontal spacing of ∼1.1 km and a vertical185

resolution of 60 m. DARDAR has a higher retrieval uncertainty for optically thin cirrus186

layers, which are visible with only the lidar (Cazenave et al., 2019). We use both daytime187

and nighttime values from the 2009 July-August-September data. For both TWP and NAU,188

there was approximately 50% more precipitation in August 2009 compared to August 2016189

according to ECMWF reanalysis; this should be kept in mind when comparing DARDAR190

to the DYAMOND output in these regions.191

We use OLR and RSW radiation from the CERES SYN1 product, available from 2000–192

2019. CERES SYN1 data have a 1◦ × 1◦ horizontal resolution with an approximate uncer-193

tainty of 3 W m−2 (Kato et al., 2018). We seasonally subset this data to 1 August to 10194

September of each year.195

For comparisons between GSRM output and these observations, we coarsen the model196

output to 0.3◦ × 0.3◦ to match CCCM or 1◦ × 1◦ to match CERES. The GSRM output is197

not coarsened for comparisons with DARDAR, which has a similar footprint to the model198

grid spacings.199
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Figure 3. Vertical profiles of water content (g m−3) for NICAM showing the breakdown between

ice (solid), snow (dashed), and graupel (dot-dashed) in areas of (a) deep convection (green), (b)

thick cirrus (red), and (c) thin cirrus (blue). The total water content, including liquid, is shown in

the thin black line. The x-axis is different for each plot.

2.4 FWP Categorization200

We classify each grid column according to its column-integrated frozen water path201

(FWP), defined as the sum of ice, snow, and graupel water paths. As in section 2.5 of Part202

I, we define three thickness categories that approximately correspond to (1) deep convection,203

(2) thick cirrus, and (3) thin cirrus:204

FWP Categories:
CAT 1 Deep convection FWP ≥ 1000 g m−2

CAT 2 Thick cirrus 10 ≤ FWP < 1000 g m−2

CAT 3 Thin cirrus 0.1 ≤ FWP < 10 g m−2

Cirrus-free FWP < 0.1 g m−2

For comparisons to observational data and previous studies, we use the model output205

of hydrometeor mixing ratios to calculate IWC and frozen water content (FWC) where206

possible as well as liquid water content (LWC). For FV3, ICON, and SAM, only cloud ice207

and cloud water were saved for the 3D hydrometeors, so we can only calculate the FWC for208

NICAM. We show vertical profiles of cloud ice, snow, and graupel in NICAM in Figure 3 to209

demonstrate how FWC differs between cloud types. Snow and graupel in NICAM make up210

the bulk of frozen mass below the TTL and a small, but non-negligible, portion of the total211

frozen water in the upper troposphere in the rare columns with vigorous deep convection212

(Figure 3a). Columns with thick cirrus in NICAM have snow and graupel dominant below213

and ice dominant above 12.5 km (Figure 3b). Thin cirrus are made mostly of cloud ice214

with a negligible amount of snow or graupel. We therefore assume the IWC is a decent215

representation of FWC above 12.5 km for thin cirrus, but underestimates FWC in deep216

convection or anvils in models that do not output 3D snow or graupel.217
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2.5 Clear Sky Thresholds218

The DYAMOND models produce few columns that are truly ice-free. The model mi-219

crophysics schemes typically retain small amounts of FWC. FWCs below 5 × 10−4 g m−3
220

are difficult to detect from aircraft or satellite data (Deng et al., 2013). Therefore, we adopt221

this value as a ‘clear-sky’ or ‘cirrus-free’ threshold for simulated IWC. The frequency of thin222

cirrus clouds is sensitive to this threshold in all of the models.223

Given this threshold and assuming a GSRM vertical grid spacing of 200 m, the column-224

integrated cloud ice water path must exceed 0.1 g m−2 for the volume to be considered225

cloudy, so this is chosen as our cirrus-free FWP threshold. DARDAR does not retrieve226

FWP values less than 0.1 g m−2.227

3 The Aggregate Life Cycle of Tropical Cirrus in the TWP228

In this section, we determine the cloud populations from the albedo-OLR histograms229

and compare the radiative climatologies in each model to satellite observations. Then, the230

life cycle of tropical cirrus is quantified using FWP categories for the NFIS models in the231

TWP. The vertical structure and ice properties of clouds in the TWP are used to explain the232

differences in cloud populations between models. Our analysis relies on statistical aggregates233

from snapshots of cloud properties and their corresponding radiative fluxes.234

3.1 Cloud Populations235

A joint albedo-OLR histogram gives a useful summary of how the cloud populations236

relate to the TOA radiation budget (Hartmann & Short, 1980). Over ocean, the albedo237

can be regarded as a proxy for cloud optical depth. The OLR is an indicator of cloud-top238

height; thus, we can differentiate between cloud types with these two 2D variables. Using239

albedo restricts our analysis of the models to mid-day (10 am–2 pm local time) to eliminate240

any anomalies occurring near dawn and dusk. The model outputs are coarsened to match241

the 30 km CCCM footprint.242

Figure 4 compares simulated albedo-OLR histograms for the TWP during 1 August–243

10 September 2016 (DYAMOND GSRMs) and July-August-September 2007–2010 (CCCM244

observations). The observations are shown in Figure 4a. The distribution also encompasses245

a banana-shaped curve extending from a maximum probability density at the clear-sky246

values in the lower right up to a secondary deep convective peak at high albedo and low247

OLR. There is also a slight shoulder of moderate albedo and high OLR occurrences.248

Figure 4f interprets this joint histogram in terms of component cloud types. A typical249

tropical cirrus life cycle roughly aligns with the black arrow in Figure 4f, starting with deep250

convection then progressing through thick and then thin cirrus. The light blue ellipse indi-251

cates a population of low, liquid-dominated clouds with tops below 8 km. These can induce252

relatively strong albedo perturbations with less impact on OLR than deep convective cloud253

systems. The orange circle demarcates clear sky. These cloud types may shift somewhat in254

albedo-OLR space in other convectively-active regions of the tropics with different surface255

albedo and humidity/temperature profiles.256

In comparing the TWP albedo-OLR histograms for each model (Figure 4b–e,g–j), we257

look for three characteristic properties of the observations: (1) a clear sky peak, (2) a258

secondary peak in deep convection, and (3) a banana-shaped distribution. All of the models259

successfully capture the high OLR-low albedo clear-sky peak, though FV3, ICON, and IFS260

have slightly higher clear-sky OLR values. FV3, MPAS, and UM also capture the local261

maximum corresponding to observed deep convective radiative characteristics. NICAM262

and IFS match the general banana shape of the histogram very well but do not capture263

the secondary deep convective peak. ICON, SAM, and ARPNH all fail to simulate the264

secondary deep convective peak and do not match the banana-shaped distribution of the265
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Figure 5. (a) Mean OLR plotted against mean reflected SW radiation at TOA from days 3–40.

The linear fit of CERES SYN1 is plotted as the black line. (b) Daily mean versus standard deviation

of OLR. Before computing the standard deviation, the OLR from each model was coarsened to

match the hourly and 1◦ × 1◦ horizontal resolution of CERES SYN1.

observations. ICON and ARPNH do not have albedo-OLR values characteristic of deep266

convection because their deep convective cores are not surrounded by sufficient thick, cold267

anvil within the CCCM footprint. SAM has convection reaching the upper troposphere,268

shown by the low OLR values, but the associated cloud is optically too thin to match the269

observed deep convective characteristics. FV3 has a distinct population of liquid-dominated270

clouds reaching high albedo values despite relatively high OLR.271

In summary, MPAS and UM capture all of the key characteristics observed in the TWP.272

NICAM, FV3, and IFS also capture most key traits of cloud populations in the TWP, while273

ICON, SAM, and ARPNH deviate greatly from the observed cloud populations.274

3.2 TOA Radiation Balance and CRE275

The TWP-mean albedo and OLR (the red dot in each panel of Figure 4) can be inferred276

by averaging over the albedo-OLR histogram. The GSRMs scatter around the observed277

albedo of 0.22, with albedos ranging from 0.14 (ARPNH) to 0.3 (UM). They similarly278

scatter about the observed OLR of 225 W m−2, from 205 W m−2 (NICAM) to 255 W m−2
279

(ARPNH). Some of this scatter comes from different characteristic clear-sky albedo and280

OLR, but most of it is due to the different simulated cloud populations.281

Hartmann et al. (2001) noted a characteristic of the TWP cloud population–near zero282

net cloud radiative effect (CRE, defined as the cloud-induced change in the net TOA radi-283

ation). This is due to a balance between thick convective and cirrus clouds, which increase284

RSW more than they decrease OLR, and thin cirrus, which do the opposite. The black285

neutral-CRE line in all of the panels of Figure 4 shows the albedos and OLRs for which this286

balance would occur in the observations. It is computed by locating the clear-sky occur-287

rence peaks of OLR and albedo in the CCCM data. The longwave CRE is calculated as the288

difference between the estimated clear-sky OLR and the actual OLR. while the shortwave289

CRE (which is negative) is calculated as the difference between the clear-sky albedo and290

–10–



manuscript submitted to Earth and Space Science

Figure 6. Vertical occurrence of clouds for each model from days 3–40 compared to observations

from DARDAR and CCCM. For the models, only cloud ice is used to calculate cloud fraction; the

observations implicitly include all frozen hydrometeors.

the actual albedo, multiplied by the daily-mean insolation at the given location and season291

(413.2 W m−2 in the TWP and NAU regions and 435.3 W m−2 in the SHL region).292

The red dot in the CCCM panel almost overlays this black line, showing the net neu-293

trality of CRE in the TWP. For the model panels, a red dot above (below) the black line294

signifies the clouds contribute an overall radiative cooling (warming) effect. The models295

approximate the observed CRE neutrality to within 30 W m−2. Only NICAM simulates296

substantial positive net CRE (cloud-radiative warming). The black line corresponds to a297

constant total outgoing radiative flux (LW+SW) equal to the 3-year mean. The model298

variability mostly scatters ±10 W m−2 around the 3-year mean along the black line, which299

also is approximately a line of CRE neutrality.300

We include CCCM and CERES SYN1 satellite retrievals of TOA radiative fluxes in301

Figure 5. Since the CERES SYN1 observations span 20 years of 40-day periods and the302

GSRM simulations span 1 year for 40 days, we can assess whether the GSRM results are303

within the range of interannual variability of TOA radiative fluxes. The model spread304

should ideally be contained within this range of natural annual variability. That is true for305

MPAS, FV3, and ICON, but not for the other models (Figure 5a). Some of those models306

near CRE neutrality (SAM and ICON in Figure 4) lie outside the observed interannual307

range (Figure 5). Extreme examples of this are UM and IFS, which each had biases of ∼30308

W m−2 in OLR (high in IFS, low in UM) with offsetting biases in reflected SW. These two309

models match the banana shape of the observed albedo-OLR distribution in Figure 4, but310

their frequency of occurrence at the two ends of the banana are biased, with IFS tending311

to produce near clear-sky values and UM tending towards thick anvils. Other models,312

especially NICAM, lie far from CRE neutrality so as to be inconsistent with observations313

from any year.314
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3.3 Sources of GSRM TOA Radiation Bias315

As a group, the models capture key observed radiative characteristics of the cloud316

populations. However, the albedo-OLR histograms show that individual GSRMs simulate317

clouds differently from each other and the observations. How do these differences arise?318

Two potential contributors are the vertical profile of fractional coverage and the thickness319

of clouds, as measured by their frozen water path.320

Observed vertical profiles of cloud fraction in convectively active regions of the tropics321

have their largest peak in the upper troposphere (Hollars et al., 2004), where it is associated322

with cirrus clouds. Different GSRMs simulate different cirrus cloud-top heights, likely due323

to their formulations of ice microphysics and dynamics. Virts et al. (2010) show that the324

fractional coverage of upper troposphere cirrus maximizes in the 14–15 km layer, which325

corresponds to the base of the TTL. Figure 6 compares observational estimates of vertically-326

resolved cloud fraction from DARDAR (solid) and CCCM (dashed) with the NFIS GSRMs327

in the TWP. The cloud fraction peaks near 15 km in NICAM and SAM, consistent with328

these observations, but peaks well below the TTL in FV3 and ICON at ∼12.5 km.329

NICAM has too much cloud cover in the upper troposphere and TTL but too few low330

clouds when compared to DARDAR and CCCM. This contributes to its low bias in OLR.331

FV3 has too few upper-level clouds and too many low clouds; this leads to a high bias in332

RSW. ICON has too many low clouds but too few ice clouds everywhere above 2 km altitude,333

also leading to a high bias in OLR. SAM is reasonably close in frequency and shape to the334

observed cirrus cloud occurrence, but has too little low cloud, leading to a low bias in RSW.335

Part I shows that the upper level cloud occurrence in the NFIS models approximately tracks336

their relative humidity profiles (Figure 2b, d in Part I).337
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3.4 Frozen Water Path Distribution338

Figure 7. Total column FWP for observations

from (a) DARDAR and model output from days

3–40 for (b) NICAM, (c) FV3, (d) ICON, and

(e) SAM colored by the FWP categories: (green)

deep convection, (red) thick cirrus, and (blue)

thin cirrus.

We investigate the characteristics of ice339

clouds in each model more closely through340

the distribution of frozen mass in each col-341

umn over the August–September period.342

We further break down the ice into three343

main categories that roughly align with the344

deep convection, thick cirrus, and thin cir-345

rus regimes in the albedo-OLR diagram346

shown in Figure 4f (schematic). Because347

the FWP also influences both the SW and348

LW radiative characteristics of the cirrus,349

this analysis can also shed further light on350

GSRM cloud-radiative biases; that will be351

addressed in the following section. We ig-352

nore LWP in this categorization since our353

focus is on cirrus clouds. This categoriza-354

tion is done at the full model resolution,355

since that is comparable to that of the356

DARDAR FWP observations.357

Figure 7 shows FWP histograms for358

DARDAR and the four NFIS models. The359

FWP categories are plotted as different360

colors corresponding to deep convection361

(CAT 1; green), thick cirrus (CAT 2; red),362

thin cirrus (CAT 3; blue), and cirrus-free363

(gray).364

Deep convection occupies 11% of all365

columns in space and time in the DAR-366

DAR observations, and 3–5% in the models.367

The DARDAR measurements were taken368

during an August with nearly 50% more369

convection than August 2016. This sug-370

gests an observationally-based estimate for371

2016 of 7% occurrence of CAT 1. The372

DARDAR methodology may not accurately373

retrieve FWP in deep convective columns374

dominated by snow and graupel, so the re-375

maining difference in CAT 1 frequency be-376

tween the models and observations may not377

be meaningful.378

Thick cirrus occupy the most area in379

space and time, 48% for DARDAR and 30–380

67% for the models. Thin cirrus occurs381

slightly less often, 25% for DARDAR and382

28–38% for the GSRMs. Lastly, the cirrus-383

free category, occupying 16% fractional area384

in DARDAR, has a broad range of 1–32%385

across the models. Berry and Mace (2014)386

find that the CRE transitions from cooling387

to warming as FWP decreases to ∼200 g m−2. This transition occurs in CAT 2; sub-388

sequently, CAT 2 has the strongest influence on the overall cloud radiative effect in the389

region. The models range from cooling in FV3 to warming in NICAM.390
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Figure 8. The median albedo-OLR pairing for each category is plotted as closed circles for

the data and models. Models are not coarsened to match the CCCM footprint. CAT 1 is the

upper-leftmost point and is connected to CAT 2 and then CAT 3 by straight lines, signifying the

aggregate life cycle of tropical cirrus.

There is a large range of FWP histogram shapes among the models. NICAM most391

closely matches the shape of DARDAR including the peak FWP near 30 g m−2, but has392

almost no cirrus-free columns. FV3 and ICON peak at a smaller FWP while SAM peaks at393

a larger FWP.394

Our results confirm the spatial dominance of the maturing and dissipating stages of the395

ideal life cycle from Houze (1981). The model FWP distributions are diverse, presumably396

reflecting differences in their ice microphysics schemes and perhaps also their model dynam-397

ics. As a group, the FWP distributions tend to scatter around the DARDAR observations398

in both modal value and category frequency.399

3.5 FWP as a Control on Albedo and OLR400

To what extent do intermodel differences in the FWP histogram correlate with their401

differences in albedo-OLR histograms and in TOA radiative fluxes seen in Figure 4? Binning402

the albedo-OLR diagrams into FWP categories helps address this question, while allowing403

us to construct a simple aggregate radiative description of the cirrus life cycle for each NFIS404

model and the observations.405

In Figure 8, the median value of OLR and albedo for each FWP category is plotted, with406

CAT 1 deep convection in the upper left corner progressing through anvils to CAT 2 thick407

cirrus and ending with CAT 3 thin cirrus in the lower right. Each model traces a unique408

path from one category to the next in the albedo-OLR plane. The median values are used409

because Berry and Mace (2014) found that the mean value of IWP is a poor diagnostic of410

radiative properties of tropical cirrus, and because the mean values of albedo are dominated411

by high-albedo liquid clouds, while our focus is on ice clouds. The GSRMs are analyzed412

at their fine native grid resolution to allow better FWP sorting, so the observations have413

a footprint about 6X larger in each direction than the models. To partly compensate, the414

CCCM FWP is calculated only for the cloudy fraction of the footprint.415
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Category 1 covers only a small fractional area, especially in the models, but is of416

particular interest since deep convection is important for bringing ice into the TTL (Part I)417

that may also affect the thick and thin cirrus categories. Figure 8 shows that FV3 and SAM418

have the lowest median OLR for CAT 1, comparable to the CCCM observations, meaning419

that they produce tall convective towers with the coldest cloud tops, even though NICAM420

has more high cold cirrus overall. Despite its low OLR, SAM has a slightly lower albedo421

than FV3, NICAM, or the observations, indicating that its convective clouds are not as422

optically thick. ICON has the highest OLR and lowest albedo, meaning it does not have423

convective towers that reach as high or are as reflective as the other models.424

The largest differences between models occur in CAT 2, with OLR ranging from 156–202425

W m−2 and albedo from 0.15–0.44. This category covers much of the TWP area, so these426

differences are predictive of area-mean net CRE. The net CRE in CAT 2 is most positive427

(warming) for NICAM, followed by SAM, with slight negative CAT 2 CRE for ICON and428

more negative CAT 2 CRE for FV3. This is exactly the same ordering seen for area-mean429

CRE in Figure 5a.430

The NFIS models have much more similar median albedo and OLR for Category 3431

(thin cirrus), which has relatively weak radiative effects. Thus, thin cirrus are comparatively432

unimportant to intermodel differences in area-mean net CRE over the TWP.433

Even with FWP fixed, a major factor affecting albedo is the presence of liquid clouds,434

because they are more reflective than ice clouds. FV3 tends to have some liquid clouds435

underlying CAT 2 and 3 cirrus. ICON tends to have more liquid clouds underlying CAT 3436

cirrus clouds.437

4 Regional Comparison438

Here, we compare results from the TWP with our two other tropical study regions439

described in section 2.1, SHL (land convection) and NAU (on the edge of an active ocean440

convection region), to see how the NFIS models simulate cirrus in these different yet climat-441

ically significant regions.442

4.1 Cloud Populations443

The SHL has a much brighter surface than the dark ocean. The northern half of the444

SHL region is the high-albedo Sahara while the southern half has more vegetation and a445

lower surface albedo. This causes a larger variation within the region in clear-sky albedo446

and OLR values and a higher albedo overall than the ocean, both in the CCCM observations447

and in the four NFIS GSRMs (see Figure 9a–e). Most clouds lie below the CCCM-based line448

of neutral CRE in the SHL (Figure 9a), implying a stronger warming effect of clouds over449

the SHL and/or a GSRM with a lower surface albedo than that inferred from the CCCM450

observations. CCCM data also have fewer deep convective columns with high albedo and low451

OLR in SHL than the TWP. This cloud distribution reflects more sporadic deep convection452

in a drier environment. Qualitatively, all four GSRMs also show this pattern.453

Compared to the TWP, NAU has fewer deep convective columns and no secondary peak454

at low OLR-high albedo values. The mean albedo-OLR pair (red dot in Figure 9k) in NAU455

is slightly above the line of neutral CRE, signifying a small net cloud cooling effect. This456

cooling is likely due to the larger population of low clouds, which are more reflective than457

extended cirrus clouds. The four GSRMs all simulate the weakening of the deep convective458

peak, but only SAM shows an enhanced shallow-cloud peak of higher albedo and high OLR459

at NAU compared to TWP (Figure 9l–o).460

Many biases of individual GSRMs identified in the TWP persist across regions. For461

example, NICAM has frequent thin cirrus, FV3 has a large liquid cloud population, and462

ICON and SAM do not have sufficient deep convection (Figure 9).463
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Figure 10. Same as Figure 6 but for the (a) SHL, (b) TWP, and (c) NAU. The radar-lidar

product from CCCM shows the combined liquid and ice-phase cloud occurrence. The clear-sky

percentages are noted in the legend for SHL, TWP, and NAU, respectively.

4.2 Vertical Structure of Clouds464

In the CCCM and DARDAR observations, all regions have a primary peak in cloud465

occurrence near the base of the TTL (Figure 10b). The TWP has the highest cloud occur-466

rence at all heights (Figure 10b) and the most cloud cover (time-area percentage of cloudy467

columns) at nearly 87%. The SHL (Figure 10a) has comparable vertical cloud occurrence468

in the TTL but much less column cloud cover (66% in DARDAR and 75% in CCCM).469

DARDAR also shows a stronger trimodal peak in cloud occurrence in the SHL, as noted by470

Johnson et al. (1999). Fewer TTL and mid-troposphere clouds as well as a weaker peak in471

cloud occurrence at the freezing level in NAU indicate weaker or less frequent deep convec-472

tion (Figure 10c). FV3, ICON, and SAM reproduce the trimodal distribution of clouds in473

the SHL, but fail to simulate enough TTL clouds. In all regions, NICAM overestimates the474

cloud occurrence in the TTL and underestimates clouds in the lower troposphere.475

The models have characteristic biases in the vertical structure of clouds that are fairly476

similar in the SHL and NAU to the TWP and correlate well with the model differences in477

the joint albedo-OLR histogram. Compared to the TWP, each model simulates fewer TTL478

and mid-troposphere clouds in NAU consistent with observations and the TOA radiative479

fluxes shown in the joint albedo-OLR histograms (Figure 4). ICON has the lowest cloud-480

top heights and correspondingly few instances of low OLR values. The population of low481

clouds in FV3 shows up in the vertical occurrence as a strong peak in boundary layer and482

intermediary clouds near the freezing level. The joint histogram of NICAM does not visually483

capture the high occurrence of clouds in the TTL. The low occurrence of deep convection484

in SAM is not apparent in the vertical occurrence; hence, the properties of clouds in SAM485

need to be further examined.486

4.3 FWP Categorization487

The FWP histograms for the TWP for the DARDAR observations and the four NFIS488

models from Figure 7a–e are reproduced as the green lines in Figure 11a–e. The FWP489

histograms for the SHL and NAU are in the orange and purple lines, respectively. The490
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Figure 11. Normalized histograms of total column FWP for the SHL (orange), NAU (purple),

and TWP histogram (green; same as black line in Figure 7 histograms) for (a) DARDAR, (b)

NICAM, (c) FV3, (d) ICON, and (e) SAM. The categories are divided by vertical dashed lines.

Columns with FWP below 0.1 g m−2 are considered to be cirrus-free. Listed at the top of each

subplot is the percentage of columns from days 3–40 in each region for each category.

fraction of columns in each category is listed above the histograms in each plot. Recall491

that DARDAR observations are from 2009, which had more precipitation in the TWP and492

NAU than 2016. This difference should be considered when comparing the observed and493

simulated FWP histograms.494

The DARDAR FWP histogram for the SHL has a similar mode (20–30 g m−2) as for495

the TWP, but FWPs exceeding this mode are much rarer in the SHL while smaller FWPs496

are slightly more common. The DARDAR FWP histogram for NAU is similar to the TWP,497

but with slightly less occurrence at FWPs above the modal value (Figure 11a). Qualitatively498

similar regional differences are seen in the GSRMs; however, for NICAM and SAM, their499

modal FWPs also shift downward at the SHL and NAU relative to TWP (Figure 11b, e).500

The FWP histogram changes more from TWP to NAU in all GSRMs than in DARDAR.501

The differences between GSRMs are broadly similar in the SHL and NAU as in the TWP.502

4.4 Regional Albedo and OLR vs. FWP category503

Figure 12 compares the median values of albedo and OLR plane in each FWP category504

across models and regions. It builds on Figure 8, which presented similar information for505

the TWP in a complementary form. The models are not coarsened to match CCCM in506

order to capitalize on the fine resolution of the native grids of the GSRMs. The black line507

of neutral CRE is only drawn for the TWP region; the line for NAU is nearly identical but508

the SHL line is at a much higher albedo.509

Looking first at Figure 12a, the CCCM data suggest that the OLR and albedo of the510

thickest (CAT 1) tropical deep convective clouds are similar across regions. Similarly, for the511

thickest clouds in all NFIS models except SAM, there is generally more intermodel variability512

in than intra-model regional variability. As we progress to categories with successively513

smaller FWPs, the opposite occurs, with the CCCM observations and the models generally514

agreeing on the regional differences in clear-sky albedo and OLR. These regional differences515

are driven by the higher surface albedo of the SHL and the drier conditions in the SHL and516

NAU than in the TWP (Figure 12d).517
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Figure 12. (a) CAT 1, (b) CAT 2, (c) CAT 3, and (d) clear-sky median values for the SHL

(square), TWP (circle), and NAU (star) in each model and CCCM. The scale and axis limits are

different for CATs 1 and 2. Compared to clear sky, CAT 3 is shifted to lower OLR values by 15

W m−2 but has the same x and y scales. The line of neutral CRE calculated from CCCM is shown

for the TWP.

In CAT 1 (deep convection, shown in Figure 12a), the models have a diversity of small518

regional shifts in OLR indicating disagreement on which region has the coldest cloud tops519

(SHL for ICON; NAU for FV3 and NICAM; and TWP for SAM and the observations).520

However, consistent with Figure 11 and 9, the differences between models in this category521

are mostly similar across regions, except for SAM in NAU and FV3 in the SHL.522

In CAT 2 (anvil and thick cirrus, shown in Figure 12b), systematic regional differences523

are seen in both the observations and the models. This FWP category is associated with524

a higher albedo over the bright underlying surface of the SHL than in the two other ocean525

regions. The OLR of thick cirrus, through which little longwave radiation can penetrate526

from below, varies less between regions because its cloud-top temperature is similar across527

regions.528

In CAT 3 (thin cirrus, shown in Figure 12c), regional differences start to dominate529

model differences. Both in models and observations, the albedos are only slightly higher530

than the clear-sky values shown in Figure 12d, but the OLRs are reduced about 20 W m−2
531

over the ocean regions and 30 W m−2 over the drier SHL region. The bright surface of532

the SHL dominates the regional albedo variations. Over the ocean, the thin cirrus in ICON533

often have underlying liquid clouds which give it the largest CAT 3 albedo among the models534
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and bring it closest to the observed albedo in NAU. Except for NICAM in the TWP, the535

observed OLR is overestimated in CAT 3 and the clear sky category by all models in all536

regions.537

5 TTL Cirrus538

In this section, we investigate a particular subset of cirrus with especially high cloud539

tops: TTL cirrus. The TTL is the layer of the atmosphere that has properties transitioning540

between the troposphere and stratosphere, approximately 14–18 km above sea level in the541

tropics. TTL cirrus are interesting to study because they have a significant impact on water542

vapor in the TTL and stratosphere (e.g., Virts & Houze, 2015; Holton & Gettelman, 2001).543

Some TTL cirrus are thick enough to significantly reduce OLR (Fueglistaler et al., 2009).544

5.1 Categorization545

The TTL IWP was calculated by integrating the 3D cloud ice within the 14–18 km layer546

for NFIS. Even though NICAM has TTL FWP, we use TTL IWP for consistency between547

models; the results differ slightly in CAT 1. We use the total frozen condensate (FWP) in548

the TTL for DARDAR because DARDAR does not differentiate the different hydrometeors.549

The NICAM hydrometeor profiles in Figure 3 suggest that the missing snow and graupel550

will mostly affect CAT 1 (deep convection); there is likely minimal impact on CAT 2 or 3.551

In Figure 13, the TTL IWP histogram for CAT 1 (green) is plotted on the bottom, with552

the TTL IWP histograms for CAT 2 (red) and CAT 3 (blue) stacked on top. The black line553

shows the histogram of the total TTL IWP (FWP for DARDAR). The time-mean frequency554

of columns in each category that contain TTL cirrus is listed in the legend. A TTL IWP555

(FWP for DARDAR) threshold of 0.1 g m−2 is used to determine the presence of TTL556

cloud. Columns below this threshold are shaded in gray.557

Of the models, NICAM’s TTL IWP distribution best matches the shape of DARDAR558

TTL FWP in each region (Figure 13ii) but is shifted to larger FWPs by an order of mag-559

nitude for CATs 2 and 3. That is, NICAM has thicker cirrus in the TTL than observations560

suggest.561

On the other hand, FV3, ICON, and SAM appear to have too little ice in TTL cirrus.562

These models all have roughly equal proportions of TTL cirrus in CATs 2 and 3. The TTL563

IWP is smallest in ICON, for which it rarely exceeds 5 g m−2 in the TWP or 1 g m−2
564

in the SHL and NAU. Based on Part I, this is likely due to a lack of convection in ICON565

that is deep enough to reach the TTL. These three models also often generate nonzero ice566

concentrations in the TTL that are too small to classify as a cloud. Again, the NFIS models567

look very similar across regions but have different characteristics of ice in the TTL from each568

other. Like the NFIS FWP modes and category frequencies scatter around observations,569

so do the NFIS TTL IWP characteristics. We have shown that ICON consistently has too570

little ice in the TTL and NICAM consistently has too much. SAM matches the category571

frequencies and the range in FWP and TTL IWP values well.572

5.2 Conditional Occurrence of TTL Cirrus vs. Overall FWP Category573

The percentages of columns with TTL cirrus are listed in Table 2 for the models and574

observations in each region. In CAT 1 columns, TTL cirrus typically overlay deep convection575

that has penetrated the TTL (see Part I). In CAT 2 columns, TTL cirrus may form the top576

of a thicker ice cloud or overlay other ice cloud layers. CAT 3 columns typically contain577

one cirrus layer that may lie partly or wholly in the TTL. Table 2 also shows the fraction of578

columns in which all cloud ice is in TTL cirrus alone; these are mainly a subset of CAT 3.579
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Figure 13. Stacked histograms of the TTL IWP (g m−2) integrated from 14–18km for each

total-column FWP category for the models and TTL FWP for DARDAR. CAT 1 (green) indicates

the TTL IWP over deep convection; CAT 2 (red) is TTL cirrus above or connected to anvil and is

stacked on top of CAT 1; CAT 3 (blue) is stacked on top of CAT 2. The black line shows the total

histogram of TTL FWP/IWP.

Taking the TWP as a representative example, CAT 1 has the highest conditional oc-580

currence of ice in the TTL for both observational data (84–88%) and all models (41–100%).581

This is consistent with the findings from Part I that nearly all of the mass flux of frozen582

water into the TTL is associated with deep convection. CAT 2 and CAT 3 columns have583

a somewhat lower conditional occurrence frequency of TTL cirrus. The large disparity be-584

tween the two observational data, especially for CAT 3, may reflect the more restrictive585

cloud mask used by DARDAR (Cazenave et al., 2019).586

NICAM has too much TTL cirrus conditioned on all three FWP categories, while ICON587

has too little. FV3 and SAM have plausible TTL cirrus frequency in CAT 1, but too low a588

TTL cirrus frequency in CATs 2 and 3.589
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Table 2. Frequency of TTL cirrus for the SHL, TWP, and NAU is shown for each category as

a percentage of columns in that category. The frequency of isolated TTL cirrus (i.e., clouds in the

TTL but no clouds below the TTL) is shown as a percentage of all columns.

SHL TWP NAU

CAT 1 CAT 2 CAT 3 Iso TTL Ci CAT 1 CAT 2 CAT 3 Iso TTL Ci CAT 1 CAT 2 CAT 3 Iso TTL Ci

DARDAR 81 74 67 1 84 79 71 1 88 81 73 1

CCCM 71 32 8 3 88 49 22 6 66 24 8 2

NICAM 97 94 86 9 100 100 99 3 100 100 99 11

FV3 80 41 32 2 89 53 40 1 92 59 43 1

ICON 37 21 12 1 41 34 35 3 20 15 15 1

SAM 79 40 46 5 84 53 53 4 85 67 56 7

Note. Iso TTL Ci = Isolated TTL cirrus.

In Table 2, the fourth column for each region shows that isolated TTL cirrus are590

relatively rare, both in the observations and the GSRMs (except NICAM). The IWP of591

isolated TTL cirrus is similarly small in FV3, ICON, and SAM (0.27 g m−2, 0.43 g m−2,592

and 0.51 g m−2, respectively), but NICAM has a mean TTL IWP an order of magnitude593

larger (3.4 g m−2).594

6 Summary and Discussion595

We have compared the population of tropical cirrus clouds simulated by the DYAMOND596

GSRMs with a suite of satellite observations. We focus especially on albedo-OLR joint597

histograms, since they directly connect to the longwave and shortwave radiative effects of598

the cloud population. GSRMs explicitly resolve deep convection, the most important cirrus-599

initiating process, and they also resolve the resulting cirrus clouds, so it is plausible that600

they will simulate tropical cirrus much more realistically than conventional GCMs.601

We use a statistical approach to examine the life cycle of modeled convective systems602

and cirrus in the DYAMOND GSRMs. Three 10◦ × 10◦ latitude-longitude regions in the603

tropics are used to represent different deep convective regimes: local and remote ocean604

convection (TWP and NAU) and land convection (SHL).605

We interpret the albedo-OLR histograms in terms of an aggregate life cycle of tropical606

cirrus that begins with convective systems, then transitions through anvils to cirrus with607

correspondingly smaller frozen water paths. The effect of deep convection on cirrus was in-608

vestigated in Part I; we pick up from there. After convective injection, each model simulates609

a path to thin cirrus in the albedo-OLR plane. These paths are different between models in610

ways that are robust across the three study regions. This is due to inherent model differences611

in the formulation of microphysics and fine-scale dynamics that influence the typical cirrus612

height, optical depth, and cloud fractional coverage. As a group, the GSRMs also capture613

the more subtle differences in the cirrus population between the three study regions.614

Many model biases in the albedo-OLR histogram and their overall TOA radiative fluxes615

can be traced to aspects of their simulation of cirrus clouds. Four GSRMs provided the616

necessary outputs for this analysis. NICAM has a low mean OLR due to its excessive cirrus617

extent and high cloud-top heights, but reasonably reproduces the observed cloud populations618

and captures the regional differences quite well. FV3 has the smallest radiative biases in619

the 38-day climatology and simulates deep convection well in all three regions. FV3 also620

consistently produces a population of bright clouds with intermediate OLR that we interpret621

as congestus mostly composed of liquid water. These liquid-dominated clouds are observed622

at NAU but not at TWP or SHL. ICON consistently fails to simulate convection and cirrus623

that are deep enough or cirrus that are extensive enough, leading to excessive OLR. SAM624
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does not simulate sufficiently optically thick deep convective cores and instead tends to625

generate thick anvil clouds with low albedo.626

The FWP histogram is another revealing and observable metric of ice cloud properties.627

In GSRMs, this metric is sensitive to the ice microphysics parameterization. The models as628

a group produce a wide range of FWP distributions with modes and amplitudes that scatter629

around observed values. Modest regional differences are observed in the FWP histogram.630

These differences are qualitatively reproduced by the GSRMs, but are much smaller than631

the tropics-wide differences in the FWP histograms simulated by the four models. The632

shape of the observed histogram is most closely matched by NICAM, even though NICAM633

simulates too much cirrus cloud, especially in the TTL.634

In the TTL, the models retain aspects of the total column FWP distribution but with635

the mode shifted to small IWPs (∼0.3 g m−2). While most CAT 1 deep convective columns636

have ice in the TTL, the majority of TTL cirrus occur in CATs 2 and 3.637

One motivation for using GSRMs is to expand our understanding of tropical cirrus638

by filling in observational gaps, but the models need further improvements to be more639

useful for studying the physical properties of the TTL and the life cycle of tropical clouds.640

Improvements for each model could include changes to the model physics, such as improved641

ice microphysics. In addition, analysis would be enhanced by saving model variables such as642

full 3D frozen hydrometeor output for radiatively active hydrometeors, optical depths, and643

clear-sky radiative fluxes to directly compare radiative effects to observations. Nonetheless,644

GSRMs in the DYAMOND simulations provide an illuminating range of model behavior645

and simulated TTL cirrus which will only be enhanced by further improvements in model646

subgrid processes.647

Sensitivity studies would help determine how microphysics parameterizations affect the648

presence and radiative effects of TTL cirrus. Future work could include the role of cirrus in649

dehydrating the TTL in GSRMs. Simulations of boreal winter from DYAMOND Winter,650

the second phase of the DYAMOND project, may also provide an interesting contrast to651

the summer simulations presented here. The GSRMs in both phases of DYAMOND provide652

ample opportunity for studying the TTL, its properties, and cirrus clouds.653
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