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Text S1. Description of surface heat flux correction in CESM 
In a 13-year simulation with raised topography over Central America, sea surface temperatures 
(SSTs) were nudged to observed climatology (NOAA ERSST v3b from 1970-2009) within 30° of 
the equator (linearly decreasing to zero between 25° and 30° latitude), using a Newtonian cooling 
in the top layer of the ocean model with a restoring time-scale (τ) of 10 days. The monthly 
climatology of the surface heat flux adjustment was calculated over the last 10 years of this 
simulation and applied as a constant (seasonally-varying) surface heat flux adjustment to the final 
500-yr control simulation. These bias corrections are applied to both the climatological and 
perturbed simulations and allow a realistic tropical mean state while simultaneously allowing the 
tropics to respond in the forced experiments. The tropical surface temperature, precipitation, and 
wind fields before and after these bias corrections are shown in Figs. S1 and S2. See Atwood 
(2015) for further information and analysis of these simulations. 
 
 

 
 
Fig. S1. Left panels: climatology of tropical precipitation in March-April-May (MAM) in (a) 
observations (GPCP), (b) CESM with surface heat flux corrections and raised central American 
topography, and (c) the pre-industrial control of CESM. Right panels: ensemble-mean change in 
MAM precipitation (colors) due to North Atlantic meltwater forcing where the forcing is applied 
to (d) the bias-corrected CESM control run, and (e) the pre-industrial CESM control run. The 
climatological ensemble mean precipitation is shown by the unfilled contours (contours = 4, 8, 12 
mm/day). 
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Fig. S2. Observed mean annual climatology of SST and surface winds in ERSST v3b reanalysis 
(top). SST and surface wind field biases in CESM without (middle) and with (bottom) surface 
heat flux and central American topography corrections. Note that the magnitude of the reference 
vector in the top panel is larger by a factor of 4. 
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