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Abstract 

High resolution eddy resolving models are shown to be necessary for simulating 

submesoscale variability of the ocean. Although how these resolved submesoscale features 

impact the larger scale simulations is not yet clear. Here, using satellite observation and 

model experiments based on Modular Ocean Model (MOM5), we investigate the impact of 

model resolution in the sea level variability of the north Indian Ocean in the seasonal and 

intraseasonal time scale. While one model experiment uses uniform 0.25o horizontal 

resolution with 40 vertical levels, in the second experiment model resolution is increase to 

uniform 0.05o in horizontal with 50 vertical levels. The high resolution model shows 

significant improvement in simulating mean sea level and its variability especially along the 

coast of India, in the equatorial regime and in the western Arabian Sea. The Great Whirl and 

its extension become more realistic as the resolution increases. We show that these 

improvements are owing to the better representation of the mesoscale variability of the upper 

ocean water column. Further, we show that the coarser model tends to get biased towards 

wind-driven Ekman circulation in the open ocean and produce stronger seasonal signal along 

the coast. 

Keywords:  Ocean modeling, horizontal resolution, vertical levels, mesoscale variability, 

eddy kinetic energy. 



1. Introduction 

The north Indian Ocean is a tropical basin and is bounded by the continental boundaries of 

Arabia and Africa in the west, south Asia (India) in the north and south-east Asia in the east. 

In the east, it is connected to the Pacific Ocean via the Indonesian archipelago and in the 

south, it is open to the Southern Ocean. The Indian Peninsula divides the north Indian Ocean 

into two parts: the salty Arabian Sea (AS) in the west and the fresher Bay of Bengal (BoB) in 

the east (Figure 1). Despite being in a similar latitude belt, BoB and the AS exhibits strong 

contrast in the sea level, stratification and current systems. Further, it is driven by the 

seasonally reversing monsoon winds to exhibits a large spectrum of spatial and temporal 

scales. These scale-to-scale interactions to cascade energy from one spectrum to the other and 

its feedback to the atmosphere, particularly to the Indian monsoon, provides a challenge to the 

ocean modelling framework (McCraery et al., 1993; Schott and McCreary, 2001, Shankar et 

al., 2002; Schott et al., 2009; Phillps et al., 2021).  There is a growing interest to resolve a 

larger spectrum of spatial and temporal scales to represent surface/subsurface physical 

processes accurately. This approach thus necessitates an increase of model resolution which 

can resolve more small scale features and the inverse energy cascade to the mean seasonal 

variabilities. Given the fact that the Indian Ocean is a tropical basin, the first baroclinic 

Rossby radius of deformations is in the order of ~50 km or more. Considering that a 

minimum of two grid points is required to resolve the first baroclinic mode (Hallberg, 2013), 

models with a horizontal resolution of ~1/4o (or ~ 25 km) can resolve the first mode in most 

parts of the basin and thus, considered to be “eddy permitting” for the Indian Ocean. These 

models are shown to be able to reproduce seasonal variability of the Indian Ocean quite well 

(Kurian and Vinayachandran, 2006; Chatterjee et al., 2013; Shankar et al., 2016; Prerna et al., 

2019; Chatterjee et al., 2019; Lakshmi et al., 2020). However, as the Rossby radius of 

deformation decreases rapidly close to the coast over the shelf or due to progressive change in 

the near-surface stratification, 1/4o may fail to resolve the first mode explicitly. Further, it has 



been shown that coastal currents along the east coast of India (East India Coastal Current; 

EICC) and along the west coast of India (West India Coastal Current; WICC) are strongly 

driven by higher order modes of much smaller length scale (Amol et al., 2012; Mukherjee et 

al., 2018;  Francis et al., 2020a; Chaudhuri et al., 2020; Mukhopadhyay et al., 2020; Paul et 

al., 2021) and thus, the performance of these models of similar coarser resolution expected to 

fare poorly in these regions where such sub-mesoscale variabilities of length scale 10-50 km 

dominates. These models are therefore unable to resolve oceanic transient mesoscale features 

in the vicinity of the strong current regime or close to the boundary currents (Mukherjee et al., 

2018; Francis et al., 2020b). As the resolution of the model increases sufficiently they 

explicitly resolve the Rossby radius of deformation for the first few baroclinic modes and are 

frequently referred to as “eddy resolving” models. To capture the interactions between the 

various physical and dynamical processes an increase in the resolution of numerical models is 

required (Hurrell et al. 2009; Shukla et al. 2009; Brunet et al. 2010). In the latitude belt of the 

central BoB or the AS, a resolution of ~1/10o is needed to resolve up to the first three vertical 

modes and ~1/20o is necessary to resolve up to the 10th vertical mode (Shankar et al., 1996). 

These eddy resolving models tend to produce swift currents, jets and frontal systems as 

observed in the observations. While it is evident that eddy resolving models can produce 

realistic eddy structures and therefore, represent the associated frontal dynamics better over 

the coarser models, the impact of such improved representation of submesoscale features on 

the mesoscale simulation is still a subject of debate. A hierarchy of models is used in the past 

to assess the impact of horizontal resolution on the forced model simulation for the global 

ocean (Penduff et al., 2010; Griffies et al., 2015) and on a regional scale primarily for the 

northern Atlantic (Hurlburt and Hogan, 2000; Smith et al., 2000; Biri et al., 2016; Chassignet 

and Xu, 2017), for the coastal oceans around the Australian continent (Gou et al., 2020) and 

for the Pacific (Roberts et al., 2009; Lu et al., 2017). These studies indicate significant 

dynamical improvement in the representation of the boundary currents and associated eddy 



activities. Nonetheless, in another study, Sandery and Sakov (2017) showed that high 

resolution submesoscale resolving model exhibit lower skill in forecasting mesoscale 

circulation compared coarser resolution eddy-resolving models.  There are another set of 

studies where the impact of ocean model resolutions is investigated to understand air-sea 

feedback in the climate simulation (Roberts et al., 2004; Kirtman et al., 2012; Hewitt et al., 

2017, 2020). Further, it has been also advocated that in line with the increased horizontal 

resolution, increasing vertical resolution is also necessary to improve horizontal (Stewart et 

al., 2017) and vertical processes (Ge et al., 2017; Jia et al., 2021) in the surface and 

subsurface water column.  

Given the benefit shown by these high resolution models, operational centres across the globe 

are now moving towards high resolution models of resolution of the order of ~O(1) km scale. 

Unfortunately, the impact of model resolution in the simulation of the north Indian Ocean is 

still relatively unexplored. Hence, in this study, we seek to understand the impact of 

resolution on the simulated sea level variability and its spread in the frequency spectra for the 

north Indian Ocean. Here, we try to address the following questions: (1) How the increased 

resolution reflect onto the realism of the model simulation for the sea level? (2) What are the 

impact of model resolution on the open ocean and coastal sea level variability in seasonal and 

intraseasonal time scale and its mean state?  

The rest of the paper is organized as follows: Section 2 describes the observations and model 

configurations used in this study. In Section-3 we discussed the impact of model resolution in 

the simulated sea level mean state and variability and discussed the primary results of this 

study. Finally, Section-4 summarizes the results.     

2. Data 

Here, we briefly describe the observations used in this study, the model configurations and 

experiment design.  

2.1 Observations 
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extends 30oS - 30oN and from 30oE - 120oE. The model’s bottom topography is based on a 

modified ETOPO 5-minute gridded elevation dataset (Sindhu et al, 2007). At the land 

boundaries of the model domain, no-flux condition for tracers and no-slip and no-normal flow 

conditions for velocity fields are imposed. For temperature and salinity, 4o sponge layers 

based on NIOA (Chatterjee et al., 2012) are applied on the open southern and eastern 

boundaries with a restoration time-scale of 30 days. In this model vertical mixing follows the 

nonlocal K-profile parameterization (KPP) scheme based on Large et al., (1994). For 

horizontal diffusivity, a combination of Laplacian and biharmonic operator with a 

Smagorinsky-type mixing scheme is used. 

 

2.2.1 Model Experiments  

Two experiments are conducted in this study. In one experiment, horizontal resolution of the 

model was set to a coarser uniform 0.25o i.e. ~ 25 km. In the vertical, it uses 40 levels with 5 

m resolution in the top 60 m and 18 levels in the upper 100 m of the water column. In this 

configuration, the minimum depth is set to 15 m (hereafter this experiment will be referred to 

as MOMLR). In another experiment, the horizontal resolution of the model is enhanced and 

set to uniform 1/20o i.e. ~5.5 km. Accordingly, vertical levels are also increased to 50 levels 

with 1-1.5 m resolution in the top 10 m and 24 levels in the top 100 m of the water column 

(Figure S1). Here, the minimum depth of a model grid is set to 5 m (hereafter this experiment 

will be referred to as MOMHR).  For both the models, any cell shallower than the set 

minimum depth is deepened to maintain the minimum depth across the model domain.  

Considering that the Rossby radius of deformation of the first baroclinic mode for the north 

Indian Ocean is 50 km or more (Figure 1), MOMLR can resolve the first mode in the entire 

domain except close to the coast or in the shelf seas. However, as the vertical mode increases 

the deformation radius decreases rapidly (Shankar et al., 1996) and therefore, MOMLR can 

no more resolve them explicitly. On the other hand, the MOMHR can resolve up to 10 



vertical modes in the entire domain, thus can resolve the submesoscale variability more 

explicitly.  

 

2.2.2 Forcing and model spin-up 

Initially, the model is spun up for 25 years using daily climatological fields of momentum, 

radiative fluxes and windstress based on NCEP reanalysis product (Kalnay et al., 1996). 

Precipitation is taken from the Tropical Rainfall Measuring Mission (TRMM). Sea surface 

salinity is relaxed to NIOA (chatterjee et al., 2012) with a 15-day relaxation window. The 

model is initialised with temperature and salinity fields from NIOA climatology (Chatterjee et 

al., 2012) from a state of rest. The interannual simulation is carried for 7 years from 2011-

2017 using the restart fields of the 35th year of the climatological simulation. The interannual 

simulation model is forced by the 6 hourly atmospheric forcing at 0.25o resolution based on 

Global Forecast System (GFS) obtained from National Centre for Medium Range Weather 

Forecasting (NCMRWF), Delhi. In the rest of the paper, results from this 7-year interannual 

simulation from both models are discussed. 

 
3. Results 

Here, we discuss the impact of model resolution on the mean seasonal cycle of SLA, and also 

on the variability at seasonal and mesoscale timescale. In order to understand the impact of 

model resolution on the simulated sea surface anomaly, first, we have re-gridded the high 

resolution model to the altimeter’s 0.25o grid so that both the model simulations can be 

compared with the observed SLA. Since, SLA for the altimeter is calculated from a geoid and 

for the model it is the deviation from the initial z = 0 level, the time-averaged mean of sea 

level is removed from the respective datasets to bring all of them in the same baseline. 

 

 



Figure 2: Seasonal mean sea level anomaly (SLA; cm) from altimeter (upper panel), 
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3). At the same time, the west coast of India experiences sea level high induced by the 

downwelling coastal Kelvin waves forced in the BoB. On this occasion, models show higher 

sea level compared to the observations (Figure 3). This indicates that models are biased 

towards the lower vertical mode baroclinic waves which exhibited these stronger coastal 

signals along the eastern boundary of the BoB and the west coast of India. As the wind 

reverses during summer (JJAS), the models show positive bias in the eastern BoB and 

negative bias along the west coast of India. Note, however, that while both the models 

produce a very similar sea level bias in the seasonal cycle, the coastal signals are a bit 

stronger in the MOMLR than MOMHR which resulted in significantly higher bias in 

MOMLR. As the small scale, higher order, vertical modes turn significant close to the coast 

and or in the strong current regim, MOMLR likely aliases the small scale variability onto the

larger scale owing to its coarse resolution and thereby produces stronger mesoscale signal 

than the observation in these regions. These anomalously stronger mean currents in MOMLR 

is more conspicuous along the eastern and northern boundary of the BoB, alo

coast of India and swift current system off Somalia coast associated with Great Whirl (Figure 

2, 3). On the other hand, MOMHR can capture higher order vertical modes relatively well and 

thus compare better with the observation.  

Figure 3: The bias of simulated seasonal mean SLA (cm) from MOMHR (upper) and 
MOMLR (bottom) for the different seasons.
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3.2 Seasonal and mesoscale variability 

The standard deviation of the altimeter suggests that variability of SLA is much stronger in 

the BoB compared to the AS (Figure 4). In the AS, variability hotspots are primarily limited 

to the Somali region which is known to be strongly driven by seasonally unstable eddies, the 

coast of Arabia owing to the coastal upwelling during summer and then to some extent west 

coast of India. On the other hand, the sea level variability is spread over the BoB with energy 

hotspots along the eastern and northern boundary of the BoB, western part of the BoB starting 

from the east coast of Srilanka to off Gopalpur of Orisha and the southern BoB in the interior. 

Both the models reproduce the spatial observed variability reasonably well with the fact that 

the magnitude of the variability simulated by the MOMLR is weak compared to the MOMHR 

and the observation (Figure 4). Simulated SLA variability in MOMHR is much closer to the 

observation. The major differences between the MOMLR and MOMHR are mostly confined 

to the regions where the nonlinearity of the system is important. For example, in the Somali 

region, altimeter and MOMHR show much stronger variability spread over a much broader 

area covering the entire latitudinal extent of the Somali coast with an eastward extent up to 

65oE-70oE. In contrast, variability in MOMLR is mostly confined within the spatial extent of 

Great Whirl in the northern part of the coast and the energy decreases rapidly in the south. 

The eastward extension of this variability in MOMLR is also weak compared to the 

observation and MOMHR. Similarly, in the western BoB, a region is known for strong eddy 

activity (Mukherjee et al., 2019), MOMHR could reproduce observed variability quite well. 

Whereas, MOMLR show much weaker variability owing to the less active eddy generation in 

this region. 

A comparison of the ratio of the variance with respect to observation indicates that MOMLR 

tends to severely underestimate the variability in most part of the Indian Ocean, particularly in 

the interior basin and in the western Arabian Sea and along the EICC regime (Figure S2). 

However, along the eastern and northern boundary of the BoB and along the west coast of 



India, MOMLR produces much stronger variability than the MOMHR an

indicating possible aliasing of high

model as was also observed in mean seasonal sea level signals (Figure 3).

Figure 4:  Standard deviation of (a) observed SLA
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from the altimeter. (d-f) is the same for MOMHR and (g
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lateral movement of mean current associated with th

which extends from May-November (Beal and Donohue,  2013; Chatterjee et al., 2019). On 

the contrary, for the mesoscale spectrum, MOMLR failed to produce the observed variability 

for the entire north IO. MOMHR, on

extent of this mesoscale variability quite well. Note, however, that MOMHR shows weaker 

mesoscale variability compared to the observation in the western part of the BoB, a region 

known for stronger eddy a

westward propagating Rossby waves (Cheng et al., 2015; Mukherjee et al., 2019). But, in the 

Somali region, MOMHR shows higher variability compared to the altimeter and is driven by 

enhanced instabilities associated with the Somali current in the high resolution model. Both of 

these features are completely absent in the MOMLR indicating weaker nonlinearity driven 

mesoscale flows that spin-off from the mean seasonal current in the observation and the 

resolution model. 

Figure 5:  Comparison of power spectra of SLA between altimeter (black), MOMHR (red) 
and MOMLR (blue) at selected locations (see Figure 1) in the north Indian ocean.
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lities associated with the Somali current in the high resolution model. Both of 

these features are completely absent in the MOMLR indicating weaker nonlinearity driven 

off from the mean seasonal current in the observation and the high 

Comparison of power spectra of SLA between altimeter (black), MOMHR (red) 
and MOMLR (blue) at selected locations (see Figure 1) in the north Indian ocean. 

Further, Figure 5 shows that spectral power across the frequency bands at a few selected 

g) and open ocean (h, i) locations to test the models' ability in reproducing 



dominant spectral peaks. The best performance of the models is seen for the location off the 

coast of Thailand (Figure 5a) and  Java (Figure 5e). Here, both the models could reproduce 

the observed spectral peaks across the spectral bands remarkably well. This supreme 

performance by both models at these locations is owing to the proximity of the equator and 

most importantly variability is driven dominantly by the equatorial forcing. As the equatorial 

responses are comprised mainly of the first two baroclinic modes (Schott and McCreary, 

2001; Han et al., 2001; Chatterjee et al., 2017) and thereby, reproduced well by both the 

models. Model performance generally degrades away from the equatorial region, particularly 

for the MOMLR. Off Gopalpur (Figure 5c), in the northern part of the east coast of India, 

while both models could reproduce semiannual and annual cycle reasonably well, but failed 

completely for the intraseasonal band. Here, both the models exhibit weaker amplitude in 30-

100 days band but show stronger amplitude for the high frequency band of 10-30 days. In 

fact, at all locations, models show higher energy at this high frequency band of 10-30 days 

period than the observation. This weaker energy in the altimeter for this high frequency band 

may be linked to its coarse sampling. A similar performance can be seen in the central BoB 

(Figure 5b) where both the models failed to produce the observed mesoscale variability. The 

inability of the models, despite an enhancement in the horizontal and vertical resolution in 

MOMHR, possibly indicates the importance of small scale atmospheric forcing in the Bay of 

Bengal which modulates such high frequency variability in the observation. The prescribed 

0.25o forcing fields do not resolve these scales well and therefore, likely underestimate energy 

in the intraseasonal spectrum which reflects in the underestimation of model simulations. 

Another possible source of error is the erroneous representations of the Andaman and Nicobar 

Islands in the models which shown to influence the radiation of the Rossby waves and 

associated embedded eddies from the eastern BoB. Chatterjee et al. (2017) demonstrated 

earlier that the misrepresentation of these island chains may result in large sea level anomaly 

blobs in the western part of the basin owing to the alteration in the phase of the radiated 



Rossby waves. Comparison in the intraseasonal band improves at the southern latitude off the 

east coast of Sri Lanka. But, here unlike central and northern BoB, MOMHR could reproduce 

the observe variability remarkably well as the intraseasonal variability in this latitude band 

(Figure 4 e,f) driven mainly by reflected Rossby waves from the eastern boundary of the Bay 

of Bengal (Cheng et al., 2013) simulated accurately by the high resolution model. Here also  

mesoscale energy is relatively weak in the MOMLR as was observed in the rest of the BoB. 

The performance of the models improve significantly off Kochi (Figure 5f) owing to the 

greater influence of the equatorial forcing in the sea level variability at this location (Vialard 

et al., 2009; Suresh et al., 2013). In the western Arabian Sea (Figure 5h,i) a clear distinction in 

the performance between the models can be established. While both the models reproduce the 

observed seasonal variability well, for the mesoscale band MOMLR shows much weaker 

energy compared to the observation. Interestingly, MOMHR does a reasonably good job in 

reproducing the observed variability off the coast of Arabia and Somalia. This suggests that 

the high resolution model is necessary to simulate the observed intraseasonal variability of 

this region well. It further indicates that unlike BoB, where the mesoscale variability is driven 

by oceanic internal instabilities, high resolution model can provide a more realistic simulation 

than the coarser model. Moreover, similarly improved performance by the high resolution 

model is seen for the central Arabian Sea as well (Figure 5g). But here MOMLR also does 

well except for the 60-100 days band where it shows weaker amplitude as compared to the 

observation. This better simulation in the central Arabian Sea compared to the central BoB, 

despite both are at the same latitude, is likely owing to the fact that the Arabian Sea 

experiences relatively weaker small scale atmospheric forcing, weaker nonlinearities and the 

absence of any complex bathymetry like Andaman and Nicobar Islands in the BoB. 

 
 
 
 
 



Figure 6: The seasonal geostrophic
fields for the observation (upper panel), MOMHR (middle panel) and MOMLR (lower panel).
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rest of the domain where the nonlinearity is much weak, MOMLR shows a much stronger 

ageostrophic contribution in the total EKE. This indicates that in the coarser model surface 

Ekman velocities are much stronger than the high resolution model. This is due to the fact that 

air-sea coupling is stronger for the lower order vertical modes (Shankar et al., 1996) which 

are preferentially get exited by the winds in MOMLR. Notably, while ageostrophic flow 

fields contribute about 20-30% of the total EKE for the MOMHR model in the open ocean, it 

reaches to 100% or more for most of the interior circulation in the MOMLR (Figure 7).  

4. Summary 

The influence of increasing horizontal and vertical resolution in an oceanic general circulation 

model is investigated in simulating the observed sea level anomaly. The sea level simulated 

by a coarser model of 1/4o horizontal resolution with 40 vertical levels (MOMLR) is 

compared with the simulation from a much higher resolution 1/20o with 50 vertical levels 

(MOMHR). Both the model faithfully simulates the seasonal patterns of sea level anomaly for 

the north Indian Ocean. However, MOMHR shows significant improvement in the simulation 

of variability and frequency spectra across the domain over MOMLR. Particularly, the coastal 

sea level variability along the coast of India, in the eastern boundary of the BoB and in the 

western AS is better represented in the MOMHR. For the mesoscale variability (intraseasonal 

time scale) sea level signal simulated reasonably well in MOMHR, whereas MOMLR failed 

to produce the observed variability in most part of the north Indian Ocean. Note, however, 

that both the models produce weaker magnitude for the mesoscale spectrum in central and 

northern BoB indicating possible physical mechanisms absence in both the models. An 

analysis of EKE show that EKE contributed by geostrophic circulation is reasonably captured 

by the MOMHR for the most part of the Indian Ocean except for the BoB and the central 

Arabian Sea where the geiostrophic velocities are relatively weaker than the velocities derived 

from the altimeter observation. On the other hand, geostrophic velocity fields are much 

weaker for the entire domain including the Somali region and south of Sri Lanka where the 



mean currents are strongest in the Indian Ocean. Whereas, compared to the observation and 

MOMHR, MOMLR shows a much stronger ageostrophic contribution in the total EKE 

specifically in the open oceans.  This dominant ageostrophic component in MOMLR is due to 

the excitation of stronger surface Ekman velocities driven by strong air-sea coupling for the 

lower order vertical modes which preferentially get generated by the winds in MOMLR. 

Nevertheless, ageostrophic component should become more important where fronts and 

strong meandering currents dominate as the velocity fields deviate from the geostrophic 

balance. The one such region in the Indian Ocean is the Great Whirl current regime where the 

positive contribution of ageostrphic surface currents in the north of the Somali coast and a 

negative contribution in the regime of Great Whirl return flow in the south is well captured by 

MOMHR. Our study concludes that the high resolution model helps in increasing the realism 

of the simulated seasonal signals and found to be necessary to simulate the observed 

mesoscale variability along the coasts and in the regime of strong current regime well.  
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