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Abstract18

This study develops a surrogate-based method to assess the uncertainty within a con-19

vective permitting integrated modeling system of the Great Lakes region, arising from20

interacting physics parameterizations across the lake, atmosphere, and land surface. Per-21

turbed physics ensembles of the model during the 2018 summer are used to train a neu-22

ral network surrogate model to predict lake surface temperature (LST) and near-surface23

air temperature (T2m). Average physics uncertainties are determined to be 1.5◦C for24

LST and T2m over land, and 1.9◦C for T2m over lake, but these have significant spa-25

tiotemporal variations. We find that atmospheric physics parameterizations are the dom-26

inant sources of uncertainty for both LST and T2m, and there is a substantial atmosphere-27

lake physics interaction component. LST and T2m over the lake are more uncertain in28

the deeper northern lakes, particularly during the rapid warming phase that occurs in29

late spring/early summer. The LST uncertainty increases with sensitivity to the lake model’s30

surface wind stress scheme. T2m over land is more uncertain over forested areas in the31

north, where it is most sensitive to the land surface model, than the more agricultural32

land in the south, where it is most sensitive to the atmospheric planetary boundary and33

surface layer scheme. Uncertainty also increases in the southwest during multiday tem-34

perature declines with higher sensitivity to the land surface model. Last, we show that35

the deduced physics uncertainty of T2m is statistically smaller than a regional warm-36

ing perturbation exceeding 0.5◦C.37

Plain Language Summary38

Regional climate models couple together lake, atmosphere, and land surface com-39

ponents, each containing several simplifications of complex small-scale physics, known40

as parameterizations. In this study, we explore the uncertainty arising from the choice41

of interacting parameterizations and associated parameters across coupled lake-atmosphere-42

land components of a Great Lakes regional climate model. To do this, we train a ma-43

chine learning surrogate model on the climate model outputs of lake and air surface tem-44

peratures during the 2018 summer. The surrogate model is then rapidly queried thou-45

sands of times to find the uncertainty range and which physics parameterizations con-46

tribute to it. We find that atmospheric physics parameterizations are the dominant sources47

of uncertainty and that there is a substantial atmosphere-lake physics interaction com-48

ponent. The surface temperatures are more uncertain over the deeper northern lakes and49

forested northern land areas than over the shallower lakes and more agricultural land50

in the south. Uncertainty increases on and over the lakes during a time of rapid warm-51

ing in the late spring/early summer, and over the southwest land area during periods52

where the temperature drops over multiple days. We also show that the physics uncer-53

tainty of surface temperature is much smaller than mid-21st century regional warming54

projections.55

1 Introduction56

Uncertainty about the physical processes in the atmosphere, water bodies, and the57

land surface can contribute to biases and large spread in weather and climate models (Bellprat58

et al., 2012b; Ricciuto et al., 2018; Zanna et al., 2019; Eidhammer et al., 2024). This is59

most often attributable to unresolved physics requiring parameterizations that, while of-60

ten based on theory, are necessarily simplifications requiring several assumptions and free61

empirical parameters. To appropriately deal with the inevitable presence of this epis-62

temic uncertainty, the weather and climate modeling fields have employed the use of Per-63

turbed Physics/Parameter Ensembles (PPE; Bellprat, Kotlarski, Lüthi, & Schär, 2012a;64

Eidhammer et al., 2024). Several PPE-based studies have investigated processes in the65

atmosphere (Bellprat et al., 2012a; Qian et al., 2015, 2018, 2024), land surface processes66
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(Ricciuto et al., 2018; Xu et al., 2022), and oceans (Huber & Zanna, 2017). Land-atmosphere67

interactions were investigated in C. Wang et al. (2021).68

Prior PPE studies have rarely focused on complex coastal systems, where interac-69

tions between the atmosphere, land and water bodies can collectively modulate these un-70

certainties. One region where these interactions are important and not well-assessed by71

the climate modeling communities is the Great Lakes of North America (Sharma et al.,72

2018; J. Wang et al., 2022), the world’s largest surface freshwater system. Many climate73

models have used a simplified representation of the lake surface, and thus may not ad-74

equately capture the impact of the lakes on the regional climate (Briley et al., 2021). How-75

ever, several recent studies have now incorporated coupled three-dimensional (3-D) hy-76

drodynamic processes of the lakes into regional climate models focused on the Great Lakes77

region (GLR; Xue et al., 2017; Sun, Liang, & Xia, 2020; Xue et al., 2022; Kayastha et78

al., 2023). To date, investigation of physics parameterizations in GLR regional climate79

models has been limited to ad-hoc performance evaluation experiments without the 3-80

D lake (Notaro et al., 2021), and without a formal PPE analysis.81

One of the reasons for the lack of in-depth analysis of parameterizations of unre-82

solved physics across the lakes, atmosphere, and land is that running coupled models with83

perturbations across all model components is computationally costly. To mitigate this84

issue, PPE studies have adopted the use of surrogate models (Ricciuto et al., 2018). Sur-85

rogate models are extremely inexpensive to query, often based on linear models or poly-86

nomials (Qian et al., 2018; Bellprat et al., 2012b; Ricciuto et al., 2018), so that the en-87

tire uncertainty space can be explored. However, this requires the generation of an ad-88

equate surrogate model in the first place. Further, we are typically interested in how the89

uncertainties and interactions vary across space and time, hence we need a way to deal90

with the large dimensionality of the model.91

This paper focuses on addressing the problem of assessing physics uncertainties across92

a complex atmosphere-land-lake system. We develop a surrogate model-based framework93

that is, in principle, generalizable to all regional climate models and apply it to simu-94

lations of the GLR with a newly developed coupled modeling system (Kayastha et al.,95

2023). We investigate the sensitivity of (near-)surface temperature, a critical component96

of the surface energy budget, to variations in parameterizations/parameters, and quan-97

tify the contribution of each parameterization/parameter to this uncertainty. The vari-98

ation of this physics uncertainty across space and time and the importance of the cou-99

pled effects is highlighted. Implications of the uncertainty on climate projections of sur-100

face temperature in the GLR are also discussed.101

2 Methods and Data102

2.1 Model Description and Experimental Design103

2.1.1 Coupled Lake-Atmosphere Model Configuration104

We use a two-way coupled atmosphere and 3-D hydrodynamic lake modeling setup105

developed by Kayastha et al. (2023) for our PPE analysis. The atmosphere component106

is the Weather Research and Forecasting (WRF) model v4.2.2 (Skamarock et al., 2021)107

with the Advanced Research WRF (ARW) dynamic core (Skamarock & Klemp, 2008).108

The hydrodynamic lake component is based off of the Finite Volume Community Ocean109

Model (FVCOM; Chen, Liu, & Beardsley, 2003) v4.1 (see more descriptions below). The110

coupled atmosphere-lake model domain is centered at 45.5◦N and 85.0◦W and has di-111

mensions of 543× 484 grid points in the west-east and south-north. Grid spacing is 4112

km, covering the GLR (Figure 1). There are 50 stretched vertical levels topped at 50 hPa.113

The initial and boundary conditions are from 3-hourly 0.25◦ European Centre for Medium-114

Range Weather Forecasts atmospheric reanalysis of the global climate, version 5 (ERA5;115

Hersbach et al., 2020).116
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Figure 1. Computational domain of the WRF-FVCOM model with zoom-in view of grid

sizes near the Chicago coastline. Shading shows the geopotential height in the WRF atmosphere

model and bathymetric depths in the FVCOM lake model. Labels denote lake names and land

area quadrants.

Three commonly used physics options each for cloud microphysics (MP), longwave117

and shortwave radiation (LW+SW RA), and planetary boundary layer and surface layer118

(PBL+SFC), and two land surface models (LSM) are used in this study, as summarized119

in Table 1. The default configuration from our previous studies (Kayastha et al., 2023;120

J. Wang et al., 2022) is indicated in the table. In this study, we modified the source codes121

of the SFC scheme in WRF so that each SFC scheme can use one of any three chosen122

parameterizations of surface roughness length over water (z0w): constant Charnock co-123

efficient of 0.0185, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.5124

algorithm (Edson et al., 2013), or the depth-dependent over shallow waters (<100 m)125

scheme (Jiménez & Dudhia, 2018). Our hypothesis is that the depth-dependent scheme126

should improve surface variables over the Great Lakes as a large portion is <100 m deep127

(Figure 1).128

The hydrodynamic lake component is based off of the Finite Volume Community129

Ocean Model (FVCOM; Chen et al., 2003) v4.1. Horizontal resolution on an unstruc-130

tured triangular mesh varies from 2-4 km offshore to 1-2 km along the coasts (Figure 1),131

and the model has 40 vertical sigma layers (Kayastha et al., 2023). The model is initial-132

ized from a quiescent state in the winter when the lakes are unstratified with an initial133

uniform lake temperature of 2◦C. As in Kayastha et al. (2023), FVCOM is run simul-134

taneously with WRF, including a two-way information exchange between them at 1-hr135

intervals using the OASIS3-MCT coupler (Craig et al., 2017). Here, the LST and ice cover136

are dynamically calculated by FVCOM and are provided to WRF as overlake surface bound-137

ary conditions. In turn, the atmospheric forcings required by FVCOM are dynamically138

calculated and provided by WRF (see a more detailed discussion in Kayastha et al., 2023).139

FVCOM parameterization options and parameters are summarized in Table 1. Ver-140

tical mixing (VM) is modeled with either the Mellor-Yamada Level 2.5 (MY-2.5) closure141

(Mellor & Yamada, 1982) or the General Ocean Turbulence Model (GOTM) implemen-142

tation of the k-ϵ closure (Stips et al., 2002). We use the Large and Pond (1981) or Andreas143

et al. (2012) bulk wind stress (WS) parameterization to impart momentum from the at-144
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mosphere into the lake at the surface. Lastly, we vary two uncertain parameters: the tur-145

bulent Prandtl number (Prt) and R: the fraction of the downward shortwave flux asso-146

ciated with the longer wavelength irradiance. We vary Prt from 0.1 to 1 and R from 0.74147

to 0.78, the latter representing a range from relatively clear Type IA water to lower clar-148

ity Type III water (Paulson & Simpson, 1977). We also assign values to the two other149

variables in the shortwave radiation absorption formulation dependent on R: the atten-150

uation depth for the longer wavelength component of shortwave irradiance, ζ1 = 1.7+151

0.3αR and the attenuation depth for shorter wavelength component of shortwave irra-152

Table 1. Uncertain physics parameterizations and parameters in the coupled WRF-FVCOM

model. Detailed descriptions of WRF parameterizations can be found in Skamarock et al. (2021).

See text for description of FVCOM parameterizations and parameters.

Parameter(ization) Definition Options Priors

PBL+SFC WRF planetary YSU + MM5rev* Ud[1, 3]
boundary layer MYJ + MOJ
and surface scheme MYNN-2.5 + MYNN

MP WRF cloud Morrison Ud[1, 3]
microphysics Thompson*
scheme WSM6

LW+SW Rad WRF longwave and RRTM + CAM3 Ud[1, 3]
shortwave radiation RRTMG + RRTMG*
scheme Goddard + Goddard

z0w WRF surface COARE 3.5 Ud[1, 3]
roughness length Charnock = 0.0185*
over water scheme Depth-dependent

LSM WRF land surface Noah* Ud[1, 2]
model Noah-MP

VM FVCOM vertical MY-2.5* Ud[1, 2]
mixing scheme GOTM k-ϵ

WS FVCOM bulk wind Large and Pond (1981)* Ud[1, 2]
stress parameterization Andreas et al. (2012)

Prt FVCOM turbulent value from 0.1 to 1* U [0.1, 1]
Prandtl number

R FVCOM shortwave value from 0.74 to 0.78* U [0.74, 0.78]
radiation absorption fraction

*Indicates settings of the default setup from Kayastha et al. (2023)

YSU: Yonsei University PBL, MYJ: Mellor-Yamada-Janjic PBL

MYNN-2.5: Mellor-Yamada-Nakanishi-Niino Level 2.5 PBL

MM5rev: revised fifth-generation PSU–NCAR Mesoscale Model SFC

MYJ: Monin-Obukhov-Janjic SFC, MYNN: Mellor-Yamada-Nakanishi-Niino SFC

Morrison: Morrison double-moment 6-class MP, Thompson: Thompson double-moment 6-class MP

WSM6: WRF single-moment 6-class MP, RRTM: Rapid Radiative Transfer Model RAD

RRTMG: Rapid Radiative Transfer Model for General Circulation Models RAD

CAM3: NCAR Community Atmosphere Model 3.0 RAD, Goddard: New NASA Goddard RAD

Noah: Unified Noah LSM, Noah-MP: Noah-multiparameterization LSM

MY-2.5: Mellor-Yamada Level 2.5 VM, GOTM k-ϵ: General Ocean Turbulence Model k-ϵ VM

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

diance, ζ2 = 6+9.7αR, in which αR = (0.74−R)/0.04, based on values from Paulson153

and Simpson (1977); Chen et al. (2011).154

2.2 Model Uncertainty Analysis155

We use a surrogate model framework for the forward uncertainty propagation of156

the expensive coupled lake-atmosphere-land physics model. In this framework, physics157

parameterizations and parameters are assigned a statistical distribution (typically uni-158

form or Gaussian) a priori by the modeler, hereafter termed the “parametric priors” and159

denoted by λ. For the physics parameterizations, a discrete uniform distribution is cho-160

sen, Ud[1, Ns], where the value of the integer corresponds to a specific scheme in the range161

from 1 to the number of chosen schemes, Ns. As the order of these integers is unimpor-162

tant, one hot encoding is used to covert to binary representations before surrogate model163

training. For the parameters, a continuous uniform distribution, U [a, b], is chosen to range164

between deemed plausible values a and b. The parametric priors for the coupled lake-165

atmosphere-land model are summarized in Table 1.166

To generate the surrogate model for the uncertainty analysis, a training set is re-167

quired from samples of the physics model. To form this training set, the joint distribu-168

tion of the parametric priors must be sampled efficiently, typically using Quasi-Monte169

Carlo (QMC) or Latin hypercube sampling (Qian et al., 2015). The sampling method170

used in this study (QMC) is detailed in section 2.3. From this training set, a surrogate171

model is generated to approximate the quantity of interest (QoI),172

Z = f(λ,x, t) ≈ g(λ,x, t) (1)

where Z is the spatiotemporally varying modeled QoI as a function of the parametric173

priors λ, and can be approximated by the surrogate model, g. In this study, we use a174

multilayer perceptron artificial neural network (NN) surrogate model with a Rectified175

Linear Unit (ReLu) activation function, implemented with PyTorch (Paszke et al., 2019).176

We also implemented a Polynomial Chaos (Sargsyan et al., 2014) surrogate model in the177

code distributed with this study. However, it did not perform as well as the NN model,178

so we do not show those results here. This is expected for polynomials, as they are not179

well-suited to discrete inputs that we use for physics parameterizations, but we included180

it in the code for potential future use in an analysis with only continuous parameter in-181

puts (e.g., Ricciuto et al., 2018).182

Based on the formation of g, a global sensitivity analysis (GSA) and determina-183

tion of the distribution of the QoI can be performed rapidly through Monte Carlo sam-184

pling of the surrogate models. Variance-based Sobol sensitivity indices are computed us-185

ing a GSA sampling scheme from Saltelli (2002). The GSA samples are also used to cal-186

culate the uncertainty, which we define as the 90% interval, i.e., the range between the187

5th and 95th percentiles of the distribution.188

2.3 Computational Design and Surrogate Model Construction189

Our simulations target the analysis of 2018 summer season (JJA), with May 2018190

used as the spinup period (Kayastha et al., 2023). During this period, the lakes go through191

a rapid spring warming phase due to radiatively driven convection (Austin, 2019) and192

become strongly stratified with stable lake temperatures for the rest of the season. The193

warming phase occurs earliest in May-June for the southern shallow lakes (Erie and On-194

tario) and latest in June-July for the northern deep lakes (Superior, Huron, and Michi-195

gan). This season thus presents an interesting period of time to investigate the lake-atmosphere196

coupling and its sensitivity to different forms of physics parameterizations and param-197

eter quantities. The model performance has been evaluated compared to observations198

in Kayastha et al. (2023).199
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An ensemble of simulations is carried out by sampling the 9(=Nd) parametric pri-200

ors (Table 1) with a QMC low-discrepancy Korobov sequence from chaospy. A total of201

18 ensemble members (=Ne) for training are requested. This number was chosen because,202

1) close to 90% (actually 89.5%) of the distribution of a continuous variable is sampled203

using the Korobov sequence (W. J. Pringle et al., 2023), and 2) the discrete variables204

have either 2 or 3 unique values, so 18 samples each parameterization option an equal205

number of times (6 or 9), which is a requirement of uniform design (Fang et al., 2000),206

a method akin to the present approach given our assumption of uniformly distributed207

priors. A small test set of 5 ensemble members (=Net) is also produced for validation208

purposes.209

The QoIs chosen for the sensitivity assessment are daily mean 2-m air temperature210

(T2m) and lake surface temperature (LST). Hourly outputs from the WRF-FVCOM at211

each available grid point are processed into the daily quantities. Analysis is performed212

on the full spatiotemporal dataset for each QoI. In total we have Nt = 92 days with Np213

= 262,812 WRF grid points for T2m and Np = 35,749 FVCOM grid points for LST. Ne214

= 18 ensemble members, producing a [Ne×Nt×Np] matrix, which is reshaped to [Ne×215

Nt∗Np] for generality. However, training a surrogate model for each point in space-time216

(Nt∗Np) is computationally costly, so we first apply a dimensionality reduction of the217

problem using Karhunen-Loève expansions (KLE). Using this decomposition, the QoI218

approximation can be written as,219

Z = f(λ,x, t) ≈ f(x, t) +

L∑
j=1

ξj(λ)
√
µjϕj(x, t) (2)

in terms of uncorrelated, zero-mean, unit-variance random variables ξj(λ) and eigenvalue-220

eigenfunction pairs (µj , ϕj(x, t)) of the covariance, truncated at eigenvalue L that ex-221

plains a user-defined level of variance. f(x, t) indicates the ensemble mean. In the cur-222

rent problem, we truncate to L = Nd modes of variation that require surrogate approx-223

imation. This explains 91% and 93% variance for LST and T2m training sets, respec-224

tively. Truncating here produces inverse KLE transform errors of similar magnitude be-225

tween the training and test sets, limiting overfitting to the training set.226

We make a prediction for all the eigenmodes using a single NN surrogate model,227

minimizing the Huber loss. We use two hidden layers with 15 neurons in each, which is228

the midpoint between the size of the input layer (=20 after one hot encoding) and the229

output layer (L = 9). A small dropout level (=0.001), is used to reduce overfitting to230

the small training set (a higher dropout level produces surrogates with unreasonably high231

joint effect sensitivity indices). The process above is repeated 9 times with different ran-232

dom seeds (111, 222, ..., 999) to provide an uncertainty range for surrogate prediction233

that can be incorporated into the uncertainty analysis.234

The surrogate approximations in KLE space can be converted back to space-time235

dimensions through the inverse KLE transform. As the full space-time dimension is very236

large, for our analysis we manipulate ϕj(x, t) and f(x, t) for a subset of interest such as237

by averaging these functions across x and/or t, and by selecting a subset of x correspond-238

ing to a specific lake or area of land. By averaging across both x and t, we get the spa-239

tiotemporal average for a set of input parametric priors, f(λ), and use this to summa-240

rize the surrogate model errors (Figure 2). From this summary perspective, the surro-241

gate model is able to provide an acceptable prediction for the test set members except242

for a notable outlier with a very high LST.243
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Figure 2. Accuracy of surrogate model predictions of the spatiotemporally-averaged LST and

T2m for the training set (Ne=18) and test set (Net=5) with error bars showing the mean and

range across the 9 random seeds.

Figure 3. Comparison of the distribution of the spatiotemporally-averaged LST and T2m

over the lake and land surface, f(λ), between the surrogate model and the physical model train-

ing set. Surrogate model distribution is the concatenation across the 9 random seeds. Triangle

markers indicate maximum/minimum values.

3 Results244

3.1 Overall245

The overall physics uncertainties are estimated as 1.49◦C, 1.87◦C and 1.48◦C for246

LST, T2m over lake, and T2m over land, respectively, in terms of the 90% interval of247

f(λ) according to the surrogate model (Figure 3). This highlights the important role that248

the Great Lakes play on the atmosphere by contributing to greater uncertainty of T2m249

over the lakes even though the average air temperature over lakes is smaller. Compar-250

ing to the distribution of the training set, we find that the 90% interval is reduced in the251

surrogate model, mostly as a result of a reduction in the 95th percentile value. On the252

other hand, the surrogate model produces a wider absolute range (maximum minus min-253

imum) and is especially less constrained at the low end of the distribution than the train-254

ing set.255
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Figure 4. Relative importance of parameterizations/parameters and their interactions to LST

and T2m over the lake and land according to the surrogate model. Top: Combined atmosphere,

land, and lake parameterizations/parameters. Bottom: Top four important parameterizations

(refer Figure 5). The radius of circle corresponds to main effect sensitivity while line thickness

corresponds to joint effect sensitivity (same scaling).

A plurality of the physics uncertainty is driven by parameterizations in the atmo-256

sphere for both LST and T2m (Figure 4). Depending on the QoI, the impact of lake and257

land physics and the three-way interactions are also important. LST is particularly sen-258

sitive to lake physics while land physics have a small effect; and vice versa for T2m over259

land. For T2m over lake we find that the relative importance of the land and the lake260

are similar. Interestingly, however, atmosphere-lake physics interactions are shown to be261

more important than atmosphere-land and land-lake interactions across all QoIs. For ex-262

ample, although the main effect of lake physics on T2m over land is very small, the im-263

portance of the atmosphere-lake interactions is quite substantial and of similar magni-264

tude to the main effect from the land.265

For both LST and T2m, we find that the four most significant parameterizations266

are LW+SW Rad, PBL+SFC, LSM, and WS (Figures 4 and 5). This makes physical sense,267

as the radiative heat fluxes are the main energy source, and the other parameterizations268

control how the heat is distributed at the surface. LSM is totally representative of the269

land contribution, and WS is mostly representative of the total lake contribution. While270

the importance of atmospheric physics is similar across the QoIs, the contribution from271

LW+SW Rad and PBL+SFC schemes changes. For LST, the LW+SW Rad is dominant272

and the effect of PBL + SFC is small, since WS is more important for control of the lake273

surface. Here, both LW+SW Rad and WS account for 30-40% of the total variance. The274

opposite is true for T2m over land where the LSM and PBL+SFC scheme dominate, ac-275

counting for approximately 40% and 50% of the total variance, respectively. This also276

makes physical sense as T2m is a quantity interpolated between skin temperature and277

the lowest atmospheric layer, which are both modulated by LSM and PBL+SFC. While278

for T2m over lake, the PBL+SFC and LW+SW Rad schemes have comparable impacts279

of around 30% explained variance. Here, WS explains just below 20% of the variance and280

LSM explains just above 20%.281
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Figure 5. Relative importance (contributions to the total variance, split into main and joint

effect Sobol sensitivity components) of all WRF and FVCOM parameterizations/parameters (see

Table 1 for explanations) to LST and T2m over the lake and land according to the surrogate

model. Error bars show the range across the 9 random seeds.

The most important joint effect sensitivities for LST are between LW+SW Rad,282

PBL+SFC and WS as these interactions control the available heat flux into the lake. The283

same is mostly true for T2m over lake, but the joint effect sensitivity between LW+SW284

Rad and WS is reduced. For T2m over land, the interaction between LSM and PBL+SFC285

becomes the most significant joint effect sensitivity. The other WRF schemes, PBL+SFC,286

MP, z0w and the LSM all have similar magnitudes of sensitivity that explain between287

10 and 20% of the variance. Much of this is composed of joint effect sensitivity (except288

for LSM), meaning a large part of that uncertainty arises from their interactions across289

different combinations because the coupling does not directly involve the output from290

these physical parameterizations.291

3.2 Spatial Variations292

The uncertainty of LST is shown to be largest in the deeper central areas of Lake293

Superior (Figure 6). Indeed, the uncertainty tends to correlate with the size of the lake,294

with Lakes Erie and Ontario having the smallest uncertainty on average. This empha-295

sizes the importance of being able to realistically model large and deep lakes with a 3-296

D hydrodynamic model such as that used in this study.297

The higher uncertainty of LST over central Lake Superior is not attributable to any298

one particular parameterization, but the sensitivity from most of the parameterizations299

are somewhat elevated here (Figure 7). In general, though, offshore regions are more sen-300

sitive to radiation while coastal regions in the northern larger lakes are more sensitive301

to the lake WS parameterization. This could be explained by the cyclonic summer cir-302

culation patterns of the lakes, where currents are generally faster along coastal areas than303

offshore (Bai et al., 2013). The PBL+SFC scheme is shown to produce higher sensitiv-304

ity values in specific shallow areas of lakes such as western Lake Erie and the western305

tip of Lake Huron, where current speeds are very low (Bai et al., 2013). Southeast Lake306

Michigan is the one area particularly sensitive to the LSM. Although not particularly307

important, the effect of z0w is most significant in the shallower southern lakes, which matches308

the increase in surface roughness as the lake depth decreases for the depth-dependent309

scheme.310
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Figure 6. Spatial distribution of LST and T2m physics uncertainty, defined as the 90% inter-

val of the time-averaged surrogate model distribution.

Figure 7. Spatial variation of LST total effect Sobol sensitivity indices for the six most im-

portant physics parameterizations (refer Figure 5) according to the time-averaged surrogate

model.
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Figure 8. Spatial variation of T2m total effect Sobol sensitivity indices for the six most im-

portant physics parameterizations (refer Figure 5) according to the time-averaged surrogate

model.

The spatial map shows that T2m uncertainty is highest over land near the north-311

ern Great Lakes, over central Lake Superior and in urban areas (Figure 6). The uncer-312

tainty of T2m is lowest over land in the southern half of the domain, which explains why313

the uncertainty of T2m over land is found to be generally lower than over lake (Figure 5).314

There is a strong correlation between the uncertainty of T2m and LST over Lake Su-315

perior (i.e., lower uncertainty in the eastern and western potions of Lake Superior and316

high uncertainty in the deep central area). T2m is especially uncertain to the west and317

east of central Lake Michigan and over Chicago and Detroit, which are the largest ur-318

ban areas in the domain.319

For T2m, we see that the radiation and lake WS parameterizations are the most320

important over the lakes, in agreement with LST (Figure 8). The LSM dominates T2m321

sensitivity over land around the Great Lakes and to the north where there is a high den-322

sity of forested area. Noah-MP LSM incorporates several relevant augmentations to Noah,323

such as a separate vegetation canopy layer with canopy gaps that could produce this ef-324

fect (Niu et al., 2011). On the other hand, the land around the southern lakes and fur-325

ther south is mainly agricultural, in which differences between the LSMs are small. PBL+SFC326

is dominant in the south and over urban areas. This makes physical sense due to the south-327

westerly prevailing winds in the summer (Bai et al., 2013) that the PBL+SFC scheme328

can have an impact on. Further, urban areas like Chicago are very sensitive to treatment329

at the surface and can be improved by coupling to an urban canopy model (J. Wang,330

Qian, et al., 2023).331
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Figure 9. Temporal variation of LST physics uncertainty (the range of the shaded area be-

tween the 5th and 95th percentiles) and total effect Sobol sensitivity indices for the six most

important parameterizations (refer Figure 5) according to the spatially-averaged surrogate model

across each of the five Great Lakes (refer Figure 1).

3.3 Temporal Variations332

The uncertainty of LST is shown to be fairly consistent across time for each of the333

lakes during the summer months studied here (Figure 9). Slightly higher uncertainty is334

present during the rapid warming phase, which occurs in late June-July for Lake Supe-335

rior and in June (and earlier) for the other lakes. Lake Superior is shown to have the high-336

est LST uncertainty on average (1.77±0.52◦C) while Lake Ontario has the lowest (1.51±0.31◦C).337

The high uncertainty in the rapid spring warming phase coincides with elevated sensi-338

tivity to WS across all the lakes, highlighting how parameterization of momentum flux339

at the surface affects the way excess heat entering the lake during that period is distributed.340

The importance of WS also seems to correlate with lake size or latitude, with Lake Su-341

perior and Huron showing the highest sensitivity to WS. The magnitudes of sensitivity342

across the different parameterizations are more equal in Lake Michigan and Ontario than343

in the other lakes. They are also the two lakes where we see the largest spikes in LSM344

sensitivity, in mid-July and mid-August, which may be focused on their east coasts ac-345

cording to Figure 8. It is unclear why this occurs, but both times correspond to a sus-346

tained drop in LST.347

The LST uncertainty tends to decrease with average lake latitude. This trend is348

bucked by Lake Erie, which has the second highest LST uncertainty on average (1.70±0.20◦C).349

Erie is easily the shallowest lake and can therefore be most directly impacted by atmo-350

spheric radiation, as shown by an elevated total effect sensitivity index especially dur-351
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Figure 10. Temporal variation of T2m physics uncertainty (the range of the shaded area

between the 5th and 95th percentiles) and total effect Sobol sensitivity indices for the six most

important parameterizations (refer Figure 5) according to the spatially-averaged surrogate model

across each of the five Great Lakes and the four land quadrants (refer Figure 1).

ing the rapid spring warming phase. Similarly, Erie is less sensitive to WS than the other352

lakes. The effect of the PBL+SFC scheme from late July-August in Erie is far higher353

than seen for the other lakes. Spatial plots show this sensitivity is strongest over the ex-354

tremely shallow western Lake Erie (Figure 7). This influence could be coming from the355

nearby Detroit urban area and/or northern Indiana to the southwest that has a high sen-356

sitivity to PBL+SFC.357
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The uncertainty of T2m over the lakes is consistent with LST in that higher un-358

certainty is present during the rapid spring warming phase and correlates with higher359

latitude lakes (Figure 10). Indeed, Lake Superior has the highest average T2m uncer-360

tainty (2.39±0.53◦C) while Lake Erie has the lowest (1.77±0.52◦C). This latter fact is361

different from LST where Erie had the second highest average uncertainty. The higher362

T2m uncertainty in the rapid warming phase is associated with elevated sensitivity to363

the PBL+SFC scheme. Later in the season, starting from July, the importance of the364

LSM increases, particularly in the southern lakes. The impact of the radiation param-365

eterization is fairly consistent across the lakes and throughout the season.366

Over land, T2m is shown to warm up in June in the northern areas before main-367

taining a fairly constant temperature until late August. While in the southern areas, T2m368

maintains a more elevated temperature throughout the season. The average uncertainty369

of T2m in the northern land areas (NW = 1.80±0.40◦C, NE = 1.76±0.45◦C) is higher370

than in the southern areas (SW = 1.60±0.41◦C, SE = 1.37±0.34◦C), and also higher in371

the west than in the east. We mostly find that the uncertainty of T2m over land has no372

clear time variation like over the lakes, except for the SW area, where the uncertainty373

is significantly larger between early July and mid-August. The uncertainty of T2m over374

land is mostly being driven by the LSM and PBL+SFC as also shown clearly in Figure 8.375

The sensitivity to PBL+SFC is consistent throughout the season for the four land ar-376

eas. In contrast, sensitivity to LSM is more variable with time, especially in the south-377

ern areas. The magnitude of this sensitivity increases during July and into August, the378

same time as the higher uncertainty in the SW. As noted previously, this is correlated379

with a reduction in temperature over multiple days, and could be related to different runoff380

and surface soil thermal conductivity treatments in the LSMs (Niu et al., 2011).381

4 Discussion and Conclusions382

In this study, we presented a surrogate-based approach to evaluate the physics un-383

certainty in a coupled lake-atmosphere-land model of the GLR. We assessed surface air384

and lake temperatures using a NN surrogate model that can be rapidly queried to ob-385

tain sensitivity and uncertainty information. The sensitivity information from the sur-386

rogate model agrees with physical intuition such as producing logical ranking of the rel-387

ative importance of atmosphere, lake, and land contributions to LST and T2m over lake388

and land, and describing how atmospheric radiation and lake surface wind stress is the389

dominant control on LST. This indicates that the surrogate model applied here is ro-390

bust and physically reasonable for understanding the uncertainties. The MLP-based NN391

model may be further improved by using other NN types well-suited to time series anal-392

ysis such as Long Short-Term Memory (Kratzert et al., 2019).393

We showed that the physics uncertainty in T2m is on average greater over the lakes394

than over land, although the uncertainty for T2m over land in the vicinity of the Great395

Lakes is highest overall. The uncertainty of both LST and T2m tends to be higher in396

the northern lakes and land areas than in the south. One exception to this rule is that397

Lake Erie LST is the second most uncertain after Lake Superior, although this higher398

level of uncertainty arises from different physics (PBL+SFC for Erie and WS for Supe-399

rior). In regards to temporal variations, uncertainty is highest during the rapid spring400

warming phase for LST and T2m over the lakes, while T2m over the SW land area is401

higher between early-July and mid-August.402

The primary source of this uncertainty for surface temperatures arises from param-403

eterizations in the atmosphere (mostly LW+SW Rad and PBL+SFC) and a significant404

contribution from the overall atmosphere-lake physics interaction. The land’s LSM and405

the lake’s WS scheme are also critical for T2m and LST, respectively. As expected, LW+SW406

Rad is important as it controls the heat available to the surface for heating, and there407

is relatively little spatial and temporal variation of this sensitivity. The other parame-408
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terizations are all related to surface fluxes in each of the atmosphere, lake, and land model409

components. Naturally, we find that WS is important for surface temperatures over the410

lake and unimportant over land, consistent with J. Wang et al. (2022), who found that411

LST affects air temperature mainly locally. This sensitivity to WS is most pronounced412

during the rapid spring warming phase and for the larger northern lakes. The effect of413

PBL+SFC is important especially to the T2m over land in the southern areas, and to414

LST over Lake Erie, perhaps related to the southwesterly prevailing summer winds. PBL+SFC415

has the highest sensitivity to T2m over urban areas which can be improved by coupling416

to an urban canopy model (J. Wang, Qian, et al., 2023). The effect of LSM is, in gen-417

eral, greatest on T2m over the northern land areas, which is more forested than the agri-418

cultural south. This makes sense based on the several canopy-based augmentations of419

the Noah-MP LSM. The temperatures in the southern lakes and land areas also become420

more sensitive to LSM from early-July to mid-August, coinciding with sustained mul-421

tiday temperature declines.422

One hypothesis of this study was that the z0w scheme would be important for the423

Great Lakes as they are much shallower than the open ocean, and the depth-dependent424

scheme was shown to be important over the shallower continental shelves (Jiménez &425

Dudhia, 2018). We see here that, at least for surface temperature, the effect of z0w is426

relatively minor. However, this could be at least partially because the momentum flux427

on the atmosphere side and the lake side are calculated independently. If we instead trans-428

fer the fluxes computed in WRF (which uses z0w) to FVCOM directly instead of state429

variables, we should see z0w assume the higher sensitivity of the WS scheme. We there-430

fore recommend exploring this type of consistent flux-exchange coupling in future iter-431

ations of the coupled WRF-FVCOM model.432

Other physics of the lake – the attenuation of the shortwave radiation, the verti-433

cal mixing scheme and the turbulent Prandtl number – were shown to be relatively unim-434

portant to both lake and atmospheric (near-)surface temperatures. Therefore, careful435

treatment of atmospheric radiation and surface fluxes, as well as the numerical scheme436

(J. Wang, Fujisaki-Manome, et al., 2023), should be the focus of further attention in the437

development and assessment of the coupled WRF-FVCOM model (Kayastha et al., 2023)438

or similar coupled modeling systems of the GLR (e.g., Sun et al., 2020; Xue et al., 2022).439

Additionally, other parameterizations should become more important for different QoIs440

that we intend to look at in future work, such as microphysics (MP) for precipitation441

(Qian et al., 2015), among others. We also aim to extend the current framework to para-442

metric calibration using observations (e.g., Lu, Ricciuto, Stoyanov, & Gu, 2018; Xu et443

al., 2022) in a subsequent study.444

Finally, what about the magnitude of climate projections in the GLR compared445

to our estimates of physics uncertainty? We have recently conducted Pseudo-Global Warm-446

ing experiments using projections of T2m from the Coupled Model Intercomparison Project447

Phase 6 (CMIP6) in the GLR under the Shared Socioeconomic Pathway 5 (SSP-8.5) (Yang448

et al., 2024; Kayastha et al., 2024). An ensemble mean across 12 global climate mod-449

els shows an increase of 3-5◦C by mid-century above 1981-2010 levels (Figure 11). In an-450

other study using CMIP5 models, a more modest increase of 1.3-2.1◦C by mid-century451

under the Representative Concentration Pathway (RCP) 8.5 scenario is projected, but452

this is above 2000-2019 levels (Xue et al., 2022). Our physics uncertainties for T2m av-453

erage to around 1.5-1.9◦C, and based on these numbers would be considered compara-454

ble to the Xue et al. (2022) climate change signal, but well below our CMIP6 signal. How-455

ever, this 90% uncertainty range is two-sided and therefore overstates the close proxim-456

ity to one-sided projections of (only) warmer temperatures. In fact, we can show that457

T2m warming need only exceed at most 0.5◦C to be statistically greater than physics458

uncertainty (Figure 11). This estimate was calculated using a Mann-Whitney U test be-459

tween the surrogate model anomaly distribution and the CMIP6 climate projection en-460

semble reduced by a spatially varying factor. The sort after result is the minimum warm-461
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Figure 11. Top: CMIP6 ensemble mean projections of increases in T2m by mid-century

(2031–2060) compared to 1981–2010 under the SSP-8.5 scenario. Bottom: T2m warming required

to be statistically greater than the physics uncertainty.

ing where we can reject the null hypothesis with p < 0.05 in favor of the alternate that462

warming is greater than physics uncertainty. Of course, other uncertainties exist (Hawkins463

& Sutton, 2009), such as those that come from initial and boundary conditions or land464

use/land cover change and SSP scenarios, and these should be incorporated in future work.465

5 Open Research466

The metarepository for this study is available from https://github.com/COMPASS467

-DOE/GreatLakes CoupledModel Uncertainty (W. Pringle, 2024). It contains the un-468

certainty analysis codes and figures and links to source codes and processed data.469
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