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Abstract19

Radio interferometers used to make astronomical observations, such as the LOw Frequency20

ARray (LOFAR), experience distortions imposed upon the received signal due to the iono-21

sphere as well as those from instrumental errors. Calibration using a well-characterised22

radio source can be used to mitigate these effects and produce more accurate images of23

astronomical sources, and the calibration process provides measurements of ionospheric24

conditions over a wide range of length scales. The basic ionospheric measurement this25

provides is differential Total Electron Content (TEC, the integral of electron density along26

the line of sight). Differential TEC measurements made using LOFAR have a precision27

of < 1 mTECu and therefore enable investigation of ionospheric disturbances which may28

be undetectable to many other methods. We demonstrate an approach to identify iono-29

spheric waves from these data using a wavelet transform and a simple plane wave model.30

The noise spectra are robustly characterised to provide uncertainty estimates for the fit-31

ted parameters. An example is shown in which this method identifies a wave with an am-32

plitude an order of magnitude below those reported using GNSS TEC measurements.33

Artificially generated data are used to test the accuracy of the method and establish the34

range of wavelengths which can be detected using this method with LOFAR data. This35

technique will enable the use of a large and mostly unexplored dataset to study travel-36

ling ionospheric disturbances over Europe.37

1 Introduction38

The ionosphere contains variations on a broad range of length scales, from 10s of39

metres to 1000s of kilometres. These perturbations in plasma density lead to perturba-40

tions in refractive index at radio frequencies, meaning that radio signals passing through41

the ionosphere will be distorted by these ionospheric structures (Aarons, 1982). To first42

order, these distortions are phase changes proportional to the integrated electron den-43

sity along the line of sight, known as Total Electron Content (TEC). Higher order terms44

include magnetic field effects and non-linear integrals of electron density. All these iono-45

spheric effects have characteristic frequency dependencies, which can be used to sepa-46

rate ionospheric distortions from distortions arising from instrumental effects (de Gasperin47

et al., 2019).48

Ionospheric disturbances include both turbulent structures associated with vari-49

ous plasma instability processes, and coherent wave structures. These waves are known50
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as Travelling Ionospheric Disturbances (TIDs) and are typically generated by Atmospheric51

Gravity Waves (AGWs) propagating in the neutral atmosphere (Hocke & Schlegel, 1996).52

AGWs in the thermosphere have a range of sources, including convective weather sys-53

tems in the troposphere, winds flowing over topographical features, and Joule heating54

at high latitudes due to geomagnetic activity (Fritts & Alexander, 2003). Observations55

of TIDs are key to understanding the dynamics of the ionosphere-thermosphere system,56

especially due to the difficulty of directly observing AGWs themselves in the thermo-57

sphere.58

TIDs are commonly observed using a range of data sources, including ionosondes,59

incoherent scatter radars and TEC derived from Global Navigation Systems Satellite (GNSS)60

signals (e.g. Lan et al., 2018; Munro, 1950; Otsuka et al., 2013; Themens et al., 2022;61

van de Kamp et al., 2014). These have revealed TIDs with typical horizontal wavelengths62

ranging from ∼ 100 − 1000 km and periods ranging from roughly 10 min to 2 hours.63

These are commonly divided into Medium-Scale TIDs (MSTIDs) with wavelengths of64

100−300 km and Large-Scale TIDs (LSTIDs) with wavelengths above 300 km (Hunsucker,65

1982). The lower wavelength limit of 100 km is largely due to the resolution limitations66

of the most widely available observations.67

The LOw Frequency ARray (LOFAR: van Haarlem et al., 2013) is a radio tele-68

scope centred in the Netherlands, with international stations spread as far as Ireland and69

Latvia. The stations within the Netherlands are divided into ‘core’ stations, which all70

lie within a roughly 3 km radius, and ‘remote’ stations up to ∼ 60 km from the core. Sta-71

tions are identified by two letters and three numbers (e.g. CS002, RS306) where CS and72

RS denote core and remote stations respectively. LOFAR can observe in two frequency73

bands, 10MHz−90MHz and 110MHz−250MHz. While these baselines ranging from74

10s of metres to 100s of kilometres are ideal for functioning as an interferometer for as-75

tronomical observations, they also mean that ionospheric conditions along the line of sight76

from different stations can differ significantly.77

Although it is primarily intended for astronomical observations (e.g. Carbone et78

al., 2016; Heald et al., 2015; Shimwell et al., 2017; Yatawatta et al., 2013), the distor-79

tions to the observed signals mean that LOFAR can also be used for ionospheric obser-80

vations. For example, Fallows et al. (2020) were able to achieve the first detection of two81

simultaneous TIDs at different altitudes and travelling in different directions by analysing82
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variations in received signal intensity observed using LOFAR. In another observation,83

Boyde et al. (2022) were able to show that their observed intensity variations corresponded84

to focusing from a small-scale TID with a wavelength of ∼ 15−30 km. Another exam-85

ple of small-scale structure within a TID detected using LOFAR is the ∼ 20 km sub-86

structure within an MSTID reported by Dorrian et al. (2023).87

In order to mitigate both ionospheric and instrumental distortions to the observed88

signals, typical astronomical observations with LOFAR include a calibrator source that89

is observed simultaneously or in series with the target field (de Gasperin et al., 2019).90

These calibrators are bright, compact, well-characterised sources, meaning that the ob-91

served signal can be compared to the expected signal to estimate the complex gain, a92

process known as self-calibration (Pearson & Readhead, 1984). This complex gain must93

be separated into contributions from different effects, due to the fact that some of these94

effects vary depending on the viewing direction. As the calibrator dominates over other95

sources in the field of view, the direction dependent ionospheric effects can be treated96

as direction independent in the calibration, as only the contribution towards the cali-97

brator is significant and we can ignore variations across the field of view. Effects that98

are truly direction independent, such as many instrumental effects, can then be corrected99

before calibrating the target field.100

The LOFAR calibration process typically provides three ionospheric measurements,101

which are as follows: differential TEC (dTEC, the difference in TEC observed by two102

different antennas), differential Faraday rotation (dFR, the difference in Faraday rota-103

tion observed by two different antennas) and intensity scintillation (variations in signal104

intensity due to focusing / defocusing in the ionosphere). In addition to these, the third105

order ionospheric delay, describing the effects of concentration of ionospheric density in106

thin layers (Hoque & Jakowski, 2008), is also calculated for observations below 40MHz107

(de Gasperin et al., 2018). The phase effects (dTEC and dFR) can only be determined108

as differential quantities because the ‘original’ signal phase from any natural radio source109

is unknown but can be assumed to be spatially uniform when incident on the ionosphere110

over the size of LOFAR. As a result, one antenna must be arbitrarily defined as having111

zero phase and then all others can be compared to this. In this paper we focus entirely112

on the dTEC measurements as these are the most directly applicable to quantifying iono-113

spheric disturbances.114
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While absolute measurements of TEC such as those derived from dual-frequency115

GNSS receivers are vital for many applications, the differential measurements provided116

by LOFAR contain all the necessary information for studying disturbances if knowledge117

of the background conditions is not required. The quality of dTEC derived from LOFAR118

observations was studied by Mevius et al. (2016), who found a noise floor of < 1 mTECu119

(1 TECu = 1016e−m−2), an order of magnitude better than GNSS derived TEC (Otsuka120

et al., 2013). The phase residuals after all corrections were applied were found to vary121

systematically with pointing direction across multiple observations. This suggests that122

this noise floor is a result of either an incomplete sky model or an inaccurate model of123

the beam shape. The structure function of the TEC fluctuations was found to be con-124

sistent with a mixture of Kolmogorov turbulence and coherent wave activity, and typ-125

ically anisotropic, aligning with the geomagnetic field more often than not (Mevius et126

al., 2016).127

dTEC measurements from radio interferometers have been used to study waves in128

the ionosphere in the past. For example, Jacobson and Erickson (1992) used Fourier anal-129

ysis on data from the Very Large Array (VLA: Thompson et al., 1980) to identify a range130

of waves, including fast disturbances which appeared to propagate towards magnetic east131

and were later shown to be in the plasmasphere (Jacobson & Erickson, 1993; Hoogeveen132

& Jacobson, 1997). More recently, their approach was refined by Helmboldt et al. (2012)133

to relax some of the constraints that had been imposed on possible wave solutions. Us-134

ing LOFAR, Beser et al. (2022) were able to identify variations in dominant wave direc-135

tion over the course of several hours and show that these tracked variations in the ge-136

omagnetic field and plasma convection.137

This paper presents a novel analysis method for identifying the parameters of iono-138

spheric waves from dTEC measured using LOFAR. This includes robust estimation of139

the uncertainty in the derived wave parameters. An example data set is shown in which140

this approach identifies a wave with amplitude smaller than the sensitivity of relative141

TEC from GNSS measurements (e.g. Otsuka et al., 2013). The paper is structured as142

follows: first, the observations used are introduced and the characteristics of waves in143

dTEC measurements are described. Then the analysis method is introduced, including144

the procedure for uncertainty estimation, and is demonstrated on the observations. Fol-145

lowing this, synthetic data are used to examine the performance of the method in iden-146
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tifying waves of different parameters in LOFAR data. Finally, the prospects for apply-147

ing this method to a wider dataset are discussed.148

2 Observations149

To illustrate the analysis methods described in this paper, we will use the calibra-150

tion solution for an 8-hour observation (ID L691726) made using the LOFAR high-band151

array between 120.2− 187.4MHz with a frequency resolution of ∼ 48.8 kHz. This ob-152

servation ran from 15:15 UT to 23:15 UT on 21 December 2018, and targeted the source153

3C48 (RA 1h37m41s, Dec. 33.16◦). As 3C48 is one of the regular calibrator sources, dTEC154

solutions were able to be derived directly for the target source in this case. While the155

international stations were included in this observation, here we focus only on the sta-156

tions in the Netherlands where coherent structures are more likely to span all lines of157

sight. Over the course of the observation, the apparent position of the source moved from158

due East (∼ 90◦ azimuth) to due West (∼ 270◦ azimuth) as viewed from the LOFAR159

core, starting and ending at an elevation of ∼ 44◦ and reaching a maximum elevation160

of 70◦.161

The data for the full observing window for a range of stations are shown in Fig-162

ure 1. The data show activity across timescales ranging from minutes to hours. In some163

cases, most notably for RS310 and RS409, the signals show very similar variations due164

to their similar baseline length and orientation. Other features occur only on a single165

baseline, such as the sharp increase in dTEC for RS210 just after 17:00 UT. It is also166

important to note that the magnitudes of the dTEC values here are significantly smaller167

than the magnitude of variations that have been shown elsewhere (see e.g. de Gasperin168

et al., 2018; Mevius et al., 2016). This is likely due in part to the observation being made169

at solar minimum during winter solstice and largely at night, meaning ionospheric den-170

sities and therefore TEC and TEC variations are particularly small. As a result, these171

data should provide a good test case to demonstrate the sensitivity of these measure-172

ments to even such small variations in TEC.173

Within these data, there is one particularly clear instance of wave activity between174

roughly 17:20-17:50 UT. Figure 2 shows the detrended dTEC values at four times dur-175

ing the passage of this wave starting from the appearance of an enhancement in the west-176

ernmost baseline and showing it passing into the eastern baselines. While this wave was177
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Figure 1. A selection of dTEC time series for the whole of observation L691726 on 21 De-

cember 2018, referenced to CS001HBA0. The remotes shown are the furthest from the core along

their respective directions.

observed, the line of sight was to the South-East of the LOFAR core (azimuth ∼ 130◦),178

at an elevation of ∼ 64◦. The detrending is carried out by subtracting a 60 minute run-179

ning average from the dTEC value on each baseline, to remove large scale diurnal vari-180

ations while retaining shorter period wave signals. The full wave progression is shown181

in the video provided in the Supplementary Information as Movie S1. The wave clearly182

propagates from west to east and with a period of roughly 10 minutes, although it should183

be noted that the period will be Doppler shifted due to the apparent scan velocity of the184

line of sight through the ionosphere, typically of order ∼ 15− 20m s−1 around the F-185

region electron density peak. However, this visual inspection does not permit determi-186

nation of the wavelength or amplitude, which require a more systematic approach which187

will be described in the following sections. The amplitude of the variations measured here188

is close to or somewhat below the precision of GNSS measurements (Otsuka et al., 2013),189

demonstrating the value of the high precision measurements provided by LOFAR (Mevius190

et al., 2016).191
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Figure 2. The detrended dTEC values for all the remote stations plus CS001HBA0, ref-

erenced to RS306 (black cross). Values are shown for four different time stamps. Points are

mapped to the ionospheric pierce point location assuming a 350 km shell height. The aspect ratio

is not correct causing the longitudinal distances to be exaggerated relative to the latitudinal dis-

tances.

Given the combination of high measurement precision and high density of measure-192

ments in the Netherlands provided by LOFAR, the dTEC data provide an opportunity193

to extend the parameter space in which we can observe ionospheric waves. However, the194

use of differential rather than absolute TEC measurements presents some additional chal-195

lenges in analysis. These differences impose certain limitations on the parameter space196

that can be accessed by LOFAR which do not apply to GNSS measurements. The dif-197

ference between the wave signal seen in GNSS absolute TEC and differential TEC is shown198

in Figure 3 for an assumed plane wave. The absolute TEC signatures from two closely199

spaced receivers (solid and dashed lines) are identical in amplitude and with only a small200

phase difference. The differential TEC signatures (dotted and dash-dotted lines), on the201

other hand, have significantly lower amplitudes, which are different between the two base-202

lines. They are also almost in perfect antiphase. This occurs due to the difference in sign203
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Figure 3. The expected detrended TEC measured from two GNSS receivers at x = −2 km

(Receiver 1) and x = 1km (Receiver 2) respectively. Also shown are the corresponding differen-

tial TEC measurements assuming a reference receiver at x = 0km (Receiver 3, detrended TEC

from this not shown but would be identical to those from Receivers 1 and 2 except for a phase

shift). The wave is assumed to have a wavelength of 100 km, velocity of 100m s−1 and amplitude

0.5 TECu.

of the baseline relative to the reference at x = 0km, which changes whether the mea-204

sured signal leads or lags the reference signal.205

The wave signature in the dTEC for a plane wave can be expressed as206

dTEC(r⃗, t) = ∆TEC
(
cos

(
k⃗ · r⃗ − ωt

)
− cos (−ωt)

)
= A

(
∆TEC, k⃗, r⃗

)
cos

(
ϕ
(
k⃗, r⃗

)
− ωt

)
,

(1)207

where r⃗ is the baseline from the reference station to the measurement station, t is time,208

∆TEC is the wave amplitude, k⃗ is the wavevector and ω is the wave angular frequency.209

The amplitude A
(
∆TEC, k⃗, r⃗

)
and phase ϕ

(
k⃗, r⃗

)
of the observed wave are given by210

A
(
∆TEC, k⃗, r⃗

)
= ∆TEC

√
2− 2 cos

(
k⃗ · r⃗

)
, (2)211
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Figure 4. The measured amplitude (left) and phase (right) of a sine perturbation as a func-

tion of baseline for GNSS receivers (blue dashed line) and LOFAR calibration solutions (red solid

line). The sine wave considered has wavelength 100 km and amplitude 0.5 TECu.

and212

ϕ
(
k⃗, r⃗

)
=

1

2

(
k⃗ · r⃗ mod 2π

)
. (3)213

Naturally, the observed wave amplitude in GNSS data is independent of the measure-214

ment location for a plane wave, and the wave phase varies linearly with position. The215

differences between the observed wave properties for a plane wave in GNSS derived TEC216

and LOFAR dTEC are shown in Figure 4, based on equations (2) & (3).217

The key characteristics of the relationships for LOFAR dTEC are the low ampli-218

tude on short baselines, and the π phase discontinuity normal to k⃗ passing through the219

reference station. The low amplitudes on short baselines, combined with the shallower220

phase gradient compared to GNSS absolute TEC, lead to a practical upper limit on the221

wavelengths which can be detected using LOFAR dTEC. The wavelength range that can222

be accessed is investigated in section 4.223

3 Characterising Waves Using Wavelet Analysis224

The data shown in section 2 illustrate that waves can be observed in the dTEC so-225

lutions, but the underlying wave parameters are not immediately apparent from the raw226

dTEC values. It is clear that the wavelength of the wave is larger than the longest base-227
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lines in the array as we do not see multiple wavefronts simultaneously, but the actual wave-228

length and amplitude of the wave are not clear. The plane wave model of equations (2)229

& (3) provides a way to estimate these parameters, as it predicts a dependence of the230

observed amplitude and phase on baseline length and wave parameters.231

The observed amplitude and phase can be estimated using a wavelet transform. This232

takes the observed time series and convolves it with a ‘wavelet’ of varying time scale and233

time of peak amplitude. The wavelet transform therefore converts the 1D time series at234

each station into a complex 2D wavelet spectrum as a function of period T and time t0,235

W (T, t0). The wavelet function used in this case is the Morlet wavelet, given by236

ψ(t, s, t0) =

√
1

s
√
π
exp

(
−(t− t0)

2

2s2

)
exp

(
−5i(t− t0)

s

)
, (4)237

where t is time, s is the width parameter (s(T ) = 5T
2π ) and t0 is the peak time. This238

represents a harmonic oscillation suppressed by a Gaussian, corresponding to a time lim-239

ited wave signal. The wavelet coefficients are a numerical approximation to240

W (T, t0) =

∫
dTEC(t)ψ∗(t, s(T ), t0)dt. (5)241

This definition of the Morlet wavelet is the standard definition used by Torrence242

and Compo (1998) and widely implemented in software packages. However, as shown243

by Liu et al. (2007), it is biased towards larger periods and the amplitude of the wavelet244

coefficient does not correspond to the amplitude of the wave. This can be corrected by245

dividing the wavelet coefficients by a factor
√
fss where fs is the sample frequency of246

the time series (Liu et al., 2007).247

An example wavelet power spectrum for station RS310 using RS306 as a reference248

is shown in Figure 5. The noise estimation was carried out using the hour of data sur-249

rounding the wave activity identified in Figure 2. The wave activity identified visually250

in Figure 2 corresponds to the enhancement of wavelet power at around 17:30 UT at a251

period of ∼ 8− 10min.252

To test the appropriateness of the simple 1-dimensional plane wave model, we first253

check the geographical distribution of power (|W |2) and phase (arg(W )) at the time and254

approximate period of the observed waves. This is shown in Figure 6, where the period255

was selected as the one with the highest power |W |2 at any of the Dutch stations at this256

t0. The E-W variability in both parameters is apparent, as is the discontinuity of phase257
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Figure 5. The wavelet power spectrum for RS310 with RS306 as the reference station. Black

contours denote the 95% local significance level based on the estimated noise spectrum (see

section 3.1 for details). Red dashed lines indicate the time range over which the noise was esti-

mated, meaning that significance levels outside this time range may be unreliable. Shaded regions

at either side are the cone of influence, in which the values are unreliable due to edge effects.

and the near symmetric variation of power. This indicates that the simple plane wave258

model in this case provides a good approximation to the observed wave behaviour and259

may be useful to estimate the wave parameters.260

3.1 Noise Estimation261

As well as estimating the wave parameters, it is useful to quantify the uncertainty262

in the values obtained from the wavelet transform. Doing this requires an estimate of263

the uncertainties in the wavelet coefficients (specifically in the wavelet power and phase).264

This ‘noise’ will include contributions from both instrumental/model errors in the mea-265

sured values and real turbulent variations in the ionosphere, all of which can vary with266

time and/or observing geometry. To estimate the uncertainty in the wavelet parameters,267
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Figure 6. The wavelet power (left) and phase (right) calculated for a period of roughly 9.2

mins at 17:36:13 UT. The black x shows the location of the reference station (RS306). The sign

of the phase discontinuity is arbitrary due to the phase wrapping and an unknown offset. Aspect

ratio is not set to match physical distances.

we therefore need to estimate this noise power as a function of period and then consider268

the ratio of wavelet power to noise power.269

In addition to providing a way to estimate uncertainty in wave power and wave phase,270

the noise spectrum gives a basis for specifying confidence levels for identifying signals271

above the noise. These are based on the fact that the noise power will be chi-squared272

distributed with two degrees of freedom (corresponding to the real and imaginary com-273

ponents of the wavelet coefficient) around the underlying noise spectrum. Confidence lev-274

els can therefore be derived to determine which baselines to consider in any fitting, and275

exclude any which are likely to be noise dominated. The derivation of these confidence276

levels from the noise spectrum is explained in detail in Auchère et al. (2016).277

The noise spectrum estimates rely on the Fourier power spectrum of the data to278

constrain them. This will in general consist of the noise spectrum with one or more peaks279

corresponding to coherent signals. The normalisation of the Fourier power matches that280

of the wavelet power (before the rescaling given by Liu et al. (2007)) for noise-like sig-281

nals if the Fourier power is multiplied by the length of the time series (Torrence & Compo,282
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1998). As a result, the noise spectrum is quantified using this normalisation of the Fourier283

power spectrum, and then is rescaled along with the wavelet spectrum itself.284

A common noise model across many areas of geophysics is the AR1 model (e.g. Tor-285

rence & Compo, 1998), which is also implemented into many common wavelet packages.286

This assumes that the noise can be described by a Markov process, where each value is287

only influenced by the preceding value. In other words, the noise contribution at times-288

tamp i, xi, can be expressed as289

xi = α · xi−1 + zi, (6)290

where α is the lag-one autocorrelation describing how ‘red’ (i.e. how biased towards lower291

frequencies) the noise is, and zi is a sample from a Gaussian with mean zero and vari-292

ance proportional to noise power. The advantage of this is that its parameters can be293

very easily estimated directly from the time series, but it can only describe a limited range294

of spectral shapes. The dTEC data do not match the spectral shape of the AR1 model,295

generally having a significantly steeper spectrum, and so attempting to apply it would296

give extremely misleading results.297

A more general approach to noise estimation is presented by Auchère et al. (2016).298

This involves taking the Fourier power spectrum of the data and fitting a parameterised299

spectrum to it. The fit is based on maximising the likelihood using the fact that the Fourier300

power spectrum of a pure noise time series (assuming the noise process does not vary301

with time) will be distributed around the true underlying spectrum according to a chi-302

squared with two degrees of freedom. While this is an extremely statistically thorough303

approach, it still requires an assumed spectral shape for the noise. We were not able to304

identify a suitable spectral shape for the dTEC data, as different baselines and differ-305

ent observations showed qualitatively different spectra.306

The difficulty of identifying a suitable assumed noise spectral shape can be avoided307

by simply estimating the noise in a way that does not have an assumed functional form.308

For example, Robust Local Regression (RLR: Ruckstuhl et al., 2001, described below)309

makes minimal assumptions about the spectral shape. All it requires is that the noise310

spectrum is locally linear. While this is not the case for the dTEC data, the spectrum311

does locally follow a power law, meaning that it is linear in log-log space and if the fit-312

ting is carried out in this representation then the assumption of a linear spectrum holds.313

Another advantage of RLR is that it directly accounts for the presence of signal by it-314
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eratively excluding spikes in the spectrum from the fitting, which is not achieved by the315

other methods described previously.316

To estimate the noise spectrum, RLR carries out weighted linear regression sep-317

arately for each Fourier frequency. The weights are determined initially by the distance318

from each point to the point of interest in log-frequency space, with a functional form319

of320

Ki = max(0, 1− |ui|3), (7)321

where ui is the ratio of the separation in log-frequency space to the kernel width h. This322

kernel width is set for each point of interest to ensure 30 points with non-zero weight fol-323

lowing the suggestions of Ruckstuhl et al. (2001). This provides the local component of324

RLR, but to ensure robustness this process must be iterated. On subsequent iterations,325

the local weights Ki are modified by multiplying by a robustness weight wi given by326

wi =


max

(
0, 1−

(
ϵi
bσ

)2)
, if ϵi > 0

1, otherwise

(8)327

where ϵi is the calculated Fourier (log) power minus the fitted value from the previous328

iteration (i.e. the residual), b is the ‘robustness parameter’ set to 3 following Ruckstuhl329

et al. (2001), and σ is proportional to the median absolute residual. This then works to330

exclude sharp (i.e. narrower than h) peaks from the fitting procedure and thereby es-331

timate the underlying noise without being biased upwards by the signal. The estimated332

spectrum is found to converge sufficiently after 5 iterations, at which point the same weight-333

ing is used to interpolate onto the wavelet periods rather than the Fourier frequencies334

to give the estimated noise in the wavelet spectrum.335

While fitting in log-log space is necessary to ensure a locally linear noise spectrum,336

it also introduces a bias into the results. This is because the mean of the logarithm of337

a chi-squared distributed variable is lower than logarithm of its mean, but conveniently338

the bias can be corrected by simply adding a constant of 0.57721466 to the fitted val-339

ues before rescaling from (natural) log power (Vaughan, 2005). In practice, it is also nec-340

essary to first ‘prewhiten’ the time series before calculating the Fourier power spectrum.341

Otherwise, the higher frequencies will be dominated by the apparent discontinuity caused342

by assuming the series periodically repeats, rather than by the true noise. After fitting,343

the spectrum can then be corrected for this by dividing by 2−2 cos
(

2πf
fs

)
(Percival &344

Walden, 1993). As well as the prewhitening, the signal is windowed using a Hamming345
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window (Harris, 1978) in order to remove the effect of signal power spreading over mul-346

tiple bins when the signal frequency does not match one of the Fourier frequencies. This347

also suppresses the noise power, creating a downward bias. To quantify this bias, the per-348

formance on artificial noise time series was tested, the results of which are described in349

section 3.2.350

Figure 7. An example of the noise fitting procedure using an hour of the data shown in Fig-

ure 1. The station used is RS310 with RS306 as the reference. The black solid line represents the

Fourier power spectrum while the red dashed line is the noise spectrum estimated by RLR.

An example of the noise fit results is shown in Figure 7, for an hour of the data shown351

in Figure 1 centred on the observed waves. The RLR method clearly does a good job352

of generating a smoothed version of the Fourier power spectrum as desired. There is also353

a distinct peak in the Fourier spectrum above the noise fit (red dashed line) between 1×354

10−3 − 2× 10−3 Hz, corresponding to periods of around 8− 16min. This is the signa-355

ture of the waves visually identified in the data in Figure 2, and the RLR fit has success-356

fully fitted under this signal as intended.357
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3.2 Noise Fit Validation358

While the noise estimate in Figure 7 appears reasonable, given that the true noise359

characteristics are unknown it is useful to test the method for bias using synthetic noise.360

For this purpose, 10,000 1-hour long time series were generated with noise following the361

AR1 model of equation (6). These included a sinusoidal signal at variable frequency and362

signal-to-noise ratio (SNR) to test the ability to accurately exclude any signal. The pa-363

rameter α was varied between 0 and 0.99 and showed no impact on the performance of364

the noise estimates, as expected given no assumption is made about the exact spectral365

shape. These time series then had a sine wave signal added to them with variable am-366

plitude and period, and the estimated noise was compared to the true value Pn given367

by (Torrence & Compo, 1998)368

Pn =
σ2

1− 2α cos
(
2πts
T

)
+ α2

, (9)369

where σ is the standard deviation of the sample zi in equation (6), ts is the time between370

samples (∼ 4 s) and T is the period. This comparison was made at both the signal pe-371

riod, and 10 times this value to capture the performance in the absence of signal.372

The performance of the noise estimate for a range of signal frequencies and SNRs373

is shown in Figure 8. The performance is mostly uniform as shown in the left panel, with374

only the lowest signal frequencies showing any systematic variation. This is an unavoid-375

able problem as for very low frequencies (<∼ 0.8mHz), there are insufficient Fourier bins376

at lower frequencies to quantify noise power, and so the increased power due to the pres-377

ence of the signal cannot be easily distinguished from an increase in noise power. How-378

ever, for the vast majority of signals, this indicates a consistent performance as desired.379

To quantify the exact performance, the data shown in the left panel of Figure 8 were fit-380

ted by381

Pest

Ptrue
= C

(
B exp

(
−T0
T

)
+ 1

)
, (10)382

where Pest is the estimated noise power, Ptrue is the true noise power given by (9) and383

C, B and T0 are the fit parameters. These were found to be C = 0.471 ± 0.007, B =384

570 ± 50 and T0 = 7700 ± 150 s. The SNR was not included in the fit as in practice385

this is unknown without an accurate noise estimate, and so cannot be used to obtain the386

accurate noise estimate in the first place.387

The rescaled noise estimates are then shown in the right panel of Figure 8. Except388

some at the lowest frequencies, there is no remaining trend, showing that the RLR noise389
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Figure 8. The errors in estimated noise power as a function of signal frequency and SNR

before rescaling (left) and after rescaling by equation (10) (right). A logarithmic colour scale is

used so that both overestimation and underestimation of the true noise are equally apparent.

estimation method with the rescaling described by equation (10) is a generally consis-390

tent and unbiased means of estimating the noise spectrum. Applying this same correc-391

tion to the estimated noise at 10 times the signal frequency leaves some residual under-392

estimation of the noise in these regions by about 20-25%. This is expected as a result393

of the one-sided robustness weighting function given by equation (8), which inevitably394

underestimates noise in the absence of a signal as explained by Ruckstuhl et al. (2001).395

While this is not ideal, we prioritise accurate estimation of the noise in the presence of396

a signal, which is relevant to estimating uncertainties in the wavelet power and phase397

at those times, over accuracy in the absence of noise as there is no clear way to achieve398

both simultaneously.399

3.3 Noise Correlation400

Now that we can estimate the noise power, there is a second consideration in these401

data: the fact that the ‘noise’ includes real turbulent variations in the ionosphere. This402
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means that we should expect the noise on nearby baselines such as those in the LOFAR403

core to have appreciable correlation. Accounting for this correlation is vital in order to404

accurately identify both the optimal fit parameters and their uncertainty. However, mea-405

suring the spatial correlation is difficult as it requires the noise component of the signal406

to be isolated from genuine coherent signals, otherwise the correlation will likely be over-407

estimated.408

The correlation might also be expected to vary depending on the noise timescale409

considered. This is because larger timescales will generally correspond to structures with410

larger scale sizes which would be expected to correlate over a greater distance. Hence,411

it is sensible to estimate the correlation structure independently for each timescale to412

capture any variation resulting from this. However, larger timescales introduce the prob-413

lem of the expanding ‘cone of influence’ - the region of time to which the wavelet coef-414

ficient at a given point in time is sensitive. This reduces the number of independent sam-415

ples that can be used to generate the correlation, meaning that in practice only relatively416

short timescales (up to ∼ 5min periods for a one hour dataset) can be analysed in this417

way.418

To quantify the correlation, for each baseline the noise spectrum is estimated by419

RLR with the rescaling described in section 3.2. Then the wavelet spectrum is calculated,420

and masked to exclude all regions where the wavelet power exceeds the noise power, in421

order to remove, as far as possible, any contributions from coherent signals. This will422

also exclude some regions which are noise dominated, but robustly excluding coherent423

signals from consideration is the most important factor here. For each period, the cor-424

relation between both the real and the imaginary component of the wavelet coefficients425

on a given pair of baselines is calculated.426

In this work we consider the baselines to simply be the ground level station to sta-427

tion baselines. The effective scan velocity of the lines of sight through the ionosphere is428

not considered. This will affect the apparent period of any disturbances, depending on429

their propagation direction and velocity. However, the apparent length scale (e.g. cor-430

relation length) and propagation direction are unaffected, and the correct period and hence431

velocity can be obtained if desired by calculating the line of sight scan velocity for an432

assumed ionospheric altitude.433
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To represent the correlations practically, we require a simplified model of the spa-434

tial correlation function. Two options are considered: a simple exponential decay as a435

function of difference in baseline, and an exponential decay model assuming the noise436

is a combination of turbulence at both ends of the baseline. In other words, for two base-437

lines r⃗1 and r⃗2, the correlation R is assumed to be described by438

R = A exp

(
−|r⃗1 − r⃗2|

rc

)
, (11)439

where rc is the correlation length and A is a scale factor representing the contribution440

of correlated errors relative to measurement errors which are assumed to be uncorrelated441

across baselines. This relationship is then fitted to the correlations for 100 1-hour ob-442

servations taken as part of the LOFAR LBA survey (de Gasperin et al., 2021) (the ob-443

servation IDs are given in the Supplementary Information as Text S1). This allows us444

to test how stable the noise correlations are across different ionospheric conditions.445

Figure 9. The median estimated correlation length (rc, left) and correlation scale (A, right)

for the simple model given by equation (11). The shaded region indicates the interquartile range.

The resulting correlation length and scale factor for the simple correlation model446

in equation (11) are shown in Figure 9. They show a consistent correlation length for447

periods over roughly 1 minute. Below this, the instrumental (i.e. uncorrelated) noise starts448
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to dominate, as shown by the lower A values, and the correlation length values them-449

selves are largely meaningless as the correlations themselves are so low that they are es-450

sentially spurious. Averaging over the results for periods from 1 to 5 minutes gives a me-451

dian value of 13.2 km and upper and lower quartiles of 9.2 km and 19.7 km respectively.452

Given that this value is apparently constant between 1−5min, it is reasonable to ex-453

trapolate this value to higher periods as well in the absence of a direct means of mea-454

suring correlation for the longer periods.455

Although the fits here suggest A = 1 as the optimal solution, it was found that456

in practice reducing this to A = 0.95 was necessary. This was done because using A =457

1 was found to give unreasonable solutions, such as predicted power exceeding all mea-458

sured powers by more than 1σ. The issues with using A = 1 are likely due to the waves459

not being described precisely by an ideal plane wave, which introduces another source460

of variation not captured by the estimated covariance. The mean square residuals on the461

fit also increase with increasing period, although this may reflect the reducing effective462

sample size at longer periods and hence higher uncertainty in the measured correlations463

themselves than any reduction in the accuracy of the model itself in describing the re-464

lationship. For all further analysis, rc was taken to be the median value of 13.2 km.465

3.4 Fit Method466

Using the wavelet coefficients, estimated noise power and estimate of the noise cor-467

relation, we can therefore define a covariance matrix corresponding to our data and use468

this to define the best fit parameters. Only baselines for which the power exceeds the469

95% local confidence level (approximately 3 times the noise power) are included in the470

fitting. The best fit parameters are those which minimise471

χ2 = ϵ⃗ ·
(
C−1 · ϵ⃗

)
, (12)472

where ϵ⃗ is the vector of phase and power residuals after fitting to equations (2) & (3) and473

C−1 is the inverse of their combined covariance matrix. The residual vector ϵ⃗ is deter-474

mined by the four free parameters of the fit: the wavevector magnitude |⃗k|, the wavevec-475

tor azimuth θ, the phase offset ωt and the wave amplitude ∆TEC. The fit is carried out476

for both phase and power simultaneously as both relationships are dependent on wavevec-477

tor, and so fitting them in parallel is required to obtain a fully accurate optimum solu-478

tion.479
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To ensure the fitting algorithm reliably finds the optimum solution, it must be pro-480

vided with a reasonable initial estimate of the parameters. All components of this rely481

on the assumption that the wavelength is significantly greater than the baseline lengths,482

so that there is only one phase discontinuity and the power variation is approximately483

quadratic. The first parameter to be estimated is the azimuth, using the wavelet pow-484

ers and following the approach of Beser et al. (2022). We define a quantity |W |2
|r|2

ˆ⃗r which485

should in principle be independent of baseline length and only depend on baseline ori-486

entation relative to the wave propagation direction. We then use principal component487

analysis (PCA) to identify the dominant direction in this quantity, which ideally corre-488

sponds to the wave direction. Due to the uneven distribution of baseline directions pro-489

vided by LOFAR, this initial estimate has a bias which needs to be corrected. This is490

achieved by generating artificial data at a range of azimuths and using the PCA estimated491

azimuths as a basis for inverting back to the true azimuth, described in Appendix A.492

Figure 10. The phase (left) and power (right) data as a function of projected baseline length

with the fitted values shown. These correspond to the same T and t0 as the values shown in Fig-

ure 6. The fit parameters were: |⃗k| = 4.08±0.94×10−5 m−1, θ = 84.4±2.8◦, and ∆TEC = 8.4±1.9

mTECu.

With an estimated azimuth, we can then project the baselines onto this direction493

to estimate the other parameters, giving projected baselines x. An example of this pro-494

jection is shown in Figure 10, although in this case it is projected onto the final optimal495

fitted azimuth rather than the initial PCA estimate. We sort the phases by projected496
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baseline and unwrap them, then find the sign of the discontinuity and remove it from497

the sorted data. In Figure 10, this would mean adding 180◦ to all phases with x > 0.498

After removing the discontinuity, the phase should be linear with projected baseline, and499

so we use linear regression to provide an estimate for |⃗k| and ωt. With the estimate of500

|⃗k| we then estimate ∆TEC by averaging |W |2

(|⃗k|x)2
on the longest positive and negative pro-501

jected baselines, which is the long wavelength approximation to equation (2).502

While in most cases the method as described above provides a sufficiently good ini-503

tial estimate to find the optimum solution, it can encounter problems in some cases due504

to the discontinuity in the phase relationship. This can cause very sharp changes in χ2
505

with θ where the sign of one projected baseline x changes and hence moves to the other506

side of the phase discontinuity, which can be local minima and hence confuse the fit. To507

mitigate this issue, after the fit, any baselines which are within max(0.1◦, σθ) (σθ is the508

estimated uncertainty in azimuth) of being perpendicular to the wavevector are removed509

and the fit is repeated, using the previous ‘optimal’ solution as its initial guess. The floor510

of 0.1◦ is necessary as in some cases the sharp change in χ2 leads to an estimated σθ which511

is smaller than the step size used in the fit process. Once no baselines lie within max(0.1◦, σθ)512

of perpendicularity to k⃗, the fit is accepted.513

Figure 10 shows the final fits to the phase and power for the sample data, using514

the same T and t0 as were shown in Figure 6. The agreement between the simple plane515

wave model and the data is very clear, but the uncertainties seem to significantly over-516

estimate the spread of the data in this case. The fit suggests a wavelength of 154±35 km,517

which is towards the lower end of what is typically classified as an MSTID. The estimated518

amplitude of 8.4±1.9 mTECu is significantly below the level which is typically required519

for confident identification of TIDs in GNSS TEC maps (e.g. Otsuka et al. (2013) used520

a threshold of 0.2 TECu) and around the sensitivity threshold of GNSS measurements,521

but well above the noise floor of LOFAR dTEC. This demonstrates the potential of LO-522

FAR dTEC measurements to reveal waves which have previously not been detectable523

due to the lower noise floor (Mevius et al., 2016).524

4 Validation Using Synthetic Data525

While the performance of the method on the sample data is promising, there is no526

way to directly verify that the derived values are accurate for real data. To account for527
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this issue, synthetic data can be generated, meaning that the true wave parameters are528

known and can be compared to the derived estimates. This allows the performance of529

the wavelet method to be investigated across a range of parameters, identifying any bias530

in azimuth and the range of wavelengths that can be accurately identified. The resid-531

uals of the wavelet phase and power to their known true values can also be compared532

to the estimated uncertainties to confirm that the noise estimation performs as expected.533

The performance on synthetic data will inevitably be better than for real data as the as-534

sumption of a plane wave is exact for the synthetic data.535

The noise is replicated by a simplified model, the AR1 model discussed in the pre-536

vious section with α = 0.95. While this is not an accurate representation of the noise537

in the real data, given that the fit method is not dependent on the spectral shape it should538

be suitable for this purpose. The random samples (zi in equation (6)) are generated with539

correlation between baselines to replicate the correlation in the data (assumed rc = 13.2 km,540

A = 0.95). This means that the assumed correlation used to generate C in equation541

(12) is exactly matched to the true correlation for the synthetic data. As a result, the542

performance of the fit method on the synthetic data should be better than its perfor-543

mance on real data where the correlations are only approximate.544

One further possible characteristic of the noise in the real data that is not repli-545

cated here is that it may be directly driven by the waves themselves. The density gra-546

dients associated with the wave can favour the development of the gradient-drift insta-547

bility and resulting turbulent cascade (e.g. Lin et al., 2016). This would mean that the548

noise would be enhanced in the presence of a wave relative to the background. However,549

this is not investigated further here.550

To improve the fit performance, it proved to be necessary to attempt the fit using551

several different references to get good performance across all azimuths. A set of three552

references were found to be sufficient for this, namely RS205, RS306, RS406. These pro-553

vide a range of orientations relative to the core, while also ensuring that there are a rea-554

sonable number of baselines across a wide range of directions (i.e. these references are555

not on the edge of the array). This is important because if the selected reference is on556

the edge of the array, the phase discontinuity will not be present which significantly re-557

duces the ability to identify the propagation direction. The selected fit parameters were558

then those from the reference which gave the smallest value of χ2 in equation (12).559
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The synthetic data generation creates 1 hour of data per set of wave parameters.560

This is based on the typical 1 hour duration of individual observing windows in LOFAR561

surveys (e.g. de Gasperin et al., 2021). The wave parameters are generated using Sobol562

sequences (Saltelli et al., 2010; Sobol & Levitan, 1999) to generate representative sam-563

pling across the parameter space with minimum clustering. The parameters generated564

are as follows: wavelength Λ, between 100−625 km; azimuth, between 0−360◦; target565

median SNR, between 5−50; and a ‘period scale’, between 0 and 1. The period scale566

is used to ensure that the wave velocity is physically reasonable for MSTIDs, with a max-567

imum velocity set at 400m s−1. Based on the generated wavelength, the minimum pe-568

riod is then defined as the period which would give a velocity of 400m s−1, and then the569

period scale determines the wave period linearly between this minimum period and the570

maximum period set by the wavelet cone of influence, which is ∼ 26 mins. The result571

of this generation scheme is that wavelength is sampled effectively uniformly, while pe-572

riods are biased towards the higher end of the available range and amplitudes are roughly573

proportional to wavelength with the proportionality constant determined by the target574

SNR. The minimum wavelength of 100 km is set to ensure no additional phase discon-575

tinuities occur within the size of the array. While the fit method can in theory account576

for these, it will likely impact performance and so is not considered for this analysis.577

Parameter RMSE Bias Correlation

|⃗k| 1.33× 10−6 m−1 -0.03% 0.994

Λ 45.8 km 0.03% 0.959

∆TEC 8.56 mTECu -12.86% 0.994

θ 1.697◦ −0.065◦ 1.000

Table 1. The performance of the fit in predicting the various wave parameters. Bias is median

percentage error except for θ where it is median error.

The correlation between true and estimated values of the TID parameters are shown578

in Figure 11. These plots exclude any fit for which the estimated uncertainty in |⃗k| or579

∆TEC exceeds the fit value (i.e. relative uncertainty > 100%), and those for which the580

estimated wavelength was over 5000 km, which collectively accounted for only 0.4% of581

fits. Statistical measures of the fit performance are also given in Table 1, indicating the582
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Figure 11. The relationship between true (horizontal axis) and estimated (vertical axis)

parameters. Top left is wavevector |⃗k|, top right is wavelength Λ, bottom left is azimuth θ and

bottom right is amplitude ∆TEC. Red lines represent the ideal (i.e. x = y) behaviour.

high correlation of all parameters. The RMSE in wavelength Λ is high, but this is largely583

dominated by the decrease in performance at long wavelengths shown in Figure 11. At584

shorter wavelengths, the errors will be much smaller than ∼ 50 km. The other clear is-585

sue is a systematic underestimation of amplitude ∆TEC. This is a major contributor586

to the RMSE on ∆TEC, and, if the data are rescaled to remove the bias, the RMSE re-587

duces to 4.25 mTECu. The azimuth is roughly uniformly accurate at all values, with only588

a slight decrease in accuracy for roughly N-S propagation (θ ∼ 0◦ or 180◦) compared589

to E-W propagation visible in Figure 11. The reason for this is likely the shorter E-W590

baselines available compared to N-S baselines, making the data less sensitive to changes591

in azimuth for N-S propagation.592

The bias in amplitude is partially explained by a previously unreported bias in the593

wavelet transform itself. Applying the wavelet transform to a sine wave of unit ampli-594

tude, the amplitude of the wavelet coefficient at the corresponding frequency is roughly595

0.93. This was not reported by Liu et al. (2007), likely as that work was focused on re-596
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moving the bias in comparing amplitudes across scales rather than accurately determin-597

ing the amplitude itself. This would give rise to a ∼ −7% bias however, not the -12.86%598

found here. An extra contribution may be that at longer periods, even points in the wavelet599

spectrum which are outside the cone of influence (the region in which the effects of the600

finite length of the time series are generally defined as significant) still show noticeable601

decreases in amplitude beyond the ∼ −7% general bias. The bias towards the longer602

periods in the sampling method used to generate the synthetic data is therefore likely603

responsible for this further underestimation of the true amplitude.604

The other notable feature in Figure 11 is the increased spread around the true value605

at longer wavelengths / smaller wavevectors. This represents a fundamental limitation606

of LOFAR in identifying large scale waves. The wavelength is primarily determined from607

the gradient of the phase in equation (3), which decreases as wavelength increases. When608

the wavelength is significantly larger than the largest baselines in the array (∼ 100 km),609

the uncertainty in the phase values will significantly degrade the estimated gradient and610

hence wavelength. The results here suggest that this decrease in performance is signif-611

icant for wavelengths above roughly 400 − 500 km for the moderate to high SNR val-612

ues considered here. At low SNR, this effect would likely be even more severe.613

As well as the performance of the estimated wave parameters themselves, it is use-614

ful to consider how well the uncertainties in these parameters were estimated. Figure 12615

shows the normalised residuals (i.e. (estimated value - true value) / estimated uncertainty)616

for the various fit parameters. In order to accurately debias the amplitude residuals, it617

proved necessary to calculate the median percentage error independently in 200 s period618

bins from 300−1700 s. The resulting values were consistent with the explanation pro-619

posed above for the bias, with the lower period bins showing biases of ∼ −6.5% before620

dropping significantly above ∼ 900 s, reaching −21.8% in the highest bin. By compar-621

ison to the unit Gaussians (shown in red), all uncertainties seem to be slightly under-622

estimated. The standard deviations of the normalised residuals in each parameter range623

from ∼ 1.68−2.15, where a standard deviation of 1 would be expected for perfect un-624

certainty estimation.625

Some of this underestimation of the errors may be related to mismatching of the626

true wave period to the wavelet period, as the fit relies on the closest wavelet period. An-627

other factor is the imperfect nature of the noise estimation method. While it is unbiased628
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Figure 12. The normalised residuals of the fitted parameters relative to the true values. Am-

plitude estimates are first debiased by rescaling according to the median percentage error in each

200 s period bin. The vertical scale gives the number of samples in each bin. Normalisation con-

sists of dividing the residual by the estimated uncertainty. Red curves show a unit Gaussian for

reference.

(after rescaling), there is still appreciable variance of the estimated noise value around629

the true value. This will lead to the fit giving more weight than it should to certain base-630

lines and less to others, making the estimated parameters less accurate in a way which631

cannot be captured by the uncertainty estimates based on those noise estimates. A small632

improvement in the uncertainty estimates can be achieved by multiplying the uncertainty633

by the square root of the reduced chi-squared χ2
r of the final fit. This is defined as634

χ2
r =

χ2

2Nbase − 4
, (13)635

where χ2 is as defined in equation (12), Nbase is the number of baselines included in the636

fit and 4 is the number of fit parameters. This rescaling is equivalent to ignoring the ab-637

solute value of the different uncertainty estimates and only considering their relative mag-638

nitudes. This rescaling provides standard deviations of ∼ 1.47−1.72 for the normalised639
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residuals. If this rescaling were applied to the example shown in Figure 10 , the results640

would be: Λ = 154± 8 km, ∆TEC = 8.4± 0.4 mTECu, θ = 84.4± 0.7◦.641

5 Discussion and Conclusions642

The dTEC values calculated for calibration of astronomical observations with LO-643

FAR represent a largely unexplored source of data on ionospheric dynamics over Europe.644

They are obtained with extremely high precision (Mevius et al., 2016), and there is al-645

ready a large amount of data available thanks to the regular astronomical survey obser-646

vations made using LOFAR (e.g. de Gasperin et al., 2021; Heald et al., 2015; Shimwell647

et al., 2017). These data can enable more detailed studies of TIDs over Europe, includ-648

ing lower amplitude and shorter wavelength waves, and therefore giving a more complete649

picture of the dynamics of the ionosphere and, ultimately, the neutral atmosphere in which650

it is embedded.651

This paper presents a method for extracting information on waves present in the652

data, and it is shown based on artificial data that waves with wavelengths up to ∼ 500 km653

(roughly 5-10 times the size of the array) can be reliably identified. Larger wavelengths654

may also be identified but this is only possible for high amplitudes as the SNR required655

increases with increasing wavelength. In a future paper, this method will be used to char-656

acterise wave behaviour above LOFAR on a statistical basis.657

The approach developed here is also not highly specific to LOFAR, and could be658

adapted to identifying waves in data from other distributed networks. The specific fit-659

ted relationships would naturally differ in the case of absolute rather than differential660

measurements. However, the general method of quantifying the noise spectra in partic-661

ular may be useful for a range of applications. This is especially true if the underesti-662

mate in parameter uncertainties shown in Figure 12 can be corrected.663

As shown in section 3.4, waves are detectable in LOFAR dTEC which would be be-664

low the detection threshold for GNSS TEC. This suggests that these data can comple-665

ment existing work based on analysis of GNSS data (e.g. Otsuka et al., 2013) by extend-666

ing the range of wave parameter space that can be sampled, particularly to lower am-667

plitudes and possibly to shorter wavelengths as well. It also complements work using scin-668

tillation data from LOFAR which characterises TID structure on scales of ∼ 20 km (e.g.669

Boyde et al., 2022; Dorrian et al., 2023).670
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Given the large number of very short (100s of metres to kilometres) baselines within671

the LOFAR core, a similar analysis method to that presented here but applied only to672

the core stations may be able to probe even shorter wavelengths than those >∼ 100 km673

considered in this paper. However, this would be dependent on whether the correlation674

length shown in Figure 9 poses an obstacle to comparing signals between such similar675

baselines, which is not considered in this work. It may also be possible to identify such676

short wavelength waves using the full Dutch network, but the fit method will likely lose677

reliability when additional phase discontinuities become present, and distortions from678

the simple plane wave model will likely be more significant over multiple wavelengths.679

Similarly, including the international stations may enable longer wavelength waves to be680

identified, extending above the ∼ 500 km upper wavelength limit identified here. How-681

ever, as the longest baselines are in the E-W direction and most large-scale TIDs prop-682

agate equatorwards from the auroral zone (e.g. Habarulema et al., 2013), this may not683

provide the most favourable baseline distribution.684

Appendix A PCA Bias Correction685

The PCA approach to estimating propagation direction is accurate in the idealised686

case only with a roughly uniform distribution of baselines in azimuth. With LOFAR this687

is not the case, and as a result the estimated azimuth will be biased. This bias is non-688

uniform in azimuth, and dependent on the reference station selected as this determines689

the azimuth distribution of the baselines.690

In order to correct for this bias, for a given set of baselines, synthetic data corre-691

sponding to the idealised case (i.e. power proportional to the baseline projected onto the692

propagation direction squared) can be generated for a range of azimuths. For each in-693

put azimuth, the estimated azimuth from the PCA is then determined. An example of694

the relationship obtained using RS306 as a reference is shown in Figure A1. This dis-695

plays clear ‘preferred directions’ around 70−85◦ and −5−10/175−190◦ where many696

true azimuths generate estimated azimuths in the same narrow ranges.697

Using this idealised picture of the bias, it is generally possible to define a means698

of inverting the estimates to mitigate the effect of the bias. This is possible provided the699

variation is monotonic, as it is in Figure A1. In this case, a correction function can be700

defined as a linear interpolation of the relationship between true azimuth and estimated701

–30–



manuscript submitted to Radio Science

Figure A1. The bias in the azimuth estimated from PCA using RS306 as a reference in the

idealised case.

azimuth, and used to map the estimates back to something closer to their true value. Ne-702

glecting such a correction has been found to reduce reliability of the fitting, and in some703

cases prevent a viable solution from being found, even when the wave activity is clear704

from a visual inspection of the data.705
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Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A.,842

. . . Jayachandran, P. (2022). Global propagation of ionospheric disturbances843

associated with the 2022 Tonga volcanic eruption. Geophysical Research Let-844

ters, 49 (7), e2022GL098158. doi: 10.1029/2022GL098158845

Thompson, A. R., Clark, B., Wade, C., & Napier, P. J. (1980). The Very Large Ar-846

ray. Astrophysical Journal Supplement Series, vol. 44, Oct. 1980, p. 151-167.,847

–35–



manuscript submitted to Radio Science

44 , 151–167. doi: 10.1086/190688848

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bul-849

letin of the American Meteorological society , 79 (1), 61–78. doi: 10.1175/1520850

-0477(1998)079⟨0061:APGTWA⟩2.0.CO;2851

van de Kamp, M., Pokhotelov, D., & Kauristie, K. (2014). TID characterised using852

joint effort of incoherent scatter radar and GPS. Annales Geophysicae, 32 (12),853

1511–1532. doi: 10.5194/angeo-32-1511-2014854

van Haarlem, M. P., Wise, M. W., Gunst, A. W., Heald, G., McKean, J. P., Hessels,855

J. W. T., . . . van Zwieten, J. (2013). LOFAR: The LOw-Frequency ARray.856

Astronomy & astrophysics, 556 , A2. doi: 10.1051/0004-6361/201220873857

Vaughan, S. (2005). A simple test for periodic signals in red noise. Astronomy & As-858

trophysics, 431 (1), 391–403. doi: 10.1051/0004-6361:20041453859

Yatawatta, S., de Bruyn, A. G., Brentjens, M. A., Labropoulos, P., Pandey, V. N.,860

Kazemi, S., . . . Zarka, P. (2013). Initial deep LOFAR observations of epoch861

of reionization windows-I. the north celestial pole. Astronomy & Astrophysics,862

550 , A136. doi: 10.1051/0004-6361/201220874863

–36–


