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Abstract22

Export of sinking particles from the surface ocean is critical for carbon sequestration and23

for providing energy to the deep-ocean biosphere. The magnitude and spatial patterns24

of this flux have been estimated in the past by in situ flux observations, satellite-based25

algorithms, and ocean biogeochemical models; however, these estimates remain uncer-26

tain. Here, we use a novel machine learning reconstruction of global in situ ocean par-27

ticle size spectra from Underwater Vision Profiler 5 (UVP5) measurements, to determine28

particulate carbon fluxes. We combine global maps of particle size distribution param-29

eters for large sinking particles with observationally-constrained empirical relationships30

to calculate the sinking carbon flux from the euphotic zone and the wintertime mixed31

layer depth. Our flux reconstructions are comparable to prior estimates, but suggest a32

less variable seasonal cycle in the tropical ocean, and a more persistent export in the South-33

ern Ocean than previously thought. Because our estimates are not bounded by a spe-34

cific depth horizon, we reconstruct export at multiple depths, and find that export from35

the wintertime mixed layer globally exceeds that from the euphotic zone. Our estimates36

provide a baseline for more accurate understanding of particle cycles in the ocean, and37

open the way to fully three-dimensional global reconstructions of particle size spectra38

and fluxes in the ocean, supported by the growing database of optical observations.39

1 Introduction40

At the ocean surface, primary production and other biogeochemical processes in-41

teract to form organic particles that drive the ocean’s biological pump (Volk & Hoffert,42

1985; Honjo et al., 2008; Turner, 2015). Aggregation and sinking of particulate organic43

matter stores inorganic carbon and nutrients in the deep ocean for timescales ranging44

from decades to centuries (Boyd et al., 2019; DeVries et al., 2012), thus reducing surface45

carbon concentrations and leading to a decrease in atmospheric CO2 (Kwon et al., 2009).46

Sinking particles provide the organic matter feeding the deep ocean fauna (Robinson et47

al., 2010; Siegel et al., 2014) and shape the ocean’s microbiome (Karl et al., 1984; Fontanez48

et al., 2015; Bianchi et al., 2018).49

Several studies have estimated the global particle export from the euphotic zone,50

resulting in a wide range of values – from less than 3 to more than 10 PgC/y (Henson51

et al., 2011; Siegel et al., 2014; DeVries & Weber, 2017; Dunne et al., 2007), with some52

of the discrepancies depending on the methods used (Quay et al., 2020). Biogeochem-53

ical models yield a global export of 4-6 PgC/y when tuned to match particle observa-54

tions (Siegel et al., 2014), but can reach up to 10 PgC/y when tuned to match in situ55

profiles of nutrients and other biogeochemical tracers (DeVries & Weber, 2017). A sim-56

ilar range is suggested by recent global IPCC-class Earth System Models, which produce57

global carbon exports from 2.4 to 12 PgC/y, with an average of 7.4 Pg/y (Séférian et58

al., 2020). Data-driven estimates that combine satellite-based primary production with59

empirical estimates of particle export ratios often result in fluxes near the upper range60

(Dunne et al., 2007; Laws et al., 2011; Guidi et al., 2015), with some exceptions (Henson61

et al., 2011). A global export of around 10 PgC/y is comparable to biogeochemical es-62

timates of annual net community production over the mixed layer (Emerson, 2013; Quay63

et al., 2020). However, on long timescales, community production is thought to be bal-64

anced by multiple export processes(Boyd et al., 2019) that also include subduction of65

non-sinking organic carbon (Carlson et al., 1994; Dall’Olmo et al., 2016) and vertical mi-66

grations of zooplankton and fish (Longhurst et al., 1990; Steinberg et al., 2000; Bianchi67

et al., 2013).68

Besides large scale discrepancies in the total export, regional patterns of particle69

export predicted by these methods also vary substantially, with some models suggest-70

ing dramatic gradients between productive and oligotrophic waters (Dunne et al., 2007),71

and others suggesting more muted variations (DeVries & Weber, 2017). Differences in72
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regional export fluxes have been attributed to methodological limitations, including scarcity73

and variability of in situ data used to constrain models, variability in satellite-based pri-74

mary production algorithms, and models not able to fully capture underlying physical75

and biological processes. Based on in situ geochemical observations, Quay et al. (2020)76

suggest a weaker meridional variability in export flux than prior estimates, stressing the77

need for expanding and combining observational approaches and models to fully constrain78

particle export patterns.79

Recent studies have also highlighted the importance of standardized methods and80

metrics used to quantify particle export (K. O. Buesseler et al., 2020). In particular, the81

depth horizon of export has been identified as one of the leading causes of diverging es-82

timates (Palevsky & Doney, 2018). Two choices of export horizon have been commonly83

adopted: the base of the euphotic zone, either as a variable depth or global average (K. O. Bues-84

seler & Boyd, 2009; Siegel et al., 2016, 2014; Bisson et al., 2018; Dunne et al., 2007; De-85

Vries et al., 2017; Henson et al., 2011), and the mixed layer depth, both as seasonally86

varying and maximum depth (Emerson, 2013; Quay et al., 2020). These choices under-87

lie different interpretations of export fluxes: export from the euphotic zone provides an88

ecosystem-centric viewpoint, while export from the mixed layer provides an estimate of89

carbon storage. Export from the euphotic zone should balance net community produc-90

tion on long time scales (Emerson, 2013), and, since synthesis of new particles should91

be minimal below the euphotic zone, it should provide an upper limit to the energy that92

can fuel subsurface ecosystems. Carbon exported below the maximum mixed layer is re-93

moved from contact with the atmosphere for timescales longer than a year, and thus is94

relevant for long term carbon sequestration.95

Export of particulate organic matter results from the combination of multiple phys-96

ical and biological processes (Turner, 2015; Boyd et al., 2019). Gravitational settling of97

particles denser than seawater, including fecal pellets, phytodetritus, and heterogeneous98

aggregates, is thought to be the primary export mechanism, contributing to about 60%99

of the total carbon export, and about half of the carbon storage in the deep ocean (Boyd100

et al., 2019). Other processes, such as organic matter transport and repackaging by ver-101

tically migrating organisms (Longhurst et al., 1990; Bianchi et al., 2013; Kiko et al., 2020)102

and physical injection of dissolved and suspended particles (Carlson et al., 1994; Omand103

et al., 2015; Stukel et al., 2017; Dall’Olmo et al., 2016) make up the remainder (Boyd104

et al., 2019). Using both an euphotic viewpoint, and considering only gravitational set-105

tling, particle flux estimates have begun to converge on a value of 5-6 PgC/y (Palevsky106

& Doney, 2018; Boyd et al., 2019).107

In the field, sediment traps and thorium deficit measurements have been used to108

quantify sinking particle fluxes. However, both types of observations lack substantial global109

coverage, vertical resolution, and have known biases, making extrapolations to global scale110

difficult (K. Buesseler et al., 2007; Le Gland et al., 2019). Recently, optical methods have111

gained traction to estimate particle export. These methods are based on in situ obser-112

vations of particle size distribution (PSD), i.e., the particle abundance as a function of113

size (Guidi et al., 2008; Bourne et al., 2019). Among optical instruments, the Underwa-114

ter Vision Profiler 5 (UVP5), measures the abundance of particles in the 80 µm - 2.6 cm115

range (Picheral et al., 2010) and is routinely deployed on oceanographic expeditions (Kiko116

et al., 2021). The high vertical resolution of UVP5 observations, combined with empir-117

ical, size-dependent relationships for carbon content and sinking speed (Kriest, 2002; Stem-118

mann et al., 2004), enables a uniquely detailed view into the three-dimensional ocean119

particle flux (Guidi et al., 2016). Observations from UVP5 have been used to quantify120

particulate flux from the surface ocean on a regional basis (Guidi et al., 2008, 2009; Kiko121

et al., 2017; Cram et al., 2018; Forest et al., 2012), and to reconstruct export fluxes across122

large-scale biomes based on a limited set of measurements (Guidi et al., 2015). However,123

the growing database of UVP5 observations has not yet been used to quantify particle124

fluxes and their distribution at the global scale.125
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In this study, we combine a global reconstruction of PSDs from UVP5 observations126

with in situ particle flux observations to provide a new estimate of the magnitude and127

patterns of particle export. The global PSD reconstruction is described in a companion128

paper (Clements et al., 2021), and consists of a machine learning approach that predicts129

observed PSD from in situ UVP5 observations and well sampled environmental variables.130

These PSD distributions are then combined with empirical relationships that relate par-131

ticle size and abundance to sinking fluxes (Kriest, 2002; Guidi et al., 2008; Kiko et al.,132

2017), which we tune against a global data set of in situ sediment trap and thorium-derived133

particle flux observations (Bisson et al., 2018). Although there are known biases in the134

trap and thorium flux data (K. Buesseler et al., 2007; Le Gland et al., 2019), they are135

currently the best estimates of in situ carbon flux. By comparing patterns in particle136

flux with potential environmental drivers, we gain insight into the mechanisms respon-137

sible for particle export and its spatial and temporal variability. Finally, we exploit the138

high vertical resolution of UVP5 measurements to estimate particle flux at both the cli-139

matological euphotic zone depth and the maximum mixed layer depth, revealing the im-140

portance of the export horizon for this quantity.141

The rest of the paper is organized as follows. Section 2 describes the methods used142

to reconstruct particle fluxes from global PSD reconstructions and in situ carbon export143

observations. Section 3 presents the results of our export flux reconstructions, compar-144

ing them to previous studies at regional and global scales, and discussing the uncertain-145

ties and caveats inherent to our approach. Section 4 summarizes the main findings and146

future directions.147

2 Methods148

The flux of particulate carbon (φ, mgC
m2day ) at any given depth can be expressed as149

a function of three size-dependent quantities: the number of particles of a given size, i.e.,150

the PSD (n(s), /frac#m3), the sinking speed (w(s)ms ), and the carbon content of each151

particle (c(s)), according to the following equation (Guidi et al., 2008; Stemmann & Boss,152

2012):153

φ =

∫ smax

smin

n(s) · w(s) · c(s) ds, (1)154

Here, s indicates the particle equivalent spherical diameter, or size, and smin and155

smax the minimum and maximum size of particles considered for export. We further as-156

sume that the quantities in Equation 1 can be approximated by power laws that depend157

on particle size, each characterized by an intercept (the size-independent coefficient) and158

a slope (the exponent for size-dependence) (Stemmann & Boss, 2012):159

n(s) = n0 · s−β (2)160

w(s) = w0 · sη (3)161

c(s) = c0 · sζ , (4)162

Thus, by using Equations 2-4, the total particle flux can be expressed as:163

φ =

∫ smax

smin

n0 · w0 · c0 · s−β+η+ζ ds =
∫ smax

smin

n0 ·m0 · s−β+µ ds (5)164
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where we combined the intercepts and exponents of the sinking speed and carbon165

content relationships by setting m0 = w0 ·c0 and µ = η+ζ, following the approach by166

(Guidi et al., 2008). We further approximate m0 and µ with globally constant values,167

which we constrain with in situ observations. In practice, we calculate the continuous168

integral in Equation 5 as a discrete summation over the finite size bins that approximate169

the PSD.170

We use PSD properties (biovolume and slope) from a global UVP5-based recon-171

struction described in a companion paper, shown in figure 1 (Clements et al., 2021), and172

combine them with empirical relationships for sinking velocity and carbon content to es-173

timate particle fluxes by solving Equation 5. Since the parameters that define the com-174

bined sinking speed and carbon content relationships, i.e., m0 and µ, are relatively un-175

constrained, we optimized them by minimizing the mismatch between predicted parti-176

cle fluxes and in situ observations from sediment traps and thorium-uranium disequi-177

librium (Section 2.1). We exploit the three-dimensional nature of UVP5 observations to178

estimate particle fluxes at two different export horizons: the base of the euphotic zone179

(here defined by the 1% light level following Morel et al. (2007)) and the annual max-180

imum mixed layer depth (Johnson et al., 2012).181

a)

b) Reconstructed PSD Slope

Reconstructed PSD Biovolume

&&'

Figure 1. Global reconstructions of PSD biovolume (a) and slope (b) based on a machine-
learning extrapolation of in situ UVP5 observations (Clements et al., 2021). Color contours show
reconstructed variables as annual means. Dots show in situ quantities from UVP5 observations.
Note that observations reflect specific months of the year, explaining some of the mismatch with
the annual mean quantities shown by the background colors.
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2.1 Sinking Speed and Carbon Content182

Particle sinking speed and carbon content have been empirically evaluated using183

power law relationships analogous to Equations 3 and 4, e.g., as compiled in Kriest (2002)184

and Stemmann et al. (2004). Most of these studies measured a range of particles that185

does not wholly encompass the sizes detected by the UVP5. Furthermore, these relation-186

ships are defined for specific particle types, which are not distinguished in the PSD re-187

construction used here (Clements et al., 2021).188

Since estimates of total flux are sensitive to the sinking speed and carbon content189

relationships, here encapsulated by the parameters m0 and µ, we apply an optimization190

procedure to keep our results consistent with in situ flux measurements. Specifically, we191

find the values of m0 and µ that minimize the sum of the square errors between parti-192

cle flux predictions (Equation 5) and co-located in situ carbon flux measurements (Bisson193

et al., 2018). We use both trap and thorium flux data, corrected to be at the euphotic194

depth, as described in Bisson et al. (2018). We average together all in situ data into a195

1 degree global grid, by month, similar to the UVP5-based PSD reconstruction (Clements196

et al., 2021), so that the optimization reflects climatological conditions.197

Because the size distribution of particles that contribute to the flux is poorly con-198

strained, we perform this optimization for a range of plausible minimum and maximum199

sizes for Equation 5, selecting a physically reasonable combination for the final estimate.200

Ultimately, when optimizing the sinking carbon parameters, the total global export flux201

is not sensitive to the size range; however the resulting empirical relationships are (see202

Supplementary Fig. S1). The insensitivity of the carbon flux to the size range indicates203

a compensatory effect between the sinking carbon parameters and the size range selected204

for the optimizations. Thus, choosing different size combinations would result in a sim-205

ilar total flux, although it may slightly alter spatial or temporal patterns in a compen-206

satory way.207

Our final choice of size range is informed by average sinking speeds and carbon con-208

tent previously reported (Kriest, 2002). Based on this optimization analysis, we set the209

minimum size class to be 35 µm, where the average sinking speed is near 1 m d−1 (Smayda,210

1970; Kriest, 2002). Although it is lower than the detection limit of the UVP5, the power211

law slope can likely be extended to this size range (Stemmann & Boss, 2012). Most or-212

ganic particles smaller than this size are likely rapidly remineralized, making their con-213

tribution to the sinking flux negligible (Riley et al., 2012). Even if some smaller parti-214

cles could sink more rapidly (e.g., because of higher concentrations of mineral “ballast”215

and higher density) and could contribute more substantially to the total flux, neglect-216

ing them would not significantly affect our final results, because the optimized flux is nearly217

insensitive to the size range selected. We choose 5 mm as the maximum size, i.e., the same218

maximum size used for the PSD reconstructions (Clements et al., 2021), roughly corre-219

sponding to the size where zooplankton become important contributors to the particle220

biovolume detected by UVP5 in a variety of regions (Forest et al., 2012; Stemmann, Young-221

bluth, et al., 2008; Stemmann & Boss, 2012).222

Overall, this optimization approach results in a value of 2.9 for the exponent µ, and223

27.65 mgC m s−1 cm−2.9 for the intercept m0, both in the range suggested by in situ224

observations (Kriest, 2002), and comparable to values adopted by previous studies (Kriest,225

2002; Stemmann et al., 2004; Guidi et al., 2008; Kiko et al., 2017; Bianchi et al., 2018).226

2.2 Flux reconstruction and evaluation227

We evaluate reconstructed particle export fluxes by comparing them to in situ flux228

observations and previous global reconstructions. Specifically, we compare total fluxes,229

zonal averages, and seasonal cycles. For these comparisons, we divide the ocean into 14230

biogeochemically-consistent regions based on the boundaries identified by Weber et al.231
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(2016), with an additional boundary along the equator to separate Northern and South-232

ern Hemispheres. We evaluate seasonal cycles by analyzing temporal correlations between233

reconstructions, and assessing their seasonal cycles.234

We first present results for fluxes estimated at the climatological euphotic zone depth,235

and then repeat the calculation at the maximum mixed layer depth. This requires an236

estimate of the PSD at the maximum mixed layer depth, which we calculate from UVP5237

observations following the same machine learning approach (a bagged Random Forest)238

used to estimate PSD at the euphotic zone depth, described in Clements et al. (2021).239

We keep the same sinking speed and carbon content parameters, assuming that they do240

not change substantially between the two depths, which are often not too far from each241

other. Thus, the only methodological difference between the two estimates is the depth242

of the PSD reconstruction used to calculate the flux. We quantify the error of our es-243

timates by determining the standard deviation of 100 different Random Forest realiza-244

tions that differ in the choice of predictor variables and hyperparameters (Clements et245

al., 2021).246

3 Results and Discussion247

3.1 Particle export fluxes248

The resulting global carbon flux reconstruction compares well with in situ sediment249

trap and thorium-based observations (Fig. 2), performing in a similar way or better than250

previous estimates (Henson et al., 2011; Dunne et al., 2007; Siegel et al., 2014). Com-251

pared to previous work, our estimate reduces the overall uncertainty relative to obser-252

vations, as expressed by the RMSE, and shows minimal bias. However, our method also253

reduces the overall range of reconstructed fluxes, i.e., it overestimates the flux at low val-254

ues and underestimates it a high values compared to observations. This bias may be re-255

lated to a similar underestimate of the range of PSD biovolume and slope that may be256

related to the specific machine learning method (a bagged Random Forest ensemble) used257

to extrapolate UVP5 observations (Clements et al., 2021). It is also possible that the op-258

timization approach against an averaged global dataset of in situ fluxes fails to capture259

extremes in particle export at both the high and low range of observations.260

Comparing sediment trap and thorium-based observations to the various estimates261

of Fig. 2 highlights the relative strengths and weaknesses of each approach. The results262

from Dunne et al. (2007), based on combining satellite primary production with empir-263

ical estimates of particle export ratios, match the observed values well, but tend to over-264

estimate the larger fluxes (not shown in the figure). The estimate by Henson et al. (2011),265

based on a similar approach as Dunne et al. (2007), follows a similar pattern as obser-266

vations, as indicated by the high r2, but systematically underestimates the flux magni-267

tude, as shown by the negative bias. The satellite-driven, model-based estimate from Siegel268

et al. (2014) captures the overall magnitude of export, but misses some of the variabil-269

ity of observations, as indicated by the relatively low r2. Overall, all estimates in Fig.270

2 show combinations of strengths and weaknesses, and it would be difficult to highlight271

a specific model as unconditionally superior. We suggest that a combination of estimates272

should be used to asses export of carbon from the surface ocean, and that future efforts273

should strive to reduce the biases discussed above, potentially combining strengths from274

different approaches.275

Extrapolated to the whole ocean, our method reveals spatial patterns of export fluxes276

in broad agreement with previous studies, with some notable differences (Fig. 3). Sim-277

ilar to other estimates, particle fluxes tend to decrease from high to low latitudes, and278

from coastal regions to the open ocean. A local maximum of export is reproduced along279

the equator, and is particularly evident in the Pacific Ocean. Compared to previous work,280

our method produces somewhat weaker gradients between coastal and offshore waters,281
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a)         Performance – This Study

c)     Performance – Henson et al. (2011) d)   Performance – Dunne et al. (2007)

b) Performance – Siegel et al. (2014)
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Figure 2. Density scatter plots showing the relationships between in situ flux observations
and global flux reconstructions (mg C m−2 d−1) at the base of the euphotic zone from (a) this
study, (b) Siegel et al. (2014), (c) Henson et al. (2011), (d) (Dunne et al., 2007). Colored dots
represent the relative density of grid points surrounding the data point, and the dashed line in-
dicates a 1:1 ratio. Annotations show the coefficient of determination (r2), RMSE, and average
bias. Note that to keep similar x-axes and allow better comparison between the different esti-
mates, a limited number of points with flux larger than 1000 mg C m−2 d−1 have been omitted
from the figures.

with slightly higher fluxes near the centers of subtropical gyres, and suggests an asym-282

metry between the subpolar Atlantic and Pacific Oceans, with more intense particle ex-283

port along the gulf of Alaska than in the North Atlantic (see also Section 3.1.1). We also284

reconstruct substantially stronger export than previously found in the Southern Ocean,285

in particular south of 50S (see discussion in Section 3.2).286

Globally integrated, we estimate a particle export flux of 6.7 ± 0.4 PgC/y, in good287

agreement with the range of observational and model-based estimates of the biological288

gravitational pump (4-9 PgC/y, Boyd et al. (2019)). Compared to other spatially-resolved289

reconstructions, our global flux sits between the low-value estimate of Henson et al. (2011)290

(3.0 ± 0.3 PgC/y) and the high-value estimate of Dunne et al. (2007) (9.8 ± 0.4 PgC/y).291

Seasonal maps of the export and standard deviation are shown in Supplementary figures292

S2 and S3.293
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a)        This Study

6.7 ± 0.4

c)             Devries and Weber (2017)

b) Bisson et al. (2018)

mg Carbon
m'・day

9.1 ± 0.2

5.7 ± 0.0

9.8 ± 0.4

f)                  Henson et al. (2011)

3.0 ± 0.2

d)                  Dunne et al. (2007)

e)                      Siegel et al. (2014)

Figure 3. Annual average particle export flux (mg C m−2 d−1) from the euphotic zone for
(a) the global PSD-derived flux from this study, compared to (b) the in situ data of Bisson et al.
(2018), (c) the steady state satellite-driven model SIMPLE-TRIM of DeVries et al. (2017), (d)
the empirical model of Dunne et al. (2007), (e) the satellite-driven euphotic zone food web model
Siegel et al. (2014), and (e) the empirical model of Henson et al. (2011). Annotations in each
figure show the globally integrated export in Pg C y−1, and the uncertainty reported by each
study.

3.1.1 Spatial variability294

We illustrate the main spatial differences between our and other reconstructions295

by considering zonally averaged export fluxes (Fig. 4). The largest export rates are ob-296

served around the equator, in the subpolar Pacific Ocean, and in the mid- to high-latitudes297

of the South Atlantic Ocean, while more uniform export is observed in the Indian Ocean.298

In all basins, the minimum export rates are generally located at the latitude of the sub-299

tropical gyres. While export is nearly symmetrical around the equator in the Pacific Ocean300

(Fig. 4a), in the Atlantic Ocean it dramatically increases moving from the Northern to301

the Southern Hemisphere (Fig. 4b). These patterns reflect a combination of open-ocean302

and shelf enhanced particle export. Specifically, high export in the Northern Pacific and303

Southern Atlantic Oceans are partly driven by large fluxes in the Bering Sea, the Sea304

of Okhotsk, and the Patagonian shelf. At lower latitudes, coastal upwelling systems sus-305

tain particularly high export in the northern Indian Ocean and the tropical to subtrop-306

ical Atlantic.307
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Variations in export patterns derived with our approach (Equations 1 and 5) re-308

flect a combination of spatially varying PSD biovolume and slope (Clements et al., 2021).309

Slope and biovolume are both strongly correlated to each other and overall flux (Sup-310

plementary figure S4 and S5). These two quantities generally correlate in such a way as311

to increase export fluxes in particle-rich productive waters, where large, rapidly sinking312

particles tend to be relatively more abundant than small particles, and decrease them313

in particle-poor oligotrophic waters where small particles dominate (Clements et al., 2021).314

High export in the eastern equatorial and tropical Pacific can be attributed to relatively315

high biovolume, with a minor contribution from PSD slope, which appears to be more316

uniform across the region. The picture is somewhat different in the equatorial Atlantic317

Ocean, where a more substantial “flattening” of the PSD suggests a more important role318

of large particles in driving elevated export fluxes. A similar interaction of particle abun-319

dance and size-structure dramatically intensify fluxes in the subpolar North Pacific and320

Southern Ocean, and to a lesser extent the subpolar Atlantic, where a relative increase321

in particle abundance is followed by a shift of the PSD toward large particles. In con-322

trast, along many coastal regions, including eastern boundary upwelling systems and the323

Arabian Sea upwelling, increase in particle biovolume, rather than substantial changes324

in size structure, appears to drive enhanced export fluxes.325
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Figure 4. Zonally integrated annual mean export (Tg C y−1 degree−1) for (a) the Global
Ocean, (b) the Pacific Ocean, (c) the Atlantic Ocean, and (d) the Indian Ocean. Each color
represents a different study, as shown in the legend (bottom).

Our reconstruction shows broad meridional patterns similar to previous estimates326

(Fig. 4); however, significant regional-level discrepancies remain. For example, in the low327

latitudes, we predict somewhat less intense equatorial export peaks and subtropical lows,328

compared to the estimates of Dunne et al. (2007) and Siegel et al. (2014). In this respect,329
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our reconstruction is more in line with the results of DeVries and Weber (2017). In the330

northern Pacific, we do broadly miss the transition zone as a persistent feature, however,331

seasonally it is present (Supplementary figure S2). Overall, in the subpolar region our332

estimate shows a northward shift of maximum export that is comparable to the results333

of Dunne et al. (2007). This is likely caused by intensification of particle fluxes in coastal334

waters and marginal seas, which may be related to regional processes such as more ef-335

ficient nutrient recycling in shallow regions, or iron leakage from continental shelves (Nishioka336

et al., 2020). In the Atlantic Ocean, the gradual increase of export from northern to south-337

ern latitudes (mostly driven by high export near the coast), and the rapid increase in338

the Southern Ocean (caused by high export near the Patagonian shelf), are similar to339

the reconstruction of Henson et al. (2011), although the magnitude is larger. In the In-340

dian Ocean, our reconstruction matches other studies at low latitudes; however, it shows341

a more dramatic increase in export towards the Southern Ocean sector (see also Section342

3.2).343

3.1.2 Seasonal cycle344

The seasonal cycle of particle export is comparable to previous studies, when av-345

eraged over large-scale coherent biomes (Fig. 5). However, significant discrepancies are346

also revealed. In general, our seasonal cycle is more muted than previous work, suggest-347

ing weaker month-to-month variability in some regions, while other regions match pre-348

vious reconstructions more closely.349

Similar to other estimates, we capture well-known seasonal export pulses associ-350

ated with spring phytoplankton blooms in the North Atlantic and North Pacific Oceans.351

Over most of the tropics, our reconstruction reveals nearly constant export through the352

year, and a slight asymmetry about the equator, with more pronounced seasonality in353

the Northern Hemisphere compared to the Southern Hemisphere. The most significant354

discrepancy is observed in the Southern Ocean, in particular in the Antarctic zone, where355

our reconstruction is substantially higher than previous estimates, with sustained export356

throughout winter months. We discuss this deviation in detail in Section 3.2.357

When compared with other studies, our results show overall similar patterns in sea-358

sonal variability, but lower seasonality in most regions, particularly at higher latitudes359

(Fig. 5). The relatively muted seasonality is consistent with the weaker spatial gradi-360

ents, and suggests overall weaker variations in net community production and export than361

previously assumed. The machine learning approach used to reconstruct the PSD relies362

on non-linear relationships with multiple ocean variables to reconstruct particle size dis-363

tributions, which may accentuate compensatory relationships between different predic-364

tors. Surface chlorophyll, temperature, and net primary production have all been used365

in previous global reconstructions (Dunne et al., 2007; Henson et al., 2011; Siegel et al.,366

2014), but rarely together with additional variables that may be important in modulat-367

ing spatial and seasonal export patterns. It is also possible that our method somewhat368

underestimates variability compared to previous work. As previously noted, our PSD re-369

constructions appear to reduce extremes in both biovolume and PSD slope (Clements370

et al., 2021), which may lead to underestimating variability in particle export fluxes de-371

rived from these quantities.372

3.2 Southern Ocean Export373

Export flux in the Antarctic zone of the Southern Ocean are substantially larger374

than other global reconstructions, especially during winter (Fig. 5). A regional study based375

on 10 years of biogeochemical Argo measurements from 2006-2014, combined with satellite-376

based net primary production and export algorithms, similarly suggests higher than pre-377

viously reported particle fluxes throughout the region (Arteaga et al., 2018), in better378

agreement with our results (Fig. 6). This similarity is mostly evident in the open ocean,379
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Figure 5. Annual seasonal cycle of particle flux from the euphotic zone (Tg C y−1) for the
regions specified in the map (top). Each line corresponds to a different estimate, as listed in the
legend below the map. The same seasonal spatial mask was applied to each study. Note that the
study DeVries and Weber (2017) provides annual mean export fluxes, which are shown here as
horizontal lines.

and varies depending on the primary production algorithm chosen for the comparison.380

However, our estimate also reveals substantially higher export near landmasses, for ex-381

ample the Patagonian Shelf, South Georgia and the South Sandwich Islands, and the Ker-382

guelen Plateau. Although estimates from Arteaga et al. (2018) do not show the same383

high flux in winter as our reconstruction, they do demonstrate that export fluxes from384

the Antarctic zone of the Southern Ocean likely never decrease to the nearly negligible385

levels shown by other global estimates (Fig. 5).386

The discrepancy in export from the Antarctic zone relative to prior global estimates387

could arise from a combination of factors. First, observations in the Southern Ocean, par-388

ticularly in winter, are scarce. This is true for both the UVP5 measurements and the389

climatological predictors used to reconstruct PSD (Clements et al., 2021). The UVP5390
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data compilation (Kiko et al., 2021) includes only two major cruises in the Southern Ocean,391

which only cover the months of March to May. Satellite-based reconstructions of chloro-392

phyll and primary production from ocean color are also poorly resolved in wintertime.393

Other climatological variables, such nutrients and oxygen, are also the results of inter-394

polation of fewer in situ observations relative to the rest of the ocean. The scarcity of395

observations to train the machine learning model used for the PSD reconstructions (Clements396

et al., 2021) results in significant uncertainty in predicted PSD and export fluxes in this397

region.398

Second, our reconstruction reveals significant export primarily next to land masses.399

Proximity to land masses has been shown to increase productivity and carbon flux (Jouandet400

et al., 2014; Stemmann, Eloire, et al., 2008), presumably via enhanced vertical mixing401

and iron fertilization from sedimentary sources in otherwise high-nutrient low-chlorophyll402

waters (Gaiero et al., 2003). It is possible that other methods of flux reconstructions (Henson403

et al., 2011; Siegel et al., 2014; DeVries & Weber, 2017) underestimate this increased ex-404

port, in particular during winter, when observations are scarce. Increasing the number405

of in situ particle flux and UVP5 observations from the Antarctic zone, in particular down-406

stream of major land masses and in wintertime, could help shed light on the patterns407

of export and their variability in this undersampled region.408

a)      This Study

d)  Arteaga - Carr e)  Arteaga - Cbpm

b). Arteaga - vgpm c) Arteaga - Marra

f)  Arteaga - Mean

g)
Antarctic Zone (AAZ)

mg Carbon
m'・day

Figure 6. Southern Ocean particle export (mg C m−2 d−1) for (a) this study, and (b-e) dif-
ferent data-based estimates from Arteaga et al. (2018), and (f) the mean from that study. Each
data-based estimate from Arteaga et al. (2018) uses a different net primary production algorithm
to derive export. (g) Seasonal cycle of export for each estimate in the Antarctic zone (shown in
figure 5).
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3.3 Mixed layer versus euphotic zone export409

Our approach can be extended to reconstruct fluxes at any given depth in the ocean,410

provided that PSD observations are available (Guidi et al., 2008, 2016; Kiko et al., 2017).411

Because of the high vertical resolution, UVP5 observations allow to estimate PSD at mul-412

tiple depths in the water column. We repeat the calculations of Clements et al. (2021)413

to reconstruct global PSD at the depth of the climatological wintertime mixed layer, here414

taken as the deepest mixed layer from an Argo-based data product (Johnson et al., 2012).415

We then use this depth as the new export horizon for the flux calculations (Equation 5),416

and compare the results to the export from the euphotic zone (Fig. 3).417

We find that, globally integrated, the particulate carbon export from the mixed layer418

is 9.4 ±1.1 PgC/y, i.e., about 3 Pg/year larger than the global export from the euphotic419

zone. This estimate is slightly lower than observational estimates of organic carbon ex-420

port and annual net community production from the same depth horizon (Emerson, 2013).421

Ratio of Annual average POC flux from maximum 

Mixed Layer depth to Euphotic depth

Annual average POC flux from the 

wintertime Mixed Layer

9.4 ± 1.1

Ratio of Annual maximum Mixed Layer 

depth to the average Euphotic depth

a)

b)

c)

9:
;9

.(
<.

/

Figure 7. (a) Annual mean particle export (mg C m−2 d−1) from the maximum mixed layer
depth. Total export is 9.4 PgC/y. (b) Ratio of the export from the maximum mixed layer depth
to the export from the euphotic zone. (c) Ratio of the maximum mixed layer depth to the eu-
photic zone depth.
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Overall, export from the wintertime mixed layer follows broad spatial patterns sim-422

ilar to the export from the euphotic zone (Fig. 7a). However, tropics and subtropics show423

larger export fluxes at the mixed layer depth (locally, up to a few times), while high lat-424

itudes show overall weaker export fluxes (Fig. 7b). The low-latitude intensification of425

mixed layer particle fluxes is similar in all ocean basins, and more than compensates for426

the reduction at high latitudes (Supplementary Fig. S6), thus producing an overall larger427

export from this horizon. Because of this low-latitude intensification, export from the428

mixed layer shows stronger gradients between the tropics and high latitudes. Gradients429

between the equatorial export peak and the subtropical export low are also intensified.430

Finally, export from the mixed layer in the Southern Ocean is substantially depressed431

compared to export from the euphotic zone.432

Differences between euphotic zone and mixed layer export can be best interpreted433

by considering the different depth of these horizons (Palevsky & Doney, 2018). The depth434

of the maximum mixed layer is shallower than the euphotic zone in the tropics and sub-435

tropics, and is deeper in high latitudes (Fig. 7c). This suggests that shallower export hori-436

zons are generally characterized by higher fluxes than deeper export horizons, likely be-437

cause of remineralization of particles in the upper layers of the ocean. Specifically, we438

identify three main latitudinal bands with different horizon depths and export patterns,439

roughly corresponding to tropics and subtropics, mid-latitudes, and subpolar regions.440

Over most of the tropics and the subtropics, the maximum wintertime mixed layer441

is shallower on average than the climatological euphotic zone (blue colors in Fig. 7c).442

Here, particle remineralization between the wintertime mixed layer and the euphotic zone443

depth reduces export from the latter horizon, suggesting net heterotrophy in the deeper444

layers of the euphotic zone. Over subpolar regions, the wintertime mixed layer is deeper445

on average than the climatological euphotic zone. Here, export fluxes reach maximum446

values within the euphotic zone, and decrease below it following remineralization. Fi-447

nally, over most of mid-latitudes, the wintertime mixed layer is deeper on average than448

the climatological euphotic zone. However, export fluxes from the mixed layer and eu-449

photic zone are very similar in magnitude, suggesting a close seasonal compensations be-450

tween enhanced euphotic zone fluxes when this horizon is found above the wintertime451

mixed layer, and reduced euphotic zone fluxes when it is found below it.452

Ultimately, differences in export between the euphotic zone and the wintertime mixed453

layer are important when considering the role of the biological pump for carbon seques-454

tration (Palevsky & Doney, 2018). Export below the wintertime mixed layer removes455

carbon from contact with the atmosphere for time scales longer than one year. Our re-456

sults suggest that more carbon is sequestered below the wintertime mixed layer than leaves457

the euphotic zone.458

3.4 Caveats to our approach459

There are multiple sources of uncertainty and inherent limitations that could af-460

fect our estimates and call for further work. Our method relies on global PSD reconstruc-461

tions from UVP5 observations, as well as in situ particle flux measurements, both of which462

are spatially and temporally limited. This in turns limits the ability of our approach to463

(1) obtain an accurate climatological picture of PSD and fluxes, and (2) extrapolate lo-464

cal observations to larger regions and other times of the year. In particular, about forty-465

three percent of monthly particle flux observations contain only one measurement, and466

entire ocean basins are represented by a handful of measurements (Fig. 2b). While more467

widely distributed than flux measurements, UVP5 observations are also characterized468

by large gaps in space and time (Kiko et al., 2021). As noted in the companion paper469

(Clements et al., 2021), regional correlations between environmental properties and PSD470

observations from UVP5 may not be well captured by extrapolation with a machine learn-471

ing algorithm trained on data from different regions, especially when non-linear relation-472
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ships between variables become important. Expanding the coverage of in situ PSD and473

fluxes, in particular in under-sampled regions characterized by large variability, such as474

the Southern Ocean, would improve the robustness of our estimates, and shed additional475

light on regional export patterns not captured by previous work.476

The conversion of PSD to export flux encapsulated by Equations 1 and 5 also suf-477

fers from inherent limitations. Converting standing stocks of particles from UVP5 ob-478

servations to sinking carbon flux using size-dependent relationships assumes that (1) all479

particles of a given size have the same carbon content, and (2) they all sink at a simi-480

lar speed proportional to their size. Known biases exist with both assumptions. For ex-481

ample, densely packed fecal pellets often contain more carbon and sink faster than het-482

erogeneous aggregates and marine snow of the same size (Alldredge, 1998). Furthermore,483

we assume globally uniform relationships between particle size, sinking speed, and car-484

bon content. However, these relationships remain quite uncertain (Alldredge, 1998; Stem-485

mann & Boss, 2012; Cael et al., 2021), and are likely to depend on region and time of486

the year, reflecting variable particle characteristics and underlying ecological processes.487

We suggest that our approach, which optimizes carbon content and sinking veloc-488

ity parameters against in situ particle fluxes, limits the effect of these uncertainties. More489

work combining in situ and optical measurements should focus on constraining these quan-490

tities and their regional and temporal variability. Future studies could also improve our491

approach by distinguishing living and non-living particles, particle type, and composi-492

tion, e.g., by analysis of UVP5 images or other optical methods in conjunction with in493

situ particle samples.494

4 Conclusions and future work495

We provide a new, data-constrained estimate of particle export fluxes by combin-496

ing global reconstructions of PSD from UVP5 observations and in situ export flux mea-497

surements. Our reconstruction captures regional and seasonal variability in reconstructed498

fluxes, and demonstrates the power of statistical machine learning methods applied to499

in situ UVP5 observations. The approach also allows reconstruction of export fluxes from500

any given depth; here, we focus on spatially variable euphotic zone and mixed layer depths,501

highlighting the importance of the choice of export horizon (Palevsky & Doney, 2018),502

and paving the way to fully three-dimensional particle flux reconstructions in the ocean503

interior.504

We obtain a global particle export flux of 6.7 ± 0.4 PgC/year from the euphotic505

zone, in line with previous work, although with significant regional and temporal differ-506

ences. Our results suggest weaker spatial and seasonal variability compared to previous507

studies, in particular in the open ocean, and highlight the importance of coastal waters508

and marginal seas for export at high latitudes. We also capture similar patterns of high509

latitude seasonal blooms in the Northern Hemisphere as previous studies, but less vari-510

able flux in the tropical to subtropical ocean, and substantially higher year-round ex-511

port in the Southern Ocean, in better agreement with regional estimates (Arteaga et al.,512

2018). Results from the Southern Ocean suggest that processes that sustain elevated fluxes,513

in particular in wintertime, may not be completely captured by other global reconstruc-514

tions, and that waters downstream of coasts and islands may harbor a significant source515

of carbon export to the deep ocean, which is only partially captured in one other recon-516

struction (Dunne et al., 2007).517

The statistical nature of our machine learning approach does not directly reveal518

mechanisms behind export fluxes. However, we are able to highlight globally coherent519

patterns, and the relative importance of particle abundance and size structure in driv-520

ing export. Total particle biovolume and the PSD slope are correlated in such a way to521

act synergistically on particle fluxes (Clements et al., 2021); consistently, higher fluxes522
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are reconstructed in regions with larger particle biovolume and “flatter” slopes. We also523

suggest distinct deviations from these patterns, for example in the tropical and north-524

ern subtropical Pacific Ocean, where high abundance of all particles, rather than dom-525

inance of large relative to small particles, appears to drive elevated export.526

We illustrate the ability of our method to obtain particulate organic carbon fluxes527

at multiple depth by reconstructing and comparing carbon export from the euphotic zone528

and the wintertime mixed layer depth. Export from the mixed layer is overall stronger529

than export from the euphotic zone in low and mid latitudes, and weaker in high lat-530

itudes, driving a significantly larger export of 9.4 ±1.1 PgC/year. Three-dimensional re-531

constructions of particle fluxes would allow a closer investigation of the processes con-532

trolling export changes with depth and their implications for particle transfer efficiency533

and carbon sequestration.534

We identified sources of uncertainty and limitations in our approach that should535

be addressed in future work. There remain areas of the ocean and times of the year with536

limited UVP5 observations and, critically, in situ flux measurements, driving uncertainty537

in both the PSD and flux reconstructions. As UVP5 observations increase in number,538

our analysis can be refined, for example by expanding comparison with particle flux data539

(Mouw et al., 2016). The machine learning algorithm used to reconstruct global PSD540

appears to reduce some of the observed variability (Clements et al., 2021), which in turn541

may translate in a reduced range for reconstructed export fluxes. Testing different ma-542

chine learning methods could help reducing this bias. While we assumed globally uni-543

form carbon content and sinking speed parameters, they could be parameterized to re-544

flect regional variability and particle types. Finally, while analysis of correlations between545

flux reconstructions and environmental predictors suggests mechanistic linkages, the sta-546

tistical nature of the approach cannot reveal the specific underlying processes and their547

dynamics.548

Comparison of our flux reconstructions with previous work reveals inherent strength549

and weakness of various approaches, and suggest a systematic uncertainty in our cur-550

rent ability to constrain export with both empirical and mechanistic methods. We echo551

suggestions to combine flux estimates from multiple approaches in studies of the biolog-552

ical pump (Quay et al., 2020), focusing the attention on regions and periods of high dis-553

crepancy.554

The three-dimensional nature of UVP5 observations opens the door to fully three-555

dimensional reconstructions of particle export fluxes. This will greatly benefit from par-556

ticle flux compilations that span the full depth of the ocean (Mouw et al., 2016), and that557

harmonize discrepancies between different flux measurement methods (Bisson et al., 2018).558

Ongoing deployments of UVP instruments, including on Argo floats, will rapidly increase559

the number of PSD observations with high vertical resolution. In turn, three-dimensional560

reconstructions of export will enable a better characterization the ocean’s ability to se-561

quester carbon, and, in combination with models (DeVries & Weber, 2017; Siegel et al.,562

2014), a better understanding of the processes behind the ocean’s biological pump.563
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