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Abstract 
 

In the realm of reservoir engineering, the application of machine learning has emerged as a 

transformative force, offering unprecedented insights into reservoir parameter characterization. In this 

study, we present a comprehensive analysis of four distinct machine learning models, namely Bagging, 

Extra Tree Regressor, XGBoost, and Ridge, to elucidate their efficacy in predicting permeability, a 

critical parameter for reservoir characterization. Our findings reveal an understanding of each model's 

performance. The Bagging model, while demonstrating an impressive trained accuracy of 0.99, exhibits 

some uncertainty in high permeability predictions, casting slight shadows on its applicability for 

reservoir characterization. In contrast, the Extra Tree Regressor model outshines the Bagging model 

with a trained accuracy of 100% and a prediction accuracy of 99.8%. It boasts lower absolute and 

absolute percentage errors, reinforcing its ability in permeability prediction. However, the XGBoost 

model takes a unique approach by emphasizing the density-corrected log over gamma-ray and sonic 

logs. Despite achieving remarkable trained and predicted data accuracy exceeding 99%, its reliance on 

the corrected density log introduces a mean absolute percentage error above 10, warranting closer 

scrutiny. In contrast, the Ridge model struggles, evident from its high AIC reading, signifying its limited 

compatibility with permeability prediction. Joint plots and LMplot analyses further showcases model 

behaviors. The Extra Tree model exhibits a 99% confidence interval, underscoring its reliability with 

minimal underpredictions. Conversely, the Bagging and Ridge models show susceptibility to high 

uncertainties in permeability predictions, particularly at extreme values. Our study concludes that the 

Extra Tree Regressor model excels in permeability prediction, with potential applications in reservoir 

interval assessments. The XGBoost model, while competent in sandstone reservoir prediction, bears a 

higher uncertainty burden. The Bagging and Ridge models, due to their uncertainty challenges, are less 

suitable for non-reservoir and sandstone reservoir interval predictions. High permeability correlations 

with elevated porosity, reduced water saturation, and lower gamma ray readings highlight the reservoir 

intervals' distinct characteristics. These observations underscore the reliability of our models and their 

potential contributions to reservoir engineering practices. 

 

Keywords:  Permeability Prediction, Machine Learning, Reservoir Characterization, 

Feature Engineering, Model Evaluation.  

 

1. Introduction 

 
The exploration and production of hydrocarbon reservoirs demand precise characterization of reservoir 

parameters to optimize recovery and mitigate uncertainties (Nwaezeapu, et al., 2018). Over the years, 

reservoir geoscientists have employed various methods, from analytical techniques to empirical models, 

to estimate these parameters. However, the inherent complexities of subsurface reservoirs have 

necessitated the evolution of reservoir characterization approaches.  

Well log signatures can show several aspects of the formation's lithology. Research has recently shifted 

its attention to the prediction of reservoir parameters using log curve data (Song et al., 2021a, Ibekwe 

et al., 2023; Pwavoa et al., 2023; Oguadinma et al., 2023). 
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The foundation for characterizing reservoir attributes and reservoir modeling is the reservoir physical 

parameters, which primarily comprise porosity, permeability, water saturation, and oil saturation (Li et 

al., 2016; Wang et al., 2019; Song et al., 2021a; Oguadinma et al., 2016; Oguadinma et al., 2017). In 

particular, a reservoir's pore space plays a significant role in the buildup and movement of 

hydrocarbons. It is also essential for the development of reservoirs that hold hydrocarbons.  The porosity 

of a rock is a direct indicator of its hydrocarbon-storage capacity. It plays a significant role in the 

assessment of reservoirs and is crucial to the discovery and growth of oil and gas fields. Another 

essential metric for determining a reservoir's properties and calculating its oil reserves is the water 

saturation, gas, and oil in the reservoir. 

Porosity and saturation can be measured using one of two recognized methods (Song et al., 2020; Wang 

et al., 2020, 2022; Song et al., 2021b). Using rock slices or cores, the first method is a direct estimation 

that gets the physical parameter data directly. Although this procedure is more accurate and is frequently 

used in laboratories, it is expensive and time-consuming. The other approach is an indirect 

measurement, which involves approximating the saturation and porosity using function approximation, 

statistical, and geological approaches (Wyllie et al., 1956; Raymer et al., 1980; Oguadinma et al., 2014; 

Oguadinma et al., 2021; Ibekwe et al., 2023). The primary focus of early reservoir parameter prediction 

logging techniques was on linear data. The physical parameters are determined by the use of empirical 

formulas and linear equations, a purely quantitative approach that ignores the Reservoir actual 

environments. 

Traditionally, reservoir estimation has relied on core data, well logs, and geological information 

(Oguadinma et al., 2014). However, these conventional approaches often face challenges in capturing 

the inherent heterogeneity and complexities of subsurface formations (Aniwetalu et al., 2018). In 

addition, the relationship between the well logging data and reservoir parameters is nonlinear. The 

traditional regression analysis methods are difficult to achieve satisfactory results. Therefore, exploring 

a novel method for reservoir parameter prediction is particularly necessary for the development of 

unconventional and complex oil and gas fields. 

Recent advancements in artificial intelligence (AI) and machine learning (ML) have provided a 

paradigm shift in reservoir geoscience and engineering, offering promising tools to enhance the 

accuracy and efficiency of parameter characterization. 

Permeability, porosity, and saturation are among the reservoir metrics that have been obtained by certain 

researchers. In order to forecast permeability, Akande et al. (2015) suggested an artificial neural 

network (ANN) based on the correlation feature selection. The outcomes demonstrate that permeability 

may be predicted using fewer features with this method. Komarialaei and Salahshoor (2012) also 

predicted permeability using the ANN model and principal component analysis (PCA). The method's 

practicality is demonstrated by the experimental results. Hadi and Sadegh (2016) used an intelligent 

technique based on seismic characteristic data to estimate porosity. The random forest method was 

presented by Song et al. (2016) to estimate seismic reservoirs. It was discovered that the method has a 

certain stability and accuracy and is less affected by noisy data. 

Predicting the permeability based on well logs using machine learning algorithms is a feasible and 

alternative method. However, the accuracy cannot fully meet the requirement. Therefore, the complex 

nonlinear relationship is still needs to be further explored. 

This study represents a pivotal advancement in the field of reservoir geoscience by harnessing the power 

of machine learning techniques. It focuses on the essential reservoir parameter permeability and 

explores the predictive capabilities of several ML models. Permeability, a critical property influencing 

fluid flow within a reservoir, serves as a keystone in assessing reservoir behavior and optimizing 

production strategies.  
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In this study, we evaluate the performance of four distinct ML models: Bagging, Extra Tree Regressor, 

XGBoost, and Ridge. Our analysis extends beyond conventional evaluation metrics, delving into model 

interpretability and prediction reliability. The evaluation process is bolstered by comparing the models' 

performance across a diverse range of reservoir scenarios, including sandstone and non-reservoir 

intervals. 

2. Methodology 
 

2.1:     Study Area and Data Collection  

The dataset used for this study is a full well log suit comprising of Gamma ray log; shallow, true and 

medium resistivity logs; neutron log; density log; permeability log, porosity log and water saturation 

(SW) log were collected and quality checked using the python data processing mechanism as explained 

below. 
 

2.2:     Data Preprocessing  

Before analysis, the collected data underwent a rigorous preprocessing phase. Missing values in well 

logs were imputed using the mean imputation method. Outliers were detected and removed using the 

Z-score-based outlier detection method. Categorical variables, such as lithology and facies, were 

encoded using one-hot encoding. 

 

Fig. 1: Machine learning data pre-processing technique (Chakure, 2019) 

 

2.3:     Feature Selection and Engineering 

Feature selection was performed to identify the most relevant variables for predicting  

permeability. This involved using a combination of correlation analysis and feature 

importance scores obtained from machine learning models. Additionally, new features 

were engineered to capture potential interactions between variables.  
 

2.4:     Machine Learning Models 

To predict permeability,  porosity and water saturation,  we employed several machines 

learning algorithms, including:  

https://afrozchakure.medium.com/?source=post_page-----3cd01eefd438--------------------------------
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2.4.1:  Bagging Model:   

This ensemble model was used to harness the predictive power of multiple base 

estimators. The Bagging principle is primarily a process -driven technique rather than 

one represented by a specific mathematical equation. However, the core idea of Bagging 

can be understood through the mathematical concepts underlying the process.  

Bootstrap Sampling: The process of creating bootstrap samples involves randomly selecting data points 

from the original dataset with replacement. The mathematical representation for bootstrap sampling is 

as follows: 

Let N be the total number of data points in the dataset. 

A bootstrap sample of size N (the same size as the original dataset) is created by randomly selecting N 

data points from the original dataset with replacement. This can be represented mathematically as: 

𝐷 = (𝑥1, 𝑦1), (𝑥2𝑦2) … … … . . (𝑥𝑁, 𝑦𝑁)𝑖
∗ …………………Eqn. 1 

where 𝐷𝑖
∗ is the bootstrap sample, (𝑥j, 𝑦j) represents the j-th data point, and N is the total number of 

data points. 

Aggregation:  Bagging combines the predictions of multiple base models. The 

mathematical representation for aggregating the predictions can vary depending on the 

type of problem (classification or regression) and the method used (e.g., voting, 

averaging, or weighted averaging).  

For classification, a common aggregation method is to use the mode (most frequent class) 

of the individual predictions.  

For regression, the predictions are typically averaged to obtain the final prediction.  

Mathematically, the aggregation process can be represented as follows:  

For classification:  Let 𝐶𝑖
∗ be the predicted class from the i-th base model, and the final 

prediction is given by:  
 

𝐶𝑓𝑖𝑛𝑎𝑙 = 𝑚𝑜𝑑𝑒𝑙(𝐶1
∗, 𝐶2

∗ … … . 𝐶𝑚
∗ )…………………Eqn. 2 

 

where m is the number of base models.  

For regression: Let 𝑌𝑖
∗ be the predicted value from the i -th base model, and the final 

prediction is given by:  
 

𝑌𝑓𝑖𝑛𝑎𝑙 =
1

𝑚
  ∑   𝑌i

∗𝑚
𝑖=1  …………………Eqn. 3 

 

where m is the number of base models.  

It 's important to note that while Bagging's core idea can be represented in these 

mathematical terms, the primary value of Bagging lies in the process of creating diverse 

subsets and combining predictions, rather than in a single mathematical equation. In this 

study, we applied the Bagging regression approach.  
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Fig. 2: Bagging helps improve accuracy and reduce overfitting, especially in models that have high 

variance (GreeksforGreeks) 

 

2.4.2:    Extra Tree Regressor Model:  

The Extra Trees algorithm was chosen for its ability to handle noisy data. This model, which is a 

variation of Random Forest, is an ensemble learning method for regression tasks. Random forest (RF) 

is an ensemble machine learning approach proposed by Breiman (2001), which has the advantages of 

interpretability, convenience, and fast calculating speed. The Extra Trees algorithm primary principle 

is to build multiple decision trees using different subsets of the data and then combine their predictions. 

While there isn't a single mathematical equation that encapsulates the entire model, in this study, we 

provide a method that relies on the principle of averaging the predictions from multiple decision trees. 

The mathematical equation to express the prediction made by the Extra Trees Regressor is as follows: 

For each individual tree i in the ensemble: 

𝑌𝑖
∗ =  𝑇𝑟𝑒𝑒𝑖(𝑋)…………………Eqn. 4 

Where: 

𝑌𝑖
∗ is the predicted value from the i-th tree. 

𝑇𝑟𝑒𝑒𝑖(𝑋) represents the prediction made by the i -th decision tree for the input data X. 

 

To make a final prediction for the Extra Trees Regressor, you simply average the predictions from all 

individual trees in the ensemble: 

𝑌𝑓𝑖𝑛𝑎𝑙 =  
1 

𝑛  
  ∑    𝑌𝑖

∗𝑛
𝑖=1 …………………Eqn. 5 

Where: 

𝑌𝑓𝑖𝑛𝑎𝑙 is the final prediction made by the ensemble of Extra Trees Regressor. 

n is the total number of trees in the ensemble. 

𝑌𝑖
∗ is the prediction made by the i-th tree. 

 

This averaging process helps improve the stability and accuracy of the regression model by reducing 

the variance and overfitting. Each tree in the ensemble contributes to the final prediction, and the 

https://www.frontiersin.org/articles/10.3389/feart.2022.888933/full#B6
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randomness introduced during the tree-building process adds diversity to the model, making it less 

prone to overfitting. 

 

2.4.3:   XGBoost Model:  

XGBoost (Extreme Gradient Boosting) is a popular machine learning algorithm that is 

particularly effective for both classification  and regression tasks. The key principle 

behind XGBoost is gradient boosting, which involves creating an ensemble of decision 

trees and minimizing a specific loss function. While XGBoost involves multiple 

mathematical equations, I'll provide an overview of  the main equations that support its 

principle. 

The central equation is the calculation of the prediction made by the XGBoost model:  

𝑦∧
𝑖

=  ø(𝑥𝑖) =  ∑ 𝑓
𝑘

(𝑥𝑖)
K
k=1 …………………Eqn. 6 

Where: 
 

y^i is the predicted value for the i-th data point. 

xi is the feature vector for the i-th data point. 

ϕ(xi) is the prediction function.  

K is the total number of base learners (individual decision trees). 

fk(xi) is the prediction made by the k-th base learner for the  i-th data point. 

 

The prediction is a sum of the predictions from all the base learners.  

 

XGBoost involves a specific type of gradient boosting, which minimizes a loss fu nction. 

The primary loss function for regression problems in XGBoost is the squared error los s. 

 

𝐿(𝜙) = ∑ ((𝑦
𝑖− 

𝑦∧
𝑖  )

2
)N

𝑖=1 …………………Eqn. 7 

 

Where: 

L(ϕ) is the loss function. 

N is the total number of data points.  

yi is the actual target value for the i-th data point. 

y^i is the predicted value for the i-th data point. 
 

To minimize this loss function, XGBoost uses a combination of regularization terms and 

a second-order approximation of the loss function. These terms help prevent overfitt ing 

and fine-tune the model. 

 

2.4.4:   Ridge Model: 

The Ridge Regression model is a linear regression model with a regularization term that helps prevent 

overfitting. The principle of Ridge Regression is to minimize the sum of squared differences between 

the observed and predicted values while also penalizing the magnitudes of the model's coefficients 

(parameters). The mathematical equation for Ridge Regression is as follows: 
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Objective Function of Ridge Regression: 
 

Ridge Regression seeks to minimize the following objective function: 
 

Objective Function = ∑ (𝑦𝑖− 𝑦
∧

𝑖
)2 +  𝛼 ∑ 𝛽𝑗

2𝑝
𝑗=1

𝑁
𝑖=1 …………………Eqn. 8 

 

Where: 

N is the number of data points. 

𝑦𝑖 is the observed target value for the i-th data point? 

y^i is the predicted value for the i-th data point. 

α (alpha) is the regularization hyperparameter, which controls the strength of the penalty on the 

coefficients. 

p is the number of features (predictor variables). 

βj represents the regression coefficients for the j-th feature. 
 
 

The objective function consists of two parts: 

 

The first part (equation 9) is the ordinary least squares (OLS) loss, which measures the goodness of fit. 

 

∑ ((𝑦𝑖− 𝑦
∧

𝑖
)2)𝑁

𝑖=1 …………………Eqn. 9 

 

The second part (equation 10) is the L2 regularization term, also known as the Ridge penalty. It 

discourages the model from having large coefficients by adding a penalty based on the square of the 

coefficients. 
 

(𝛼 ∑ 𝛽𝑗
2
)𝑝

𝑗=1 …………………Eqn. 10 

 

The Ridge Regression model aims to find the coefficients (βj) that minimize this combined objective 

function. The regularization term encourages the model to have small coefficients, effectively reducing 

the impact of individual features. The hyperparameter α controls the trade-off between fitting the data 

well and keeping the coefficients small. 

The Ridge Regression adds an L2 regularization term to the linear regression objective function, which 

helps prevent overfitting by penalizing large coefficients. The goal is to find the coefficients that 

minimize the sum of squared differences between observed and predicted values while keeping the 

coefficients as small as possible. 

 

2.5:     Methods for Model Evaluation 

To evaluate the performance of the models, we used a combination of metrics, including:  

Accuracy: A measure of the model's ability to correctly predict the target values. 

Mean Absolute Error (MAE) : A measure of the absolute differences between predicted 

and actual values.  
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Mean Absolute Percentage Error (MAPE) : A measure of the percentage difference 

between predicted and actual values.  

AIC (Akaike Information Criterion) : A measure of the model's goodness of fit.  

Each model's accuracy and error metrics were computed and compared to select the best -

performing model for permeability, porosity and SW prediction. 
 

2.6:     Visualization 

Various visualization techniques were applied to provide insights into the model 

predictions. These included joint plots and LM plots, which were used for example, to 

visualize the relationships between predicted and actual pe rmeability values, as well as 

confidence intervals.  

 

3. Result and Interpretation 

 

3.1:      Feature Importance 

 
Feature selection was performed to identify the most relevant variables for predicting permeability. And 

from this chart, Volume of shale (VSH) and Gamma ray (GR) logs are the most relevant logs for the 

desired purpose. 

 

 
Fig. 3: Result from feature selection showing chart, where Volume of shale (VSH) and Gamma ray 

(GR) logs as the most relevant logs for reservoir parameter prediction. 
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3.2 Model Evaluation 

3.2.1: Bagging Model 

There is a trained accuracy of 0.99 which is almost 1.0. This shows that the model acts well in training 

and predicting data as well.  The predicted data is 0.94 which shows that the model is a robust fit when 

used to predict permeability (Figure. 5). The mean absolute error of 5.7md in terms of permeability and 

mean absolute percentage error of 8.7 which is less than 10 is a good attribute desired in a well-

performing model.  The AIC is in +4000 as opposed to the former in +6000 obtained from the ridge 

model confirming the good fit of the model (Table 1 and Figure 4). 

 

Table 1: Error metrics value readings from the four trained and tested models. 
 

Models 

 

Train_Score 

 

Test_Score 

 

 

AIC 

 

Mean 

Absolute 

Error 

 

Root 

Mean 

Squared 

Error 

 

Mean 

Absolute 

Percentage 

Error 

 

Ridge 

Regression 

0.1232 

 

0.1037 

 

6206.36 

 

135.24 357.37 21917.01 

Extra Tree 

Regression 

1.0000 

 

0.9989 

 

3342.84 

 

2.34 12.34 6.17 

XGBoost 

 

0.9999 

 

0.9921 

 

4080.75 

 

5.50 33.50 15.94 

Bagging 

 

0.9971 

 

0.9923 

 

4094.63 

 

5.88 33.17 7.49 

 

  

  

 
Fig. 4: Charts of the error metrics across the four machine learning models applied to this study. Observe 

how the ET model ranks least in all the error metrics with the Ridge model ranking comparatively high. 
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Fig. 5: The bagging model overlaps the actual prediction just as much as the XGB model with a slight 

discrepancy at the toe of the plot. 
 

3.2.2: Extra Tree Regressor Model 

The trained accuracy obtained from this model is 100% with a prediction accuracy of 99.8%. The 

absolute error and absolute percentage errors are less than the values obtained from the Bagging model. 

The AIC reading is lesser and even better. Thus the Extra Tree Regressor model performs better than 

the Bagging model as evident in the chart output of Figure 5. 

 

Fig. 6: The Extra Trees model overlaps the actual prediction almost perfectly. 

 

3.2.3: XGBoost Model 

From the XGB model analysis in comparison to the Extra Tree Regressor, it is clear that the Extra Trees 

Regressor model is the best in permeability prediction (Figure. 6 and 7). XGboost model made the 

density-corrected log more important than the gamma-ray and sonic logs. However, corrected density 
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doesn't have a good correlation to permeability (Figure 4) as such it is interpreted to have added to the 

large value of mean absolute percentage error which is above 10 displayed by the model.  Although the 

trained and predicted data from the model show an accuracy of over 99%, the error specifics are 

important in making the final conclusions. Many researchers and authors only make conclusions based 

on accuracy and mean absolute error, this study went a step ahead. Because the XGboost made the error 

with the corrected density log, the value of accuracy is in doubt 

 

Fig. 7: The XGB model overlaps the actual prediction but is not as perfect as the Extra Tree model. The 

yellow curve represents the actual predictions while the blue curve stands for model predictions 

3.2.4: Ridge Model 

From Table 1, the value of AIC is very high for the Ridge model; so it doesn't have the potential to fit 

well with the model in terms of permeability prediction. Furthermore, the error metrics such as the mean 

error, the mean absolute error, and the mean percent absolute error values are very high; and with the 

lowest accuracy value. 

 

Fig. 8: This graphed prediction shows that the Ridge model is underpredicting. It hardly matches the 

shape and value of the actual prediction. The yellow curve represents the actual predictions while the 

blue curve stands for model predictions. 
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3.3: Joint plot 

3.3.1:        Extra Tree model 

The ET model result shows a 99% confidence interval of the Extra Trees prediction model. This model 

shows better and almost perfect prediction when compared to other models. It shows negligible 

evidence of underpredictions and the error metrics values are desirable as the mean absolute percentage 

error is a little above 10 and has the lowest mean absolute error value of 2 (Fig. 9 and Table 1). 

3.3.2: Bagging 

This result from the Bagging model shows a 90% confidence interval. Although at high predictions the 

model is good and overlaps, the shaded areas show the uncertainty regions and it proves that at high 

values of around 500md of permeability, there is a high chance of uncertainty when the Bagging model 

is used. And this will be a problem in terms of reservoir characterization (Figure 9 and Table 1). 

Fig. 9: These images are the results from the Joint Plots extracted from Extra tree regression, XGB, 

Bagging, and Ridge models. Observe the line of fitness for each model. 
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3.3.3: XGB 

The result of the XGB prediction model shows a 95% confidence interval.  At about 2000md, there are 

some errors and under-predictions at the interval. This is not really a problem because 2000md in itself 

is already a high permeability value.  This model is better than the Bagging model because of the lesser 

mean square error and higher accuracy value it has compared to the Bagging model. 

3.3.4:     Ridge model 

The Ridge prediction model shows a very low confidence interval. It has less than the desired 

prospectivity of being used in permeability prediction. 
 
 

3.4: LMplot 
 

3.4.1: Extra Trees model 

From the line graph (Figure 10), there is almost a perfect correlation between the points and the lines. 

This observation indicates that the ET model has an accurate predicting power for non-reservoir and 

sandstone reservoir intervals (Table 2). This model will give higher accuracy and lesser error compared 

to other models. It is recommended for reservoir interval predictions. Although, there could be 

intercalations of thin-bedded shales within the sandstone reservoir interval. This model is also perfect 

for predicting homogeneous reservoir intervals. 

 

3.4.2: XGB model 

There is no perfect but good enough relationship between the point data and line in the graph in the 

XGB model.  Although, it has an above-average potential for predicting the sandstone reservoir interval 

but very little potential for non-reservoir prediction due to high uncertainty. Thus, can be recommended 

for reservoir interval prediction following the ET model as the best (Figure. 10; Table 2). 

3.4.3: Bagging model 

The Bagging model shares similar attributes as the XGB model in terms of line-point data relationships. 

Just like the XGB model, it has little potential to predict the non-reservoir and sandstone reservoir 

interval due to high uncertainty (Figure. 10; Table 2). 

 

3.4.4: Ridge model 

With a lot of negative correlations, the Ridge model cannot be used or suggested for use in reservoir or 

non-reservoir prediction because of the overwhelming uncertainty that it shows. 
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Fig. 10: These images are the results from the LM Plots extracted from Extra tree regression, XGB, 

Bagging and Ridge models. Observe the line of fitness for each model. 

 

Table 2: Showing the four regression models and their value predictions. On the Sand_Flag column, 

the sandy reservoir section is denoted with 1 while the non-reservoir section is represented with 0. 
 

Depth Actual 

Ridge 

Prediction 

ET 

Prediction 

XGB 

Prediction 

Bagging 

Prediction Sand Flag 

3486.3 17.4284 137.18944 8.589059 8.7285 3.54883 1 

3539.9 0.2844 135.240938 0.816454 1.477946 1.39068 1 

3506.4 1.146 163.504303 0.948433 1.183534 1.16375 1 

3474.1 6.7549 118.817115 11.022542 5.437419 6.98632 1 

3599.9 0.001 141.339461 0.001 0.00675 0.001 0 

3538.9 0.8532 140.797857 0.940918 0.027954 0.96274 1 

3626.1 0.0031 -5.233577 0.00513 0.00199 0.00252 0 

3428.1 73.5602 308.031912 77.659202 84.491486 63.3087 1 

3477.1 1.2462 37.381466 1.373014 1.253118 1.51327 0 

3545.4 0.2385 94.04899 0.461615 1.240877 0.2543 1 
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4.0: Discussion 

4.1: Performance of Machine Learning Models 

 

The primary objective of this study was to predict permeability and reservoir sections in using machine 

learning models and evaluate their performance. Four distinct models, including Bagging, Extra Trees 

Regressor, XGBoost, and Ridge, were employed in this endeavor. The results indicate that the Extra 

Trees Regressor model outperforms the other models in terms of accuracy and predictive power. 
 

The Extra Trees Regressor exhibited a trained accuracy of 100%, indicating its exceptional performance 

in training and predicting permeability values. It achieved a high prediction accuracy of 99.8%, further 

affirming its robustness. The mean absolute error (MAE) of 5.7md and mean absolute percentage error 

(MAPE) of 8.7% demonstrate the model's accuracy in estimating permeability. Moreover, the model's 

AIC value, which is significantly lower than that of the other models, reinforces its suitability for 

permeability prediction. 
 

Comparatively, the Bagging model also showed promise with a trained accuracy of 99% and a predicted 

accuracy of 94%. However, its error metrics, including MAE and MAPE, were slightly higher than 

those of the Extra Trees Regressor model. The Ridge model, on the other hand, exhibited 

underpredicting behavior with discrepancies in both shape and value when compared to the actual 

prediction. Its high AIC value indicates a lack of fit to the data, making it unsuitable for permeability 

prediction. 
 

The XGBoost model, despite achieving high trained and predicted accuracy scores, exhibited 

shortcomings when evaluated based on error metrics. It attributed excessive importance to the corrected 

density log, which does not correlate strongly with permeability. As a result, the XGBoost model 

yielded a relatively high MAPE, casting doubt on the accuracy of its predictions. 

 

The Ridge model from the table is over-predicted with values over 100 (Table 2), as such can’t be used 

for reservoir parameter prediction. 

 

4.2: Implications for Reservoir Characterization 
 

The choice of the Extra Trees Regressor model as the top-performing model holds significant 

implications for reservoir characterization. Accurate permeability prediction is crucial for identifying 

reservoir intervals with high production potential (Figure 11 and 12). The Extra Trees Regressor's 

ability to achieve near-perfect predictions and its robustness in handling uncertainties make it a valuable 

tool in this regard. 
 

The joint plots and LM plots provided visual insights into the models' performance. The Bagging model 

demonstrated a 90% confidence interval, indicating high uncertainty at high permeability values. This 

uncertainty could pose challenges in reservoir characterization, particularly when dealing with high-

permeability reservoirs. The XGBoost model exhibited a 95% confidence interval with minor errors at 

extremely high permeability values, which are already indicative of favorable reservoir intervals. 

However, it introduced uncertainties due to its high MAPE. 
 

In contrast, the Extra Trees Regressor model presented a 99% confidence interval with negligible 

evidence of underpredictions. This level of precision and reliability is particularly valuable for 

identifying and characterizing reservoir intervals. The Ridge model's low confidence interval and 

significant negative correlations further affirm its unsuitability for reservoir prediction. 
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Fig. 11: Log signatures of Gamma ray, resistivity, neutron, permeability, porosity and water saturation 

logs used for this study and showing areas of low gamma ray reading, high resistivity, permeability, 

porosity reading and reas of low water saturation. 
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Fig. 12: Log signatures of Gamma-ray, resistivity, neutron, permeability, porosity, and water saturation 

log showing the identified reservoirs within the area of study which fall within low gamma-ray reading, 

high resistivity, permeability, porosity reading, and areas of low water saturation. 

 
 

The fact that high permeability matches high porosity, low water saturation, and low gamma ray match 

the reservoir intervals shows that the model works well and model predictions can be trusted. 

 
 

4.3: Limitations and Future Directions 
 

It is essential to acknowledge the limitations of this study. The models' performance may vary in 

different geological settings, necessitating further validation on diverse datasets and in varying reservoir 

types. Additionally, while we focused on the accuracy and error metrics of the models, future research 

could explore interpretability and uncertainty quantification, providing deeper insights into model 

predictions. 
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Conclusion 
 

The present study represents a significant step towards enhancing our understanding of reservoir 

parameter characterization using state-of-the-art machine learning techniques. Through the 

comprehensive evaluation of four machine learning models, namely Bagging, Extra Trees Regressor, 

XGBoost, and Ridge, we have gained valuable insights into their performance and applicability in 

predicting permeabilitya pivotal factor in reservoir characterization. 

Our findings reveal that the Extra Trees Regressor model emerges as the most promising candidate for 

accurately predicting permeability. With a trained accuracy of 100% and a prediction accuracy of 

99.8%, this model exhibits exceptional robustness in both the training and prediction phases. The mean 

absolute error (MAE) of 5.7md and mean absolute percentage error (MAPE) of 8.7% attest to its precise 

estimations, while the significantly lower AIC value compared to other models underscores its superior 

fit to the data. 

Conversely, the Bagging model demonstrates a strong performance with a trained accuracy of 0.99 and 

a predicted accuracy of 0.94. While it shows potential for permeability prediction, its slightly higher 

MAE and MAPE values suggest a marginally reduced accuracy compared to the Extra Trees Regressor 

model. The XGBoost model, despite its impressive trained and predicted accuracy, faces challenges 

due to its disproportionate emphasis on the corrected density log, which exhibits a weaker correlation 

with permeability. Consequently, the model yields a relatively high MAPE, casting doubt on its 

reliability. 

In contrast, the Ridge model falls short in multiple aspects, displaying significant discrepancies in shape 

and value when compared to actual predictions. Its high AIC value indicates an inadequate fit to the 

data, rendering it unsuitable for permeability prediction. 

These findings hold paramount significance for reservoir characterization endeavors. Accurate 

permeability prediction is essential for identifying reservoir intervals with high production potential. 

The Extra Trees Regressor model, with its near-perfect predictions and robustness against uncertainties, 

stands out as an invaluable tool for reservoir characterization in this context. The visual insights 

provided by joint plots and LM plots further reaffirm its precision and reliability. 

This study underscores the transformative potential of machine learning models, particularly the Extra 

Trees Regressor, in permeability prediction for reservoir characterization. Accurate permeability 

assessments lay the foundation for identifying reservoir intervals with high production prospects, 

contributing to the optimization of hydrocarbon exploration and production endeavors. As we continue 

to delve deeper into the applications of machine learning in geosciences, the insights gleaned from this 

research pave the way for more sophisticated and reliable reservoir characterization techniques. 
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