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Introduction 
 
This supporting information provides additional details that are complementary to the main 
article. 
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Text S1. 

Determination of the tapering window 
 

In order to select the accurate time window that outlines the surface wave signal (e.g., 
black dashed lines in Fig. S5d), we first estimate the array-mean phase and group velocity 
dispersions (e.g., Fig. S5b) by stacking the denoised waveforms (Fig. S5c) shifted with 
respect to different moveout velocities (Fig. S5a). Figure S5a shows the procedure of grid 
searching the array-mean phase and group velocities at 0.3 s: 

1. For each analyzed moveout velocity V0 (x-axis of Fig. 5a), we shift the denoised 
waveform of each station pair with interstation distance of Δ towards the negative 
correlation time direction with dt = Δ/V0. 

2. We directly stack the denoised waveforms after the alignment and measure the 
maximum amplitude of the stacked waveform (red dots in Fig. 5a). The array-
mean phase velocity is then determined as the velocity V0 when the grid search 
curve (red dashed curve in Fig. 5a) reaches the maximum. 

3. To estimate the array-mean group velocity, we stack envelope functions of the 
shifted waveforms. The result for grid search of array-mean group velocity is 
shown in cyan color. 

 
After obtaining the array-mean phase and group velocities at each period, 𝑉"!" and 

𝑉"#!, we set the width of the tapering window as four times the dominate period Tmax of 
the array-mean amplitude spectrum (e.g., Fig. 4d). The center of the window is set to 
N‧Tmax, where N is a integer that satisfies N‧Tmax ≥ ∆ ∙ %1 𝑉"!"⁄ − 1 𝑉"#!⁄ ) > (N−1)‧Tmax, for 
the station pair with interstation distance of Δ. 
 
 
Text S2. 

Three-station interferometry with the presence of higher-mode surface waves 
 

The aim of this section is to investigate the derivation for denoising using three-
station interferometry if higher-mode surface waves are present. For simplicity, we first 
only add the first overtone surface wave, 𝑀+$_&(𝜔), to equation 2b: 
𝐺0$_&(𝜔) = 𝑆3$_&(𝜔) + 𝑂0$_&(𝜔) = 𝐹0$_&(𝜔) + 𝑀+$_&(𝜔) + 𝑂0$_&(𝜔)

= 𝐴'_$& ∙ 𝑒
($)*∙,!"

#-.#/ + 𝐴0_$& ∙ 𝑒
($)*∙,!"

$-.$/ + 𝑂0$_&(𝜔),	
(S1) 

where 𝑇$&0  and 𝜑0  are phase travel time and initial phase of the first overtone surface 
wave, respectively. 
 

By performing three-station interferometry, we plug equation S1 into equation 4a: 
𝐼3$_&(𝜔; 𝑘) = 𝐼3$_&' (𝜔; 𝑘) + 𝐼3$_&0 (𝜔; 𝑘) + 𝐼3$_&'0(𝜔; 𝑘) + 𝐼3$_&1 (𝜔; 𝑘),	 (S2) 

where each component is given by: 
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𝐼3$_&' (𝜔; 𝑘) = 𝐴'_$2 ∙ 𝐴'_&2 ∙ 𝑒$.!"_& = ?
𝐹0$_2∗ (𝜔) ∙ 𝐹0&_2(𝜔),																𝑘 < 𝑖
𝐹0$_2(𝜔) ∙ 𝐹0&_2(𝜔), 𝑖 < 𝑘 < 𝑗
𝐹0$_2(𝜔) ∙ 𝐹0&_2∗ (𝜔),																𝑘 > 𝑗

,	 (S3a) 

 

𝐼3$_&0 (𝜔; 𝑘) = ?
𝑀+$_2∗ (𝜔) ∙ 𝑀+&_2(𝜔),																𝑘 < 𝑖
𝑀+$_2(𝜔) ∙ 𝑀+&_2(𝜔), 𝑖 < 𝑘 < 𝑗
𝑀+$_2(𝜔) ∙ 𝑀+&_2∗ (𝜔),																𝑘 > 𝑗

,	 (S3b) 

 

𝐼3$_&'0(𝜔; 𝑘) = ?
𝐹0$_2∗ (𝜔) ∙ 𝑀+&_2(𝜔) + 𝑀+$_2∗ (𝜔) ∙ 𝐹0&_2(𝜔),																𝑘 < 𝑖
𝐹0$_2(𝜔) ∙ 𝑀+&_2(𝜔) + 𝑀+$_2(𝜔) ∙ 𝐹0&_2(𝜔), 𝑖 < 𝑘 < 𝑗
𝐹0$_2(𝜔) ∙ 𝑀+&_2∗ (𝜔) + 𝑀+$_2(𝜔) ∙ 𝐹0&_2∗ (𝜔),																𝑘 > 𝑗

,	 (S3c) 

and  

𝐼3$_&1 (𝜔; 𝑘) = ?
𝐺0$_2∗ (𝜔) ∙ 𝑂0&_2(𝜔) + 𝑂0$_2∗ (𝜔) ∙ 𝑆3&_2(𝜔),																𝑘 < 𝑖
𝐺0$_2(𝜔) ∙ 𝑂0&_2(𝜔) + 𝑂0$_2(𝜔) ∙ 𝑆3&_2(𝜔), 𝑖 < 𝑘 < 𝑗
𝐺0$_2(𝜔) ∙ 𝑂0&_2∗ (𝜔) + 𝑂0$_2(𝜔) ∙ 𝑆3&_2∗ (𝜔),																𝑘 > 𝑗

.	 (S3d) 

Combined with equation 3a, the terms 𝐼3$_&' (𝜔; 𝑘) and 𝐼3$_&0 (𝜔; 𝑘) are only related to the 
fundamental mode and the first overtone surface waves, respectively, and therefore are 
independent on k value in phase as illustrated in equation 4b. On the other hand, the term 
𝐼3$_&1 (𝜔; 𝑘)  is associated with non-surface wave signals 𝑂0(𝜔) , and therefore varies 
significantly with k value in phase. 
 

For the term 𝐼3$_&'0(𝜔; 𝑘) that represents the interference between the two modes of 
surface waves, we can further expand equation S3c by plugging in equation S1: 
𝐼3$_&'0(𝜔; 𝑘)

=

⎩
⎪
⎨

⎪
⎧𝐴'0_2 ∙ 𝑒

($*∙),!&
#(,"&

$/ + 𝐴0'_2 ∙ 𝑒
($*∙),!&

$(,"&
# /,																																								𝑘 < 𝑖

𝐴'0_2 ∙ 𝑒
($4*∙),!&

#-,"&
$/-.#$5 + 𝐴0'_2 ∙ 𝑒

($4*∙),!&
$-,"&

# /-.#$5, 𝑖 < 𝑘 < 𝑗

𝐴'0_2 ∙ 𝑒
($*∙),!&

$(,"&
# / + 𝐴0'_2 ∙ 𝑒

($*∙),!&
#(,"&

$/,																																								𝑘 > 𝑗

.	
(S4) 

where 𝐴'0_2 = 𝐴'_$2 ∙ 𝐴0_&2 , 𝐴0'_2 = 𝐴0_$2 ∙ 𝐴'_&2 , and 𝜑'0 = 𝜑' + 𝜑0 . The travel 
time differences of 𝑇$2' − 𝑇&20 and 𝑇$20 − 𝑇&2'  for k < i are dependent on the choice of k, and 
it is also true for cases when k < j and i < k < j. Therefore, the terms 𝐼3$_&'0(𝜔; 𝑘) and 
𝐼3$_&1 (𝜔; 𝑘) are suppressed through the stacking introduced in section 3.2 (Equation 5b). 
This is equivalent to that, after stacking, only the terms 𝐼3$_&' (𝜔; 𝑘)  and 𝐼3$_&0 (𝜔; 𝑘)  are 
preserved, i.e., the denoised waveform will only enhance the fundamental mode and first 
overtone surface waves but suppress the contributions from non-surface wave signals and 
the interference pattern between the two modes. Similar formulations can easily be 
derived for cases when more than two modes of surface waves are present.  
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Figure S1. (a)-(c) Same as Fig. 2 for TT component data narrow bandpass filtered at 0.8 
s. (d)-(g) Same as Fig. 3 for TT component data narrow bandpass filtered at 0.8 s. Signal 
to noise ratio of the fundamental mode surface waves is much higher in the filtered 
ANCs, (a)-(b), than that of Fig. 2. As illustrated in panel (c), the systematic time shift 
between black and blue waveforms is zero, suggesting 𝜑'  (Equation 2b) is zero. 
Comparison between panels (e) and (f) suggests that the denoising process mainly 
suppresses coda waves of the filtered ANCs at low frequency (0.8 s). 
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Figure S2. Same as Fig. S1 for ZZ component data narrow bandpass filtered at 0.3 s. 
Similar to Fig. 3, signal to noise ratio of the fundamental mode surface waves is low.  
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Figure S3. Same as Fig. S2 for the denoising of ZZ component data narrow bandpass 
filtered at 0.8 s. 
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Figure S4. Synthetic test for phase weighted stacking… 
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Figure S5. (a) Phase (red) and group (cyan) velocity are estimated as the velocity of the 
peak of the curve using data at TT component narrow bandpass filtered and denoised at 
0.3 s (shown in Fig. 3c), assuming a homogenous velocity structure beneath the array 
(Appendix I). The black dashed line is used to estimate uncertainty of the array-mean 
velocity. (b) Array-mean phase (red) and group (cyan) velocity dispersion curves, with 
error bars indicating the estimated uncertainty. Stars depict the array-mean velocities 
obtained in (a). (c) Same as Fig. 4c with the red and cyan dashed lines illustrating the 
moveout of array-mean phase and group velocities. Peak frequency of the array-mean 
amplitude spectrum (dashed lines in Fig. 4d) is labeled at the bottom right. (d) 
Waveforms aligned with respect to the travel time predicted by the array-mean phase 
velocity (red dashed line). The waveforms are further tapered using time windows 
outlined by the black dashed lines (Appendix I). The cyan dashed line indicates the array-
mean group velocity moveout after the alignment. 
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Figure S6. Same as Fig. S5 for TT component data narrow bandpass filtered at 0.8 s. 
 
  



10 

 
 
Figure S7. Same as Fig. S5 for ZZ component data narrow bandpass filtered at 0.3 s. 
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Figure S8. Same as Fig. S5 for ZZ component data narrow bandpass filtered at 0.8 s. 
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Figure S9. Same as Fig. 5 for denoised data of TT component narrow bandpass filtered at 
0.8s.  
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Figure S10. Same as Fig. 5 for denoised data of ZZ component narrow bandpass filtered 
at 0.3 s. 
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Figure S11. Same as Fig. 5 for denoised data of ZZ component narrow bandpass filtered 
at 0.8s. 
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Figure S12. Same as Fig. 5 for denoised data of TT component narrow bandpass filtered 
at 0.4 s. Denoised waveforms after tapering are less coherent in (a) compared to results at 
other periods. Phase velocity models inferred from different virtual shot gather (gray 
curves and colormap) are in general inconsistent and thus yield large uncertainty values. 
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Figure S13. Same as Fig. 3 for the denoising of TT component data narrow bandpass 
filtered at 0.4 s. Coherent waves that travel at a slightly faster speed with weaker 
amplitude than the fundamental surface waves are observed in (c), the wavefield after 
denoising. In addition, the amplitude spectrum after denoising shows 2-3 peaks compared, 
which is consistent with the observation that there is likely non-negligible higher-mode 
surface waves with a slightly different dominate frequency in the denoised wavefield. 
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Figure S14. Same as Fig. S5 for the denoised data of TT component narrow bandpass 
filtered at 0.4 s. Different from Fig. S5, two peaks are found in the grid search curve for 
array-mean Love wave phase velocity shown in (a), suggesting there are at least two 
modes of surface waves in the final denoised wavefield shown in (c). 
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Figure S15. Same as Fig. 4 for the denoising of TT component data narrow bandpass 
filtered at 0.2 s. Compared to the filtered ANCs in (b), the fundamental mode surface 
waves are significantly enhanced after the denoising in (c). In addition, similar to Fig. 
S13, both (c) and (d) may indicate the existence of weak higher mode surface waves in 
the denoised wavefield at 0.2 s. 
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Figure S16. Same as Fig. 4 for the denoising of ZZ component data narrow bandpass 
filtered at 0.2 s. Fundamental mode surface waves are significantly enhanced after the 
denoising process from (b) to (c). 
 
 


